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Abstract: Our paper deals with an advanced statistical tool for the volatility prediction problem
in financial (crypto) markets. First, we consider the conventional GARCH-based volatility models.
Next, we extend the corresponding GARCH-based forecasting and calculate a specific probability
associated with the predicted volatility levels. As the probability evaluation is based on a stochastic
model, we develop an advanced data-driven estimation of this probability. The novel statistical
estimation we propose uses real market data. The obtained analytical results for the statistical
probability of the levels are also discussed in the framework of the integrated volatility concept. The
possible application of the established probability estimation approach to the volatility clustering
problem is also mentioned. Our paper includes a concrete implementation of the proposed volatility
prediction tool and considers a novel trading and volatility estimation module for crypto markets
recently developed by the 1ex Trading Board group in collaboration with GoldenGate Venture. We
also briefly discuss the possible application of a model combined with the data-driven volatility
prediction methodology to financial risk management.

Keywords: technical analysis; formal volatility models; volatility prediction; statistical probability of
levels; trading algorithms

1. Introduction and Motivation

In financial engineering, volatility is usually defined as the dispersion of a return series
and is computed by taking the (sample) standard deviation (see, e.g., Brooks 2015; Greene
2011; Poon and Granger 2003). Volatility is the most important parameter in the pricing of
crypto derivatives, and the trading volume has drastically increased in recent years. To
price an option, one needs to know (or estimate) the volatility of the underlying asset from
the real-time instant until the option expires. Note that the probability distributions of
financial returns are characterized by high volatility persistence and thick tails (see, e.g.,
Andersen et al. 2001; Cont 2001). In the realm of modern crypto markets, the manifestation
of volatility constitutes a very important indicator of the inherent fluctuations in the main
market characteristics (Danielsson et al. 2018; Poon and Granger 2003; Schwert 1990). It
gives crucial information to crypto traders and constitutes a pivotal element of many
effective cryptocurrency trading strategies. Volatility information is very important for
assessing risk and pricing derivative products, as well as for developing trading strategies.

The volatility prediction problem is an important topic in the technical analysis of
financial markets (see Bollerslev 1986; Bollerslev and Wooldridge 1992; Haas and Peter
2024; Poon and Granger 2003; Shah et al. 2018; Verhoeven et al. 2002; Wang et al. 2020,
and the references therein). It is common knowledge that various time-series models
are widely used for handling the data of highly volatile financial markets. For example,
the relatively simple generalized autoregressive conditional heteroskedasticity (GARCH)
models can effectively be applied to the volatility forecasting problem (see Bollerslev 1986;
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Bollerslev and Wooldridge 1992; Francq and Zakoian 2010; Huang et al. 2008; Sen et al.
2021; Taylor 1986; Wang et al. 2020). On the other hand, the majority of the existing time-
series techniques for volatility prediction involve the celebrated quasi-maximum likelihood
(QML) estimation approach (Birge and Louveaux 2011; Bollerslev and Wooldridge 1992;
Franses and Ghijsels 1999; Gallager 2013; Poznyak 2009). One can use this conventional
estimation methodology for necessary parameter identification in a selected GARCH(p,q)
model. We refer to Azhmyakov et al. (2021), Lewis (1986), and Poznyak (2009) for the
general identification theory.

However, the conventional QML estimation approach mentioned above was initially
designed under the classic normality assumption (Franses and Ghijsels 1999; Poon and
Granger 2003; Poznyak 2009; Taylor 1986). Thus, it is inefficient if the volatility proxies are
non-Gaussian (see Fan et al. 2014). Otherwise, there are several specific features of financial
market volatility that are well-documented. These “stylized facts” include the fat-tailed
distributions of asset returns, volatility clustering, asymmetry, and mean reversion. It is
well known that the QML method is non-robust in the presence of outliers, even with
fat-tailed and skewed distributions. Therefore, the classic (Gaussian) QML method for the
GARCH parameter identification problem needs to be improved and extended with some
additional analytical tools.

Although the development of mathematical models for crypto markets and new
trading algorithms has been a major topic of research, forecasting financial market volatility
is more difficult. Surprisingly, although high volatility can pose a considerable menace
to shareholders, it can also be a source of significant financial returns. Even when stock
markets oscillate, fall, or skyrocket, there is always a possibility to profit if market volatility
is exploited.

In this paper, we extend the existing GARCH volatility prediction technique using an
additional useful tool. We introduce predicted volatility levels and calculate the probability
that financial market volatility will not fall below these (predicted) levels. This formal
mathematical technique involves the well-known stochastic volatility model (see, e.g., Poon
and Granger 2003). Additionally, we use real market data and develop a constructive lower
estimation for the probability evaluation mentioned above. This data-driven estimation of
the probability of volatility levels integrates the model parameters and real market data.
The advanced statistical analysis we propose can be considered for integrated volatility
frameworks. It can also be useful in the context of the volatility clustering problem (Lux
and Marchesi 2000; Nikolova et al. 2020). Our paper includes a short presentation of a
practically oriented volatility analysis module recently developed by the 1ex Trading Board
group in collaboration with GoldenGate Venture. This novel tool includes the volatility
prediction methodology discussed in this paper and some related trading algorithms.

Let us also note that robust volatility forecasting plays an important role in financial
risk management (Kahneman and Tversky 2013; Schwert 1990; Ziemba and Vickson 1975).
Various hedge funds, banks, financial groups, and trading houses use the well-known value-
at-risk (VaR) indicators. Modern VaR estimators essentially use some volatility predictors.
Moreover, a credible volatility prediction scheme can also be applied to optimize the design
of novel profitable trading algorithms for crypto markets (Azhmyakov et al. 2022, 2023;
Barmish and Primbs 2016; Baumann 2017; Formentin et al. 2018). It is well known that the
highly fluctuating crypto exchange prices and the corresponding very frequent changes
in the main market indicators make accurate price forecasting nearly impossible. In this
situation, consistent volatility prediction can essentially improve concrete trading strategies.

The remainder of our paper is organized as follows: Section 2 contains the formal
volatility prediction problem formulation in the framework of the general GARCH model.
We also examine concrete GARCH abstractions, discuss some useful mathematical and
financial facts, and introduce the concept of the predicted volatility levels. Section 3
includes a critical consideration of the conventional QLM technique for model (parameter)
identification in a general GARCH model. We focus our attention on the conceptual
difficulties of this widely used methodology in the case of non-Gaussian stochastic errors.
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The criticism in this section helps in understanding the necessity of some additional and
novel predictive tools. Section 4 is devoted to the development of a novel probabilistic tool
for volatility prediction. We use the well-known stochastic volatility model for this purpose.
The application of an advanced mathematical technique makes it possible to calculate the
characteristic probability associated with the predicted volatility levels. Concretely, we
evaluate the exact probability of financial market volatility not falling below a prescribed
(predicted) level. In Section 5, we perform a statistical analysis of financial market data and
derive a novel, lower estimation of the probability associated with predicted volatility. This
data-driven version of the probability estimation is a formal consequence of the stochastic
volatility model studied in the previous section. Section 6 contains a short description of the
practically oriented volatility estimation module “AI NEWS”, recently developed by the
1ex Trading Board group in collaboration with GoldenGate Venture. Section 7 summarizes
our paper.

2. Volatility Prediction in Financial Markets Using GARCH Models

Consider a series {ps}s=0,1,...,T of prices of an asset at (T + 1) time points and introduce
the corresponding logarithmic return (log return):

rs := ln (ps/ps−1),

s = 1, ..., T.

Using the obtained data set, {rs}s=1,...,t, we now define the (sample) volatility, σ2
t , for

the given time period:

σ2
t =

1
t − 1

t

∑
s=1

(rs − r̄t)
2. (1)

Here,

r̄t :=
1
t

t

∑
s=1

rs

is a sample mean return. Evidently, (1) constitutes a method of moment unbiased estima-
tion of the second moment (i.e., variance of return) for the observable series of returns,
{rs}s=1,...,t. Here, we do not assume the covariance stationarity of {rs}s=1,...,t. The complete
time period s = 0, 1, ..., T can be interpreted as a full time frame associated with a complete
series of historical prices.

Note that there are a number of theoretical and practical advantages to using log
returns in finance (see, e.g., Brooks 2015; Greene 2011). In financial engineering, volatility is
often defined as the square root of (1) (the sample standard deviation); however, the square
root of σ2

t in (1) constitutes a biased estimation of the corresponding standard deviation
(see, e.g., Poznyak 2009; Taylor 1986 for details).

As mentioned in the introduction, there are various methods for estimating the volatil-
ity σ2

t+1 in (1). Next, we focus our attention on a simple but effective volatility forecasting
procedure that uses a relatively simple GARCH model (see Francq and Zakoian 2010;
Greene 2011, and the references therein). Recall that the generic GARCH(p,q) abstraction
has the following formal expression:

rt = µt + ϵt, t ∈ N
ϵt = σ̃tzt

σ̃2
t = ωt + Σq

i=1αi
tϵ

2
t−i + Σp

j=1β
j
tσ̃

2
t−j.

(2)

Here,
µt := E[rt

∣∣Ft−1]



J. Risk Financial Manag. 2024, 17, 279 4 of 15

is a conditional mean and Ft−1 is a sigma-algebra generated by the data that are available
up to the time instant t − 1. Moreover, the possibly non-normal random variables, zt, t ∈ N,
are assumed to be independent and identically distributed with

E[zt
∣∣Ft−1] = 0,

E[z2
t
∣∣Ft−1] = 1.

We also assume that the GARCH(p,q) coefficients

(α1
t , ..., α

q
t ),

(β1
t , ..., β

p
t )

in (2) are known for every t ∈ N. The deterministic value, ωt, in model (2) is sometimes
called an intercept. Note that we consider a general non-stationary GARCH model here. Ev-
idently, the above non-stationary abstractions constitute an adequate modeling framework
for modern, highly volatile crypto markets.

As the statistical properties of the sample mean, r̄t, in (1) make it a very inaccurate
approximation of a true mean, taking the necessary deviations around zero instead of r̄t,
as in Formulae (1), increases the accuracy of the volatility prediction. Therefore, we next
assume that µt ≡ 0 for all t ∈ N in (2).

The conditional variance σ̃2
t in the GARCH(p,q) model (2) constitutes a specific model-

based volatility estimation. The main idea of the proposed GARCH model is that the
conditional variance of returns has an autoregressive structure and is positively correlated
to its own recent past. Note that this model also generates the volatility clustering effect.

In the case of a GARCH(1,1), we obtain

σ̃2
t = ωt + α1

t ϵ2
t−1 + β1

t σ̃2
t−1. (3)

From (3), next, we derive the model-based unconditional variance estimation, σ̃2
t+1, of

the return rt+1:
σ̃2

t+1 = ωt+1 + (α1
t+1 + β1

t+1)σ̃
2
t , t ∈ N. (4)

The resulting volatility prediction expression (4) has a recursive nature. In the station-
ary case, namely, for

α1
t ≡ α > 0, β1

t ≡ β > 0,

ωt ≡ ω > 0

1 − α − β > 0

we evidently have the explicit time-invariant volatility prediction:

σ̃2
t+1 = σ̃2 =

ω

1 − α − β
. (5)

The so-called volatility persistence is given here by (α + β).
Let us also present the resulting formulae for the estimated volatility, σ̃2

t+1, of return
associated with a stationary GARCH(2,2) predictive model:

σ̃2
t = ω + α1ϵ2

t−1 + β1σ̃2
t−1 + α2ϵ2

t−2 + β2σ̃2
t−2. (6)

The corresponding volatility prediction in that case can be expressed as follows:

σ̃2
t+1 = σ̃2 =

ω

1 − (α1 + β1)− (α2 + β2)
. (7)
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We refer to Francq and Zakoian (2010) for the necessary mathematical formalism.
Recall that the covariance-stationarity condition for the general GARCH(p,q) process (2)
has the generic form

Σq
i=1αi

t + Σp
j=1β

j
t < 0.

Next, using a “predicted volatility level”, we denote the value σ̃2
t+1, calculated using

one of the above Formulae (4), (5), or (7). In parallel with the common volatility definition,
we also consider the well-known “integrated volatility” concept over the period t to t + 1:

Φt+1 :=
∫ 1

0
σ2

t+τdτ. (8)

The integrated volatility concept (8) is of central importance in the pricing of crypto
derivatives (see, e.g., Lux and Marchesi 2000 for details). Let us also refer to Poon and
Granger (2003) for some existing integrated volatility estimators. Evidently, the GARCH-
based predicted volatility levels mentioned above naturally imply the corresponding levels
of integrated volatility in (8). For example, the combination of the simple trapezoidal rule
and (4) implies the following estimation of Φt+1:

Φ̃t+1 ≈ 1
2
(ωt+1 + (1 + α1

t+1 + β1
t+1)σ̃

2
t ) (9)

Note that the integrated volatility, Φt+1, can also be estimated using the return sam-
plings for a time interval of sufficiently frequent returns (see, e.g., Andersen et al. 2001):

lim
n→∞

P[|Φt+1 − Σn
s=1r2

n,(t+s)/n| ≤ δ] = 0 ∀δ > 0. (10)

Here, n is the sampling frequency, rn,(t+s)/n denotes a compound return, and P[·] is
the probability associated with the exchange prices (exchange rates) under consideration.
The basic relation (10) also involves a useful concept from modern financial engineering;
namely, the so-called “realized volatility” (see Haas and Peter 2024; Poon and Granger
2003, and the references therein). Similar to the forecasting technique for the predicted
volatility σ̃2

t+1 discussed above, one can also estimate some of the additional important
statistical characteristics of return. For example, the GARCH models presented in this
section provide a consistent analytic basis for an adequate estimation of the corresponding
kurtosis coefficients (see, e.g., Kim and White 2004 for details).

3. On the Critical Analysis of the QML Method for Parameter Identification

The general GARCH-based volatility model (2), as well as the concrete predictive
relations (4), (5), (7), and (9), are derived under the assumption of the known model
parameters (coefficients)

{(ωt, αi
t), i = 1, ..., q}

and
{β

j
t, j = 1, ..., p}.

However, practical application of these approaches involves a necessary identification
procedure for defining the GARCH parameters mentioned above. Moreover, one also needs
to estimate (identify) the standardized errors, zt, in model (2).

The quasi-maximum likelihood (QML) method is widely used for the identification
of the GARCH(p,q) model (2). We refer to Birge and Louveaux (2011); Bollerslev and
Wooldridge (1992); Franses and Ghijsels (1999); Gallager (2013), and Poznyak (2009) for
some mathematical details and concrete applications of the QML techniques. Under the
standard normality assumptions, this method provides consistent and asymptotically
normal estimations in the case of strictly stationary GARCH processes. Recall that the
conventional QML involves maximizing the Gaussian log-likelihood, and the resulting
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solution constitutes an adequate estimation of a parameter vector under the normality
assumptions.

However, it is common knowledge that financial time series (for example, the crypto
exchange rates) have the characteristics of being leptokurtotic and fat-tailed with skewness.
Moreover, these series usually involve the so-called volatility clustering effect. The “stylized
facts” about the financial market volatility mentioned above also include asymmetry
and mean reversion. Note that these properties of the volatility dynamics are now well
documented (see, e.g., Cont 2001; Poon and Granger 2003).

The non-regular behavior of the modern financial markets and the corresponding
stylized facts about volatility make it impossible to consider the classical Gaussian as-
sumption for the stochastic errors in GARCH(p,q) models. Note that the generic normal
probability distributions do not involve outliers and are incompatible with the fat-tailed
and skewness effects mentioned above. On the other side, it is well known that the QML
method is non-robust in the presence of data outliers generated by fat-tailed and skewed
distributions. It is remarkable that in some professional publications, and also in practical
trading manuals, inconsistent normality assumptions are still followed. As a result, this
simplified Gaussian-based modeling approach involves a deficient description and faulty
forecasting of the real (crypto) market dynamics.

The above problem of an adequate modeling framework for the stochastic errors in
the general GARCH(p,q) model (2) is crucially important for the resulting model-based
volatility prediction. The basic QML estimation is inefficient if the volatility proxies are non-
Gaussian (see, e.g., Poon and Granger 2003 and the references therein). As a consequence,
one will obtain a possible inconsequential estimation, θ̂t, for the parameters of the basic
GARCH volatility model under consideration.

In this situation, one can consider some concrete fat-tailed and skewed probability
distribution in order to examine and simulate the more realistic case studies of the modeled
volatility dynamics. For example, one can use the “contaminated” and skewed normal
distribution, skewed Student distribution, skewed generalized error distribution, and
many others. These non-regular probability distributions generate various types of realistic
additive and innovative outliers for the time-series-based modeling of financial time series.
We refer to Azhmyakov et al. (2021), Fan et al. (2014), and Huber and Ronchetti (2005) for
the corresponding research and simulation results.

Let us note that the fat-tailed and skewed distributions constitute an adequate model-
ing framework in the case of cryptocurrency time series (see Cont 2001). On the other hand,
we usually have no information about a concrete real probability distribution associated
with these specific financial series. The same is also true with respect to the series of returns.
That means that the concrete non-Gaussian (fat-tailed and skewed) probability distributions
of the stochastic errors in the GARCH model (2) are generally unknown.

The above fact constitutes the main motivation for the necessary methodological
extension of the existing model-based techniques for volatility prediction and for devel-
oping some additional data-driven statistical tools. Next, we propose a novel statistical
metric that can be used as an auxiliary analytic tool for the GARCH-based prediction of
the volatility levels. This metric involves real market data and constitutes a quantitative
method for seeing how well the model-based volatility prediction would have performed.
The novel methodology we introduce in the next sections can also be implemented as a part
of the common backtesting procedures for the design and verification of new algorithmic
trading strategies.

4. Exact Probability Calculation for the Predicted Volatility Levels

This section presents a useful result that can be applied to the formal probabilistic
analysis of the predicted volatility levels. By taking into consideration the conceptual
difficulties of the OML method discussed in Section 3, we propose an auxiliary statistical-
based predictive metric.
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Consider the well-known stochastic volatility model (see, e.g., Poon and Granger 2003
and the references therein):

dσ2
t = (µv − βσ2

t )dt + σvσ2
t dWv(t), t ∈ R+, (11)

where µv is an average, β is the speed of the volatility process, and σv is called “volatility of
volatility”. Using Wv(t), we denote a Wiener process with

Wv(0) = 0.

The above stochastic volatility model is usually considered in combination with the
price dynamics:

dpt = µp ptdt + σptdWp(t), t ∈ R+, (12)

Similar to (11), we are dealing with an associated Wiener process here:

Wp(t), Wp(0) = 0.

Using µp in (12), we denote the mean. Many useful mathematical models of financial
markets include the generic abstraction (12). Let us mention the classic Samuelson pricing model
and the celebrated Black–Scholes theory (see Samuelson 1965; Black and Scholes 1973).

Note that the price and the volatility models (11) and (12) constitute an interconnected
system of equations. This natural interconnection can be described by a specific correlation
between Wv(t) and Wp(t). The fundamental system (11) and (12) can also be used for
modeling the crypto markets. This model also generates some stylized facts about the
volatility mentioned in the previous sections; namely, the Black–Scholes volatility smile
and volatility clustering. We refer to Black and Scholes (1973) for further technical details.

We now consider the GARCH(1,1) and GARCH(2,2) models from Section 2 and the
corresponding predicted volatility levels (4), (5), and (7). Let v∗t be a required volatility level
that is associated with the corresponding GARCH-based predictions. Roughly speaking,
we have here the non-stationary level v∗t such that

v∗t < σ̃2
t , ∀t ∈ R+

for (4), and the stationary level
v∗ < σ̃2

in the case of (5) and (7). The required probability associated with the predicted volatility
level, v∗t , can now be defined as follows:

P[σ2
t ∈ (v∗t ,+∞)

∣∣ σ2
0 > v∗t ], ∀t ∈ [0, T]. (13)

Where T ∈ N. Recall that P[·] denotes the probability measure associated with the ex-
change prices, pt (see Section 2). Note that the above diffusion Markov processes—namely,
processes (11) and (12)—are assumed to be defined in the same probability space.

The proposed definition (13) expresses a probability that the volatility does not fall
below a specific level (a level of v∗t ) for t ∈ [0, T]. This constitutes a kind of “consistency” for
the model-based volatility prediction concept determined by GARCH(1,1) or GARCH(2,2).
Note that in (13), we are dealing with a conditional probability and assuming that the initial
volatility, σ2

0 , is higher than v∗t . We now calculate the required probability determined
by (13) using only the stochastic volatility abstraction discussed above. Note that this
calculation does not involve the GARCH(p,q) volatility model.

In parallel with the characteristic probability (13), we introduce the formal complement

ρ(t, σ2
t ) := 1 − P[σ2

t ∈ (v∗t ,+∞)
∣∣ σ2

0 > v∗t ], ∀t ∈ [0, T], (14)
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where the stochastic dynamics of σ2
t are given by (11). This complement expresses the

probability of the “complementary” event

σ2
t ≤ v∗t

for t < T. The complementary probability given by (14) can now be evaluated. From the
abstract result of Pontryagin et al. (1933), it follows that function ρ(t, σ2

t ) in (14) satisfies the
boundary value problem

∂ρ

∂t
= (µv − βσ2

t )
∂ρ

∂x
+

1
2

σ2
v σ4

t
∂2ρ

∂x2 , t > 0, σ2
t > v∗t ,

ρ(t, v∗t ) = 1, t ≥ 0,

ρ(0, σ2
t ) = 0, σ2

t > v∗t ,

(15)

where σ2
t is a solution of (11). From Pontryagin et al. (1933), we also deduce that the

auxiliary function

ξ(t, σ2
t ) := (1 − ρ(t, σ2

t )) exp
1

σ2
v σ4

t
(µv − βσ2

t )(σ
2
t − v∗t ) +

1
2σ2

v σ4
t
(µv − βσ2

t )
2t

satisfies the boundary value problem for the conventional heat equation:

∂ξ

∂t
=

1
2

σ2
v σ4

t
∂2ξ

∂σ4
t

, t > 0, σ2
t > v∗t ,

ξ(t, v∗t ) = 0, t ≥ 0,

ξ(t, σ2
t − v∗t ) = exp

1
σ2

v σ4
t
(σ2

t − v∗t ), σ2
t > v∗t .

(16)

The solution of the boundary value problem (16) can be written as follows (see, e.g.,
Kevorkian 2000):

ξ(t, σ2
t ) = exp { 1

2σ2
v σ4

t
(µv − βσ2

t )
2t}×

[
ψ
( (µv − βσ2

t )t + (σ2
t − v∗t )

σvσ2
t
√

t

)
× exp { 1

σ2
v σ4

t
(µv − βσ2

t )(σ
2
t − v∗t )}−

ψ
( (µv − βσ2

t )t − (σ2
t − v∗t )

σvσ2
t
√

t

)
× exp {− 1

σ2
v σ4

t
(µv − βσ2

t )(σ
2
t − v∗t )}

]
.

(17)

Here, we use the following notation for the auxiliary function:

ψ(ζ) :=
1

2π

∫ ζ

−∞
exp {−u2

2
}du,

where
ζ := µv − βσ2

t .

We now consider the definition (17) of the auxiliary function ξ(·, ·) and obtain an
explicit expression for the original function ρ(·, ·) in problem (15). This expression implies
the corresponding formal result for the desired probability in (13):

P[σ2
t ∈ (v∗t ,+∞)

∣∣ σ2
0 > v∗t ] = 1 − ρ(t, σ2

t ) =

1 + ψ
( (µv − βσ2

t )t − (σ2
t − v∗t )

σvσ2
t
√

t

)
× exp{− 2

σ2
v σ4

t
(µv − βσ2

t )(σ
2
t − v∗t )}−

ψ
( (µv − βσ2

t )t + (σ2
t − v∗t )

σvσ2
t
√

t

)
,

(18)
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where t ∈ [0, T].
A direct verification shows that the obtained complementary to (18)—namely, the

probability ρ(·, ·)—satisfies the boundary value problem (15). Moreover, for the function
ρ(·, ·) and for the desired probability in (18), we can verify the natural condition

0 ≤ P[σ2
t ∈ (v∗t ,+∞)

∣∣ σ2
0 > v∗t ] ≤ 1,

for t ∈ [0, T].
We now conclude that the probability of the GARCH-based predicted volatility level,

v∗t , is explicitly given by the resulting relation (18). It expresses the probability of the event

σ2
t ∈ (v∗t ,+∞)

for [0, T], assuming that the initial volatility (for t = 0) satisfies the inequality condition

σ2
0 > v∗t .

Finally, let us note that the exact probability calculus developed in this section is based
on the generic stochastic modeling approach (11) for volatility dynamics.

5. Statistics of the Predicted Volatility Levels

The probabilistic analysis of the predicted volatility levels performed in the previous
section is based on an abstract mathematical model; namely, on the stochastic equation (11).
Next, we consider this obtained theoretical technique and use it for an applied, data-driven
statistical analysis of the GARCH-based estimations of volatility levels.

Consider the resulting Formulae (18) from Section 4 and put t = T. Our aim is to
derive a lower estimation of the probability expressed in (18). We examine it for the constant
predicted volatility levels, σ̃2, in (5) (GARCH(1,1) model) and (7) (GARCH(2,2) model). For
a constant volatility level, v∗ = const, with

v∗ < σ̃,

we obtain

P[σ2
t ∈ (v∗,+∞)

∣∣ σ2
0 > v∗] ≥

1 + ψ
( (µv − βσ̃2)T − (σ̃2 − v∗)

σvσ̃2
√

T

)
× exp{− 2

σ2
v σ̃4 (µv − βσ̃2)(σ̃2 − v∗)}−

ψ
( (µv − βσ̃2)T + (σ̃2 − v∗)

σvσ̃2
√

T

)
.

(19)

Here, t ∈ [0, T].
We now examine the limit value of the probability expression in (19) for T → ∞. We

next interpret the resulting P∞ as a probability that in the “foreseeable future” the volatility
does not fall below the prescribed (constant) level, v∗. As

lim
ζ→∞

ψ(ζ) = 1,

we obtain
P∞ ≥ exp{− 2

σ2
v σ̃4 (µv − βσ̃2)(σ̃2 − v∗)}. (20)

Coming back to a real financial (crypto) market data, we introduce the number M ∈ N,
defined as follows:

M := ∑
t∈N

1(σ2
t ≥ v∗), (21)
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where σ2
t is the real market volatility. Function 1(·) in (21) is a generic indicator function,

1(y) = 1 if y is true;

1(y) = 0 if y is false;

for the discrete time t ∈ N. Roughly speaking, the number M ∈ N indicates how many
times the real market volatility σ2

t is higher as a given constant level, v∗. Using (20) and the
basic properties of the exponential function, we deduce our final lower estimation of the
limiting probability, P∞:

P∞ ≥ M−2(µv−βσ̃2)(σ̃2−v∗)/σ2
v σ̃4

. (22)

Recall that the value σ̃2 in (22) is determined by the stationary GARCH(1,1) predictive
model (Formulae (5)) or by the stationary GARCH(2,2) predictive model (Formulae (7)).

The obtained final probability estimation (22) constitutes a data-driven (statistical)
estimation of the probability that the volatility does not fall below a prescribed level v∗.
The number M (determined above) describes the real behavior of the market volatility, σ2

t .
This number can be obtained from a concrete historical market data set. The same data
set can also be used for the identification of the necessary parameters µv, β, and σv of the
stochastic volatility model (11).

Consider now a simple example. In the simplified case,

µv = 0,

β = 1,

σv = 1,

we obtain the following illustrative version of the general estimation (22):

P∞ ≥ M2(σ̃2−v∗)/σ̃2
. (23)

Note that there is no loss of generality in example (23), due to the parametric scalability
of the obtained lower estimation (22).

The historical market data set used above for the evaluation of estimation (22) can
also be applied to the so-called in-sample forecasting technique. This in-sample method
can now be combined with the complementary out-of-sample testing. This approach is
methodologically similar to the main idea of the celebrated Monte Carlo method (see
Azhmyakov et al. 2023; Hammel and Paul 2002; Poznyak 2009; Rubinstein 1981, and the
references therein).

The exact probability evaluation (18) from Section 4, as well as the corresponding
data-driven statistical estimations (22) and (23), can also be performed in the context of the
integrated volatility (8). One can use the exact value Φt+1 of the integrated volatility in (8)
or the simple approximate Formulae (9) for Φ̃t+1 and define the exact probability or the
corresponding statistical estimation similar to (18) or (22), respectively. As many modern
financial risk indicators, for example, the well-known value-at-risk (VaR) indicators, use
volatility predictors, the probabilistic analysis of the predicted volatility levels presented in
Sections 4 and 5 can also be applied to modern risk management.

6. Some Practical Implementations

We now discuss a concrete practical implementation of the statistical analysis for the
volatility forecasting methodology developed in our paper. Concretely, we present the
volatility prediction module for crypto markets recently developed by the 1ex Trading
Board group ( https://1ex.com/ (accessed on 11 February 2024)) in collaboration with
GoldenGate Venture. This novel analytic tool, called “AI NEWS”, has an interconnected
structure that includes a generic GARCH(2,2) model and the associated statistical probabil-
ity estimation (22) developed in the previous section.

https://1ex.com/
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The conceptual block diagram of the 1ex Trading Board volatility forecasting algorithm
for the AI NEWS module mentioned above is given in Figure 1. Note that the three grouped
sub-modules in Figure 1 represent a statistical block which complements the conventional
GARCH-based volatility analysis and constitutes the main contribution of our paper.

Model / 
parameter 

identification

ሼ𝜔, 𝛼, 𝛽ሽ GARCH
Volatility 

model

predicted 
volatility level 𝜎ଶ

Lower estimation of 
the probability 𝑃ஶ

Probability 
for the 

predicted 
level 𝜎ଶ

Stochastic 
model / 

parameter 
identification

Decision 
- making

Market 
data

trading 
strategy

Figure 1. The conceptual block diagram of the 1ex Trading Board volatility prediction module.

This block diagram represents the necessary data and information flows, as well as
the system inputs, outputs, and the operational sub-modules. The given sub-modules are
necessary for the calculation of the predicted volatility levels and for the evaluation of the
statistical estimation (22). The output of the presented block diagram constitutes a final
trading decision. The current market data, as well as the involved volatility prediction and
statistical probability of the levels, can be visualized by the designed module.

We now use the AI NEWS methodology mentioned above and depict (Figure 2)
the market dynamics, the volatility prediction profile, and the corresponding statistical
probability level for the concrete crypto trading pair BTC/USDT (date: 10 April 2024).

Figure 2. 1ex Trading Board volatility prediction module: BTC/USDT.

As one can see, the estimated statistical probability associated with the selected volatil-
ity level in that example is equal to 0.98.
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Let us also apply the developed predictive statistical analysis to an alternative example;
namely, to the trading pair SOL/USDT (date: 09/04/2024). The corresponding market
dynamics, volatility prediction profile, and the calculated statistical probability level for
this pair are shown in Figure 3.

Figure 3. 1ex Trading Board volatility prediction module: SOL/USDT.

The statistical analysis of the predicted volatility levels studied in this section has
the potential to be applied to risk management. The 1ex volatility tool mentioned above
helps investors and portfolio managers to fix certain levels of risk which they can bear.
An adequate forecast of the market volatility of asset prices over the investment holding
period constitutes very useful initial information for assessing the investment risk.

Finally, note that many modern profitable cryptocurrency trading algorithms involve
adequate volatility prediction schemes. Let us refer here to the class of feedback-type
trading algorithms and also to the widely used family of pullback and drawdown trading
strategies (see Azhmyakov et al. 2022, 2023; Barmish and Primbs 2016; Baumann 2017). The
novel methodology of the predicted volatility levels developed in this paper can also be
used in the celebrated Avellaneda–Stoikov market-making strategy.

7. Concluding Remarks

In this paper, we developed a complementary probabilistic tool for the conventional
GARCH-based volatility predictor. The classic GARCH abstractions naturally generate
some stationary or non-stationary predicted volatility levels. As mentioned in the Introduc-
tion, the real probability distributions of financial returns involve high volatility persistence,
fat tails, and some additional effects. On the other hand, the widely used QLM parameter
estimation methodology is closely related to the (non-realistic) normality assumption and
the robust versions of this technique involve some restrictive technical assumptions.

The deficiency of the QLM method mentioned above, as well as the general method-
ological difficulties of the classic parameter identification approaches, have motivated the
development of some additional (complementary) volatility forecasting techniques. From
a formal point of view, a GARCH-based volatility predictor constitutes a model-based
approach. The main idea of the approach proposed in this paper consists of using a novel
data-driven volatility prediction metric that has an auxiliary character for the basic GARCH
predictor. In this study, we developed a new additional predictive metric by applying
some advanced probabilistic and statistical tools. Roughly speaking, for a model-based
predicted volatility level we propose calculating a statistical probability that the financial
market volatility does not fall below this level. We call it the “probability of predicted
volatility levels”.
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As the exact result of computation of the above probability is given by a sophisticated
(theoretical) expression, we next extended the proposed approach and calculated a con-
structive lower estimate of the “probability of predicted volatility levels”. The obtained
lower estimate involved the necessary real market data and constituted an implementable
robust version of the prediction metric mentioned above. In fact, we finally proposed a
combined prediction approach that contains the model-based and the data-driven elements.
Moreover, this approach is compatible with some techniques of the celebrated Monte Carlo
methodology, in view of the given (historical) data set.

The developed data-driven volatility prediction approach can be used as an auxiliary
tool in many analytical concepts of modern financial engineering; for example, it can be
studied in the context of general time-series forecasting. Robust and credible volatility
prediction is also a part of many modern cryptocurrency trading algorithms. Moreover,
the proposed estimation technique can be applied to the advanced characterization of
the integrated volatility and to the important problem of volatility clustering in crypto
markets. A robust volatility prediction technique plays a crucial role in modern financial
risk management.

Let us also note that the proposed formal calculation of the statistical probability
associated with the predicted volatility levels can be implemented with models other than
the concrete GARCH-based models studied in this paper, as the developed technique is
fully compatible with some alternative volatility forecasting approaches. Moreover, the
proposed probabilistic and statistical techniques have a general analytic nature and do not
depend on some specific financial data or market conditions.

The probabilistic analysis studied in our paper constitutes an initial theoretical de-
velopment. In our study, we concentrated on some rigorous mathematical details of the
proposed prediction schemes. However, these analytical techniques were implemented in
a concrete module for crypto market volatility forecasting developed by the 1ex Trading
Board group in collaboration with GoldenGate Venture. We discussed this practical tool
briefly in our paper. The paper does not compare the proposed statistical approach to the
existing volatility prediction methods. Due to a very large number of modern theoretical
and applied results related to predicted volatility, we consider a necessary comparative
analysis as a future work. Such a detailed comparative analysis constitutes an important
and self-contained topic of a future paper.

Finally, note that the auxiliary statistical analysis of the predicted volatility levels de-
veloped in this study can also be considered in the context of novel forecasting approaches
based on modern machine learning methodologies Jansen (2020); Shah et al. (2018). It
seems possible to extend the proposed concepts of volatility levels and the corresponding
statistical analysis developed in our paper to volatility forecasting schemes involving deep
learning approaches.
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