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Abstract: In this paper, we present a data-driven approach to forecasting stock prices in the Moroccan
Stock Exchange. Our study tests three predictive models: ARIMA, LSTM, and transformers, applied
to the historical stock price data of three prominent credit companies (EQD, LES, and SLF) listed
on the Casablanca Stock Exchange. We carefully selected and optimized hyperparameters for each
model to achieve optimal performance. Our results showed that the LSTM model achieved high
accuracy, with R-squared values exceeding 0.99 for EQD and LES and surpassing 0.95 for SLF. These
findings highlighted the effectiveness of LSTM in stock price forecasting. Our study offers practical
insights for traders and investors in the Moroccan Stock Exchange, demonstrating how predictive
modeling can aid in making informed decisions. This research contributes to advancing stock market
forecasting in Morocco, providing valuable tools for navigating the Casablanca Stock Exchange.
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1. Introduction

The stock market operates as a dynamic commercial arena, where buying and selling
transactions occur. Unlike conventional markets, what sets it apart is the steadfast nature
of its regulatory framework, which remains consistent irrespective of contractual changes.
Tradable assets on the stock exchange must possess significant economic value, be storable,
and offer public utility, distinguishing them from commodities traded in other markets.
Transactions within the stock exchange are exclusively facilitated by licensed and registered
brokerage firms and intermediaries, adhering to pertinent laws and regulations (Ahmed
and Huo 2021). Among the diverse realms of stock markets, we find the financial market,
encompassing staples such as wheat, sugar, and corn, alongside pivotal currencies, such as
the US (United States) dollar, Japanese yen, Euro, Swiss franc, Canadian dollar, Australian
dollar, and New Zealand dollar. Furthermore, there exists the stock market, the bond
market, and the pivotal market for raw materials, including oil, copper, and cotton (Løkken
and Aas 2020). Leading the global arena are eminent exchanges, such as the New York
Stock Exchange in the United States of America, the venerable London Stock Exchange in
England, the dynamic Frankfurt Stock Exchange in Germany, the Tokyo Stock Exchange in
Japan, the vibrant Sydney Stock Exchange in Australia, and the bustling Hong Kong Stock
Exchange in Hong Kong (Ma et al. 2016; Kuvshinov and Zimmermann 2022).

In Morocco, the Casablanca Stock Exchange serves as a burgeoning financial hub
boasting over 75 Moroccan companies spanning various sectors, including energy, food,
and pharmaceuticals (Zaimi 2022). The Casablanca Stock Exchange holds a notable global
standing, ranking among the top 30 stock exchanges worldwide and securing a position
among the three most robust in the Arab world (Azzam 2015). Remarkably, it clinches the
title of the foremost exchange in Africa, as affirmed by the esteemed British agency, “ZYN”
(Dibiah and Mojekwu 2023). By the end of 2023, the MASI (Moroccan All Shares Index)
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concluded at an impressive 12,000 points, reflecting a market value exceeding 626 billion
dirhams for the same period (Baali et al. 2023).

To entice investors to engage with the Casablanca Stock Exchange, offering them
tailored insights and predictive models that cater to their investment strategies is essential.
One effective approach involves analyzing the performance of various sectors within the
Moroccan market, leveraging historical data and sophisticated statistical models to provide
valuable foresight into the trajectory of listed companies. Furthermore, the development of
predictive models to forecast the closing values of key stock market indices, such as the
MASI, serves as a crucial tool for informed investment decision-making. By delving into
market trends, economic indicators, and geopolitical developments, investors can make
well-informed choices regarding the timing of their investment activities (Nti et al. 2020).

In essence, providing investors with comprehensive and adaptable analytical tools
not only enhances their confidence in the Casablanca Stock Exchange but also empowers
them to navigate the complexities of the market with greater precision and efficiency.

Indeed, the field of data science, as a subset of artificial intelligence, offers a performant
algorithm specifically designed to analyze stock market data and generate predictive
insights (Nosratabadi et al. 2020). These algorithms use advanced statistical techniques,
called machine learning models and deep learning architectures, to extract valuable patterns
and trends from vast datasets.

By leveraging these algorithms, investors can gain deeper insights into various aspects
of the stock market, including price movements, trading volumes, market sentiment, and
volatility (Kompella and Chakravarthy Chilukuri 2020). This enables them to make more
informed decisions regarding investment opportunities, whether it involves selecting the
best-performing companies or predicting the future performance of key market indices.

Moreover, data science algorithms can also assist in identifying hidden correlations
and dependencies within the data, uncovering potential opportunities for arbitrage or risk
mitigation strategies. Additionally, they can help in optimizing portfolio allocation and
asset allocation strategies based on investors’ risk preferences and investment objectives
(Bhowmik and Wang 2020).

Overall, the application of data science algorithms in stock market analysis not only
enhances the efficiency and accuracy of investment decision-making but also contributes to
the development of innovative investment strategies and approaches. As such, it plays a
crucial role in empowering investors to navigate the complexities of the stock market with
greater confidence and success (Brière et al. 2022).

Machine learning (ML) algorithms play a crucial role in predicting future outcomes,
such as in the stock market. One major category of machine learning is supervised learning,
where algorithms learn from labeled data to make predictions (Dridi 2021). In the stock
market context, supervised learning algorithms have evolved over time. Initially, linear
algorithms were prominent, relying on linear functions to model problems. Examples
include linear regression, lasso, and support vector machines (SVM). These algorithms
provided a foundational understanding but had limitations in capturing complex patterns
(Mishra and Padhy 2019).

Later, decision tree algorithms emerged, marking a significant advancement in ma-
chine learning. Decision trees (DT) revolutionized the field by offering competitive perfor-
mance across various sectors (Zhang et al. 2022). Techniques such as bagging and boosting,
which combine multiple decision trees, led to the development of ensemble algorithms,
such as XGBoost, random forest, and LightGBM (Mohammad 2023). These algorithms excel
in handling nonlinear relationships and capturing intricate patterns in data. Furthermore,
the advent of deep learning (DL) introduced neural networks capable of learning intricate
patterns from data. Recurrent neural networks (RNNs) specialize in sequential data (Chen
et al. 2021), making them suitable for time series analysis in the stock market. Recently,
transformers have emerged as the latest generation of algorithms, leveraging attention
mechanisms to capture long-range dependencies and improve model performance (Khan
et al. 2022). Each generation of algorithms builds upon the previous ones, incorporating
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advancements in computational power, data availability, and algorithmic techniques. By
leveraging these algorithms, investors can better analyze market trends, identify profitable
opportunities, and make informed investment decisions.

In exploring the realm of stock price forecasting, the comparative studies discussed
exhibit a diverse array of methodologies and datasets, each offering unique insights into
the predictive capabilities of various models. While the study of Prasad et al. (2022),
delved into the comparison between ARIMA (Autoregressive Integrated Moving Average)
and SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous
Regressors) models, utilizing data sourced from Yahoo Finance, its emphasis on closing
values underscores the significance of accurate forecasting for investors in navigating the
complexities of stock markets. Conversely, the study of Low and Sakk (2023) broadened
the scope by evaluating ARIMA and LSTM (Long Short-Term Memory) models across ten
different stock tickers, demonstrating the versatility of ARIMA in making precise point
predictions of closing prices for exchange-traded funds. Moving to the study of Wahyudi
(2017) the focus shifted to the Indonesia CSPI (Composite Stock Price Index) dataset,
where an in-depth examination of different ARIMA models revealed the effectiveness
of ARIMA (0,1,1) in capturing the daily movements of stock prices. Also, the study of
Pulungan et al. (2018) extended the discussion to the impact of ARIMA (3,1,1) on the
SRI-KEHATI (Sustainable and Responsible Investment (SRI)-KEHATI) Index, shedding
light on the intricate relationship between socially responsible investment and market
dynamics. Together, these studies underscore the pivotal role of forecasting models in
empowering stakeholders with actionable insights, ultimately contributing to informed
decision-making within the realm of financial markets.

Furthermore, various studies have assessed the performance of predictive models
over different forecast horizons. For example, Patel et al. (2015) compared ANN (artificial
neural network), SVM, random forest, and naïve Bayes models for short-term (1 day ahead)
and medium-term (7 days ahead) forecasts using Indian Stock Market data. Their findings
showed that the random forest model outperformed others, with an average accuracy
of 83.59%, highlighting its robustness in capturing stock market trends across different
horizons. Similarly, Ballings et al. (2015) benchmarked ensemble methods (random forest,
AdaBoost, and kernel factory) against single classifier models (neural networks, logistic
regression, SVM, and K-nearest neighbor) using data from 5767 European companies to
predict stock price direction one year ahead. Random forest emerged as the top-performing
algorithm, with the highest mean AUC (area under the ROC) ranking (1.0) and the lowest
interquartile range (0.0061), followed by SVM and kernel factory.

At the deep learning level, Wu et al. (2023) delved into the comparison between
SACLSTM (Self-Attentive Convolutional Long Short-Term Memory), SVM, CNN (convolu-
tional neural networks), and ANN models, using data from ten stocks in the American and
Taiwan markets to predict the direction of the stock market. Emphasizing historical data,
futures, and options as input features, the study evaluated accuracy as its metric, revealing
SACLSTM’s relatively superior performance compared to other models. Meanwhile, Wang
et al. (2021) focused on BiSLSTM (Bidirectional Sequence-to-Sequence Long Short-Term
Memory) against MLP, RNN, LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM models,
using the Shenzhen Component Index data to forecast closing prices. With a comprehensive
set of input features and metrics, including MAE (mean absolute error), RMSE (root mean
square error), and R2 (coefficient of determination), CNN-BiSLSTM emerged as the optimal
performer with superior values. Transitioning to the study of Lu et al. (2021), which ex-
plored CNN-BiLSTM-AM (attention mechanism) among MLP, CNN, RNN, LSTM, BiLSTM,
CNN-LSTM, and other variants, the focus shifted to predicting the next day’s stock closing
price in the Shanghai Composite Index. With a similar set of input features and metrics,
CNN-BiLSTM-AM yielded the best results, demonstrating its robust predictive capability.

Additionally, Bao et al. (2017) presented a novel deep learning framework combining
wavelet transforms (WT), stacked autoencoders (SAEs), and LSTM for stock price forecast-
ing. Their results demonstrated that the WSAEs-LSTM model significantly outperformed
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other models in predictive accuracy and profitability for 1-day- and 5-days-ahead forecasts,
achieving a MAPE of 0.019 and Theil U of 0.013 for the CSI 300 index, with an R-value of
0.944. Similarly, Li et al. (2018) introduced an attention-based multi-input LSTM (MI-LSTM)
model capable of extracting valuable information from low-correlated factors. Their experi-
mental results on China’s Stock Market data showed that the MI-LSTM model achieved
superior performance in profit comparison, particularly in 1-day- to 5-days-ahead forecasts,
significantly outperforming standard LSTM models and the CSI 300 index. These findings
further underscore the effectiveness of advanced LSTM variants in providing accurate
short-term stock price predictions.

By examining the results from various studies, it becomes evident that LSTM models
consistently outperformed ARIMA and linear models in most cases. For instance, in
the study of (Wu et al. 2023), SACLSTM demonstrated relatively superior performance
compared to SVM, CNN-cor, CNNpred, and ANN models in predicting the direction of the
stock market. In the study of (H. Wang et al. 2021), CNN-BiSLSTM achieved optimal values
for metrics such as MAE, RMSE, and R2, indicating its effectiveness in forecasting closing
prices using the Shenzhen Component Index data. Similarly, the study in (Wang 2023)
showcased the superior performance of CNN-BiLSTM-AM in predicting next-day stock
closing prices in the Shanghai Composite Index dataset, as evidenced by its impressive
MAE, RMSE, and R2 values. The same was seen for CNN-BiLSTM-ECA and BiLSTM-
MTRAN-TCN models, which emerged as the superior performers in predicting next-day
closing prices across multiple indices, underscoring the robustness of LSTM architectures
in stock market prediction tasks. Collectively, these findings suggest that LSTM models
offer superior predictive capabilities compared to ARIMA and linear models, making them
a preferred choice for stock price forecasting tasks.

In this paper, our focus lies on the Moroccan Stock Exchange dataset, particularly
within the consumer credit sector. This sector encompasses four prominent companies
integrated into the Casablanca Stock Exchange. Our objective is to predict the closing prices
of each company using three distinct methodologies: ARIMA, LSTM, and transformers.
While ARIMA offers a traditional approach to time series forecasting, LSTM leverages
recurrent neural networks for sequential data prediction. Furthermore, we introduce
transformers as a novel concept for predicting sequential data, exploring its potential in the
domain of stock price forecasting. Through this comparative analysis, we aim to discern
the strengths and limitations of each approach and provide insights into their effectiveness
in predicting stock prices within the Moroccan consumer credit sector.

In the subsequent sections of our study, we will detail the materials and methods
employed, encompassing data analysis techniques and the approach undertaken. Following
this, we will present the obtained results along with their discussion, elucidating any
significant findings and their implications. Finally, we will draw conclusions based on our
analysis, summarizing the key insights and potential implications for future research and
practical applications.

2. Materials and Methods
2.1. Data

In this study, we analyzed financial data from three prominent credit companies in
Morocco: EQD, SLF, and LES. These companies have been integrated into the Casablanca
Stock Market since 2020. Our dataset spans from January 2020 to March 2024, encompassing
both the opening and closing prices of these companies’ stocks over this period.

Figure 1 illustrates the distribution of open and close prices, as well as the change
between them, for the three companies throughout the study period. The graphs depict
a highly heterogeneous pattern in stock price changes, suggesting significant variability
and potential opportunities for analysis. The observed heterogeneity in stock price changes
indicates the presence of interesting dynamics that can be leveraged to develop predic-
tive models. This variability provides an opportunity to explore the underlying factors
driving stock price movements and to construct robust forecasting models. By using this
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dataset, we aim to uncover insights that can inform investment strategies and enhance our
understanding of the dynamics within the Moroccan credit market. Overall, the observed
heterogeneity in stock price changes underscores the potential for developing predictive
models and highlights the significance of our dataset in uncovering valuable insights for
investors and researchers alike.
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To further analyze the data, Figure 2 displays the average return for each day for the
three companies. As depicted in the figure, there were important fluctuations in the daily
returns of companies 2 and 3 (LES and SLF) across both positive and negative axes. This
indicates substantial volatility in their returns, with notable variations in both upward and
downward directions. Additionally, for the first company (EQD), there were discernible
changes within certain days, albeit less pronounced compared to LES and SLF.

One common observation across all three companies was that the magnitude of return
changes tended to be relatively small, as indicated by the proximity of the returns to 0. This
suggests that while there may be fluctuations in the daily returns, they were generally not
substantial. Overall, the analysis of average returns provides valuable insights into the
volatility and stability of the companies’ stocks.

The pronounced fluctuations in returns for LES and SLF, coupled with comparatively
smaller changes for EQD, highlight the diverse nature of their performance and the potential
for further investigation into the underlying factors driving these fluctuations.

After analyzing the returns of the three companies, it became evident that there existed
a correlation among them, characterized by relatively small yet notable changes in daily
returns. To validate this observation, we conducted further analysis by examining the
correlation between the returns of the three companies. Figure 3 presents two correlation
matrices: one for the delayed returns and the other for the closing prices.
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Figure 3. Correlation between companies.

Upon examination, we observed a significant correlation between the closing prices of
EQD and SLF, exceeding 77% (p-value = 0.002). This finding is not surprising, considering
that the companies operate within the same sector, namely consumer credit. However, when
analyzing the delayed returns, the correlation between LES and SLF was found to be merely
0.029 (p-value = 0.82). This demonstrates a noteworthy divergence from the anticipated
correlation, suggesting that there may be limited synchronicity in the performance of
LES and SLF in terms of their delayed returns. Furthermore, the modest correlation
observed among the three companies in delayed returns indicates a lack of interrelation
in the consumer credit sector. This implies that improvements or deteriorations in one
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company’s performance do not necessarily coincide with those of the others, underscoring
the independent nature of their operations.

In summary, the analysis of the correlation matrices revealed distinct patterns in
the relationships between the companies’ returns and closing prices. While a strong
correlation existed between the closing prices of EQD and SLF, suggesting sector-related
coherence, the limited correlation in delayed returns between LES and SLF implies a degree
of independence in their performance within the consumer credit sector.

2.2. Developed Models

In this study, we conducted a comprehensive benchmarking analysis of three promi-
nent models in the field of sequential data analysis. The first model under examination was
the ARIMA model (Wahyudi 2017), a classical time series forecasting technique widely used
for its simplicity and effectiveness in capturing linear relationships within sequential data.
The ARIMA model operates by decomposing the time series data into trend, seasonality,
and residual components, and then using autoregression and moving-average components
to model the data’s behavior over time.

The ARIMA model is represented mathematically in Equation (1):

Yt = c + ϕ1 * Yt−1 + ϕ2 * Yt−2 + . . . + ϕp * Yt−p + θ1 * ϵt−1 + θ2 * ϵ t−2 + . . . + θq * ϵt−q + ϵt (1)

where:

Yt is the value of a stationary time series at time t.
c is the constant term or intercept.
ϕ1, ϕ2, . . ., ϕp are the autoregressive coefficients.
Yt−1, Yt−2, . . ., Yt−p are the lagged values of the time series.
θ1, θ2, . . ., θq are the moving-average coefficients.
ϵt is the error term or white noise at time t.
ϵt−1, ϵt−2, . . ., ϵt−q are the lagged values of the error term.

To ensure that the time series was stationary, we conducted the Augmented Dickey–
Fuller (ADF) test. The ADF values and their corresponding p-values for each of the price
series are as follows:

EQD (Company 1): ADF value (differenced) = −41.219, p-value (differenced) = 0.0
LES (Company 2): ADF value (differenced) = −20.189, p-value (differenced) = 0.0
SLF (Company 3): ADF value (differenced) = −40.777, p-value (differenced) = 0.0

These results confirmed that the differenced price series for each company are station-
ary, as indicated by the significant p-values (less than 0.05). Stationarity is crucial in time
series analysis, as it ensures that the statistical properties of the series, such as mean and
variance, remain constant over time, facilitating more reliable modeling and forecasting.

The second model was a recurrent neural network (RNN), specifically an LSTM (Long
Short-Term Memory) network. Unlike traditional statistical models, such as ARIMA, LSTM
networks are capable of capturing long-term dependencies and nonlinear relationships
within sequential data. LSTM networks feature recurrent connections that enable them to
retain memories of past information, making them well suited for time series forecasting
tasks (Fang et al. 2021). At the core of an LSTM network are memory cells, which are
equipped with mechanisms to selectively remember or forget information over time. This
ability to retain information over long sequences enables LSTM networks to capture long-
term dependencies in sequential data.

One distinctive feature of LSTM cells is the presence of gates, which regulate the flow
of information within the network. The first one is called the Forget Gate, which controls
the extent to which the previous cell state should be retained or forgotten. It takes as input
the previous cell state (Ct-1) and the current input (xt), and outputs a Forget Gate vector
(ft) with values between 0 and 1. A value of 1 indicates that the corresponding element in
the cell state should be retained, while a value of 0 indicates that it should be forgotten.
The second gate is called the Input Gate, which is responsible of determining the extent
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to which new information should be incorporated into the cell state. It takes as input the
previous cell state (Ct-1) and the current input (Xt), and outputs an Input Gate vector (It)
with values between 0 and 1. This gate controls the update of the cell state by modulating
the contributions of the new input and the previous cell state.

The next gate is the Output Gate, which determines the extent to which the current
cell state should influence the output. It takes as input the previous cell state (Ct-1), the
current input (Xt), and the current cell state (Ct-1), and outputs an Output Gate vector (Ot)
with values between 0 and 1. This gate regulates the output of the LSTM cell by controlling
the information flow from the cell state to the output. These gates are equipped with
activation functions, typically sigmoid functions, that squish the gate values between 0 and
1, allowing for fine-grained control over the information flow.

In Figure 4, we illustrate the architecture of an LSTM cell, highlighting the key com-
ponents discussed above. This visualization provides a clear understanding of how the
Forget Gate, Input Gate, and Output Gate interact within the LSTM cell to regulate the flow
of information and retain memory over long sequences.
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In our study, we developed our own RNN based on LSTM layers. The model architec-
ture, as illustrated in Figure 5, comprises three LSTM layers with progressively decreasing
hidden units (64, 32, and 16). This strategic reduction in hidden units serves to manage
model complexity and mitigate overfitting, thereby enhancing the model’s generalization
capacity. Additionally, dropout layers are strategically inserted after each LSTM layer
to impose regularization, further fortifying the model against overfitting by randomly
deactivating a fraction of neurons during training.
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The third model in our study was based on transformers, which are a revolutionary
architecture in the domain of sequential data processing (Vaswani et al. 2017). Unlike
the other models, such as ARIMA and LSTM, which rely on recurrent connections or
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convolutions, transformers adopt a fundamentally different approach by employing self-
attention mechanisms. This allows them to capture dependencies between input elements
across varying distances more efficiently, making them particularly adept at handling
long-range dependencies in sequential data. The transformer architecture consists of an
encoder–decoder structure, where the encoder processes the input sequence, and the
decoder generates the output sequence. Notably, transformers have demonstrated superior
performance in natural language processing tasks, achieving state-of-the-art results in
machine translation, text generation, and other language-related tasks (Lin et al. 2022).

In our study, we explored the capabilities of transformers for time series forecasting,
leveraging their ability to capture complex temporal patterns and dependencies. Figure 6
illustrates the architecture of the transformer model, highlighting its distinctive components
and illustrating the flow of information through the network.
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In our implementation, we defined the transformer model using the TensorFlow Keras
API (Bisong 2019). The model architecture is instantiated with parameters such as the
number of layers, model dimensionality, number of attention heads, and feed-forward
network dimension. These parameters are crucial for determining the model’s capacity and
performance. The architecture of our transformer model, illustrated in Figure 7, consists of
several key components. It includes multi-head self-attention mechanisms, feed-forward
neural networks, layer normalization, and positional encoding. These components enable
the model to efficiently capture complex dependencies within sequential data.
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The transformer model class encapsulates the model’s architecture. It comprises
multiple layers, each containing a multi-head self-attention mechanism, followed by a
feed-forward neural network (FFN). The input and target sequences are concatenated and
passed through the model, with self-attention and FFN layers processing the information
iteratively. The instantiation of the model involves specifying parameters such as the
number of layers, model dimensionality, number of attention heads, and feed-forward
network dimension. These parameters dictate the model’s architecture and determine its
capacity to learn from the data.

2.3. Training and Evaluating the Models

To effectively train and evaluate our models, we adopted a data-splitting strategy tai-
lored to the nature of our sequential data. Considering the inherent dependency on chrono-
logical order and the preservation of temporal relationships, traditional cross-validation
methods were not suitable. Instead, we partitioned our data into training and testing
subsets, allocating the last 10% of the data for testing purposes and reserving the initial
90% for model training. This approach ensured that our models were trained on historical
data while being evaluated on unseen future data, facilitating a more realistic assessment
of their predictive performance.

Figure 8 illustrates this data-partitioning strategy, depicting the training and testing
portions in green and blue colors, respectively, across the three companies represented
in our dataset. This delineation allows for the assessment of each model’s forecasting
capabilities using the last six months of data, providing insights into their effectiveness
across different temporal contexts.
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In the training phase of our models, we began by normalizing our data using the
MinMaxScaler, which scales the data to a range between 0 and 1, facilitating convergence
and enhancing the performance of the models. For the ARIMA model, we employed a grid
search approach to determine the optimal parameters for the model, including the order
(p, d, q). This iterative process involves fitting multiple ARIMA models with different
parameter combinations to the training data and selecting the configuration that minimizes
the error. In contrast, for the LSTM and transformer models, training was conducted
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using the Adam optimizer with MSE loss. The Adam optimizer updates the parameters
iteratively based on the gradient of the loss function. The update rule for Adam is shown
in Equation (2):

θt+1 = θt −
η√

vt+ ∈ ·mt (2)

where θt represents the parameters at time step t, η is the learning rate, mt is the estimate of
the first moment of the gradients, vt is the estimate of the second moment of the gradients,
and ∈ is a small constant to prevent division by zero.

During the training phase, input sequences were sequentially passed through the
model, and the model’s parameters were adjusted to minimize the prediction error. Also, to
prevent overfitting, early stopping and model checkpoint callbacks were implemented, al-
lowing the training process to halt when the model’s performance on a validation set ceased
to improve significantly. The training data were iterated over multiple epochs, with each
epoch comprising batches of data, to optimize the model’s parameters. Additionally, the
model’s generalization ability was monitored by evaluating its performance on a validation
set throughout the training process. Once training was complete, the models’ performance
was evaluated using various metrics, such as MSE, MAE, and R-squared, on the testing set,
which comprises a portion of the data reserved exclusively for model evaluation.

These evaluation metrics provided insights into the models’ accuracy and effec-
tiveness in forecasting future values. The MSE, MAE, and R-squared are presented in
Equations (3)–(5):

MSE =
1
n∑n

i=1(yi − ŷi)
2 (3)

MAE =
1
n

n

∑
i=1

|xi − ŷi| (4)

R2 =
∑n

i=1(yi − ŷi)

∑n
i=1(yi − yi)

(5)

where yi corresponds to the actual values, and ŷi corresponds to the predicted values.

3. Results and Discussion

After training the three models, we obtained interesting results for each one. As de-
picted in Table 1, the performance metrics MSE, MAE, and R2 for the three companies, EQD,
LES, and SLF, showed variations across the different models. ARIMA yielded a notable
R2 score of 0.85 for SLF’s data, indicating its effectiveness in capturing the underlying
patterns. In contrast, LSTM demonstrated impressive results, with R2 scores exceeding
0.99 for EQD and LES data and 0.95 for SLF data, underscoring its robustness in financial
data forecasting. However, the transformer model struggled to produce satisfactory results,
with negative R2 scores indicating poor performance. This discrepancy can be attributed
to transformers’ reliance on large datasets, typically more prevalent in text-based tasks,
unlike financial time series data. Comparing ARIMA and LSTM, while ARIMA performed
reasonably well, LSTM’s superior performance across all metrics highlights its suitability
for capturing the complex dynamics inherent in financial data. These results underscore
the significance of accurate predictions for financial decision-making. The high R2 scores
attained by LSTM indicate its potential for enhancing forecasting accuracy, thereby aiding
stakeholders in making informed investment decisions for the three companies evaluated.

The training and validation loss curves for the LSTM and transformer models are
illustrated in Figure 9. Notably, both the training and validation loss curves exhibited
parallelism and followed similar trajectories. This alignment suggests that our models
neither suffered from overfitting nor underfitting, indicating a balanced learning process.
Furthermore, the fluctuations in the loss curves revealed that certain models may halt
training prematurely, such as the LSTM model for the first company after 30 epochs or the
transformer model for the second company after 16 epochs. This observation underscores
the effectiveness of our early stopping and checkpoint mechanisms, which effectively
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terminated model training when the error stabilized or when signs of overfitting emerged.
The synchronization between the training and validation loss curves, coupled with the
timely cessation of training, enhanced our confidence in the robustness and generalization
capability of the developed models.

Table 1. Stock market forecasting results.

Model ARIMA LSTM Transformer

Scores MSE MAE R2 MSE MAE R2 MSE MAE R2

EQD 0.00081 0.0144 0.7317 0.000006 0.00246 0.9978 0.04019 0.19265 −12.07

LES 0.00076 0.0124 0.5844 0.000005 0.0015 0.9977 0.27211 0.51993 −151.8

SLF 0.0011 0.0163 0.8527 0.000032 0.0151 0.9592 0.13496 0.35644 −16.05
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Lastly, Figure 10 presents a visual comparison of the obtained results through compar-
ative graphs depicting the prediction values (highlighted in red) alongside the actual values
(depicted in green). As previously discussed, the LSTM model demonstrated exceptional
forecasting accuracy, particularly for the first two companies. Additionally, ARIMA yielded
commendable results across all three companies, with a notable observation in the third
company, where ARIMA visually outperformed LSTM. However, it is important to note
that while ARIMA may excel in certain instances, the overall performance, as quantified by
the average score, indicated LSTM’s superior stability and proximity to the actual values
across various forecasting scenarios. Conversely, transformer visibly underperformed
within our study, signaling a limitation in its effectiveness. This underscores the preference
for LSTM, especially when dealing with Moroccan financial data, offering researchers
valuable insights for model selection and future exploration.
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4. Conclusions

In this comprehensive study, we explored the predictive capabilities of ARIMA, LSTM,
and transformers using data from three prominent Moroccan credit companies listed on
the Casablanca Stock Exchange. Each model was meticulously tailored to the unique
characteristics of the company data, and evaluation was conducted based on the last 10%
of the dataset. The results obtained from our analysis revealed the remarkable performance
of LSTM, underscoring the effectiveness of recurrent neural networks specifically designed
for time series (sequential) data. This finding highlights the potential for using advanced
forecasting techniques in the Moroccan Stock Market.

However, it is important to acknowledge several limitations inherent in our approach.
Firstly, our study relied on historical stock price data, which assumes that future market
conditions will resemble those observed in the past. This assumption may not always hold
true, particularly in volatile or rapidly changing markets. Secondly, while we employed
rigorous model evaluation techniques, such as cross-validation and hyperparameter tuning,
the performance of our models could be affected by factors such as data quality, market
anomalies, and external economic events not explicitly accounted for in our analysis.
Thirdly, the generalizability of our findings beyond the specific companies and timeframe
studied may be limited, considering the variability in market dynamics across different
sectors and periods. Additionally, the nominal measures of forecasting performance,
particularly MSE differences, were not explicitly tested in our study, which could be
considered a limitation of our approach. Lastly, our study primarily focused on one-step-
ahead predictions, which, while applicable to short-term investment decision-making, may
not reflect the needs of investors with longer investment horizons. Future research could
explore longer investment horizons to provide a more comprehensive analysis of model
performance over different time spans.

The predictability of stock prices using daily data can be attributed to several rational
factors, including the structure and trading restrictions of the Moroccan CSE, as well as the
possibility that investors are being rewarded for taking risks. This predictability suggests
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that financial asset returns in the Moroccan market may be somewhat consistent with
empirical evidence from other financial markets, though it does not directly address market
efficiency. Future research could further investigate these aspects to provide deeper insights
into the underlying mechanisms of stock price movements.

Despite these limitations, our research contributes significantly to the field of financial
forecasting in Morocco, providing actionable insights that can inform strategic decisions
and drive positive outcomes for companies operating within the Moroccan market. By
leveraging advanced predictive models and harnessing the power of data-driven insights,
businesses in Morocco can gain a competitive edge and thrive in the dynamic landscape of
the Casablanca Stock Exchange. Furthermore, our study serves as a valuable resource for
investors seeking to capitalize on the potential of the Casablanca Stock Exchange, offering
empirical evidence and reliable forecasting models to guide decision-making processes.
In essence, our study not only advances the understanding of stock market forecasting in
the Moroccan context but also lays the foundation for future research endeavors aimed at
unlocking the full potential of the Moroccan Stock Exchange. As the market continues to
evolve and mature, our findings serve as a catalyst for innovation and growth, inspiring
companies and investors alike to embrace the opportunities presented by the burgeoning
Moroccan financial landscape.
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