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Abstract: Recently, there has been an increased focus on enhancing the accuracy of machine learning
techniques. However, there is the possibility to improve it by selecting the optimal tuning parameters,
especially when data heterogeneity and multicollinearity exist. Therefore, this study proposed a
statistical model to study the importance of changing the crude oil prices in the European Union, in
which it should meet state-of-the-art developments on economic, political, environmental, and social
challenges. The proposed model is Elastic-net quantile regression, which provides more accurate
estimations to tackle multicollinearity, heavy-tailed distributions, heterogeneity, and selecting the
most significant variables. The performance has been verified by several statistical criteria. The
main findings of numerical simulation and real data application confirm the superiority of the
proposed Elastic-net quantile regression at the optimal tuning parameters, as it provided significant
information in detecting changes in oil prices. Accordingly, based on the significant selected variables;
the exchange rate has the highest influence on oil price changes at high frequencies, followed by
retail trade, interest rates, and the consumer price index. The importance of this research is that
policymakers take advantage of the vital importance of developing energy policies and decisions in
their planning.

Keywords: quantile regression; tuning parameters; penalized regression; multicollinearity;
heterogeneity; cross-validation; crude oil price

1. Introduction

In most research fields that have large time series data, like environmental, medical,
marketing, etc., the data have great importance as information that need a development
tool to reach the right decision. To detect more information around these data like patterns
and trends, advanced machine learning (ML) has been used. ML is classified into two
parts, namely supervised and unsupervised methods. Supervised ML algorithms build
mathematical models to predict outcomes in the future. One of the main applications of
supervised ML is regression analysis (Kassambara 2018; Ray 2019).

Regression analysis faces several challenges and affect prediction accuracy. For exam-
ple, heterogeneity and the multicollinearity problem exist among the predictor variables;
consequently, such a model is difficult to interpret (Qin et al. 2016; Alsayed et al. 2018;
Al-Jawarneh et al. 2022). Many researchers continue to develop hybrid regression models to
deal with these issues by improving the ordinary least squares method (OLS) method, such
as the penalized regularization method; namely, Ridge regression (RR) and the least absolute
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shrinkage and selection operator (LASSO) method. However, the RR method still cannot
deal with the reduction of the predictor numbers; hence, the unnecessary predictor variables
will still exist in the final model (Tibshirani 1996; Zou and Hastie 2005). Meanwhile, the
LASSO method is inconsistent for variable selection and dealing with multicollinearity (Fan
and Li 2001; Zou and Hastie 2005). Elastic-net (ELNET) methods (Zou and Hastie 2005) were
proposed. This method represents a newly developed penalized regularization method for
improving the model’s interpretability and identifying relevant variables, considering that
the procedures with the initial coefficient estimator used to compute the adaptive weights
need not be consistent. In addition to that, quantile regression (QR) seeks to search for a
model that minimizes the sum of the absolute residuals rather than the sum of the squared
residuals. QR measures the effects of unobserved heterogeneity in the included variables.
If the dependent variable distribution changes together with the independent variables,
then the result is misleading when using the OLS regression, whereas QR shows how such
changes in the independent variables affect the distribution shape of the dependent vari-
able. Therefore, it will provide significant estimators for the changing of the heterogeneous
distribution of the dependent variable (Alsayed et al. 2020). Moreover, there is a study that
proposed the idea of penalized LASSO quantile regression that used the sum of the absolute
values of the coefficients as the penalty (Li and Zhu 2008). In addition, recent research
proposed an elastic net penalized quantile regression model approach that combines the
strengths of the quantile loss and the Elastic net (Su and Wang 2021).

In penalized regression, the tuning parameters play a serious role in improving the
penalty to realize the optimal estimation and consistent selection (Xiao and Sun 2019) when
the tuning parameters have control of the coefficient shrinkage rate. For instance, if λ has
too high a value, which leads to more shrinkage to be a small value or exactly equal zero,
that means the model will be under-fitting (i.e., high bias and low variance). As the tuning
parameter value increases, the bias increases, the variance decreases, and vice versa, in
addition to the choosing of tuning parameter alpha ( α) in the elastic net method which
belongs to a value between zero and one, several of the studies work to fix this value at
alpha equal to 0.5 or 0.75. So, choosing tuning parameter values is a difficult business and
very sensitive (Fan and Tang 2013; Desboulets 2018).

To choose the tuning parameter, the literature advised some frequently used methods.
These include the minimizing information criterion (IC), namely the Akaike information
criterion (AIC) (Akaike et al. 1973), Bayes information criterion (BIC) (Schwarz 1978),
Mallow Cp (Efron et al. 2004), and cross-validation (CV) (Stone 1974). The CV method is
the simplest and most commonly used method in the literature for estimating and choosing
the tuning parameter that has the minimizing CV sum of squared residuals (Chand 2012;
Desboulets 2018), where the principle of the CV method presents a grid of λ values and
computing the CV error for each λ after choosing the optimal λ, which has the smallest CV
error (Gareth et al. 2013).

On the other hand, the importance of predicting and forecasting the energy market
is highly needed to reach the optimal balanced point between energy, economics and
environmental quality. Crude oil is an ingredient for sustainable economic growth, while
the supply and demand are inelastic, and crude oil prices often experience sharp and
sustained fluctuations (Alsayed and Manzi 2019). Therefore, this study examines the
reaction of crude oil prices during the recent period, which has several economic shocks,
particularly in the European Union; these include the global economic crisis in 2008,
COVID-19 in 2020, and the recent wars in 2022–2024, which led to challenges for the global
economy. Several studies have shown interest in examining the crude oil prices with several
global and local factors (Aastveit et al. 2023; He et al. 2021; Kartal 2020; Baumeister and
Kilian 2015; Doğrul and Soytas 2010; Amano and Van Norden 1998).

The significant contribution of this research is twofold: First, on the statistical aspect
to deal with the heterogeneity, and second, to improve the accuracy of model selection
by selecting the predictors that have the most effect on the response variable; the ELNET.
QR regression at τ = 0.25, 0.5, 0.75 will be used based on the D-fold C.V. method to select
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the optimal tuning parameters (αopt and λopt). Then, it is evaluated and compared with
recently developed methods using both simulations and real applications. Additionally,
regarding the novelty of the econometrics aspect, we model and predict the crude oil price
using local and global variables—namely, the exchange rate and retail trade, interest rates,
and consumer price index—to tackle the time series data that suffer from heterogeneity.

The advantage of using this approach is that this model is distinguished by its superior
ability to deal with time series issues compared to the old models used and its ability to
keep pace with developments in time series. However, there is the disadvantage that it
does not have the oracle property, but this can be treated using the adaptive elastic net
method in the future.

This research is organized as follows: Section 1 provides the introduction and literature
review, Section 2 presents the methods, quantile regression, elastic net regression, D-fold
cross-validation, and the proposed method. Section 3 explains the data and variables.
Section 4 presents the empirical findings and discussion, and the Section 5 is the conclusion.

2. Methodology

This section briefly describes the applied methods. The first method is the QR regres-
sion method, which deals with heterogeneity problems. The second method pertains to
the penalized regularization method by the Elastic-net (ELNET) method and D-fold cross-
validation. Finally, this section discusses the proposed method provided, ELNET.QRαopt
regression.

2.1. Quantile Regression

QR regression is broadly applied, covering wide research areas. Koenker suggested a
general approach of QR for longitudinal data (Koenker 2004). QR is used to estimate the
conditional median and any other quantiles of the dependent predictor variables, and it
could tackle the unobserved heterogeneity effects. The QR could describe that relationship
at different points in the conditional median or quantiles distribution of dependent variable
Qy/X(τ), where τ is the quantiles or percentiles and takes value from 0 < τ < 1 (Ambark
et al. 2023). The model structure of the multiple linear regression is

y = XT βτ + ε (1)

where [y]n×1 is a vector of the response variable, [X]n×p is a matrix of the predictor variables,

[βτ ]p×1 is the unknown vector of the regression coefficients associated with the τth quantile,
[ε]n×1 is a vector of the random observation errors that are supposed to be a normal
distribution with zero mean error term and variance E(ε) = σ2 In.

The linear quantile regression model assumes:

Qy/X(τ) = XT βτ ; βτ =
{

βτ
0 , βτ

1 , . . . , βτ
p

}′
(2)

where βτ is the quantile coefficient. Then, the τth quantile regression estimator minimizes
the objective function βτ (Davino et al. 2013), which is given by:

β̂τ = min
β

∑n
i=1 ρτ

(
yi − xT

i β
)

(3)

where xT
i is the ith row of X and ρτ(v) is a loss function defined as follows:

ρτ(v) = v
(

τ − I{v<0}

))
; 0 < τ < 1 and v ∈ R (4)

To improve quantile regression and regularization, Koenker suggested a penalized
version, as follows:

β̂τ = min
β

∑n
i=1 ρτ

(
yi − xT

i β
)
+ Pλ(β) (5)
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where P(β) is the penalty function and λ is the tuning, which is greater than zero.

2.2. Elastic Net Regression

ELNET regression is proposed to deal with the limitations of LASSO and improve the
interpretability model and accuracy prediction by combining two penalties; namely, L1
penalty (LASSO) and L2 penalty (RR) (Zou and Hastie 2005; Zou and Zhang 2009; Friedman
et al. 2010; Lee et al. 2016). The ELNET estimator is given as follows:

β̂ELNET = min
β

∑n
i=1

(
yi − xT

i β
)
+ λ1∥β∥1 + λ2∥β∥2

2 (6)

where ∥β∥1 = ∑
p
j=1

∣∣β j
∣∣ is L1-norm of β, ∥β∥2

2 = ∑
p
j=1

(
β j
)2 is L2-norm of β, and λ1 and

λ2 are the tuning λ1 , λ2 > 0. These functions control the strength of shrinkage of the
predictor variables. The values of λ1 and λ2 are dependent on the dataset, and they are
automatically selected using CV (Zou and Hastie 2005; Melkumova and Shatskikh 2017;
Masselot et al. 2018; Al-Jawarneh and Ismail 2024). The best values of tuning parameters
λ1 and λ2 can be defined as the minimum mean squared error (MSE) (Friedman et al. 2010;
Lee et al. 2016).

Equation (7) becomes equivalent to the following by denoting λ1 = 2nλα and λ2 =
nλ(1 − α) (Haws et al. 2015; Al-Jawarneh et al. 2022):

β̂ELNET = min
β

∑n
i=1

(
yi − xT

i β
)
+ λ

(
α∥β∥1 +

(1 − α)

2
∥β∥2

2

)
(7)

where α is a regularization parameter between zero and one. The ELNET estimation
undergoes the RR estimator when α = 0, whereas it is subject to the LASSO estimator when
α = 1.

2.3. D-Fold Cross-Validation

The D-fold cross-validation (D-CV) method was proposed by (Geisser 1975). D-CV
idea is to split the dataset into D folds nearly equal in size. After that, the D − 1 folds are
used as the training set for the estimation of the model, while the dth fold is used as a test
set to assess the predictive performance of the model. This process repeats until every D
fold serves as the test set. Then, the mean prediction error over all folds is calculated (van
Houwelingen and Sauerbrei 2013; Gareth et al. 2013). The D-CV algorithm is explained in
Algorithm 1 (Hastie et al. 2009; Melkumova and Shatskikh 2017; Hastie et al. 2015) and is
repeated for each fold as shown in Figure 1.
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Algorithm 1: D-fold Cross-Validation

1- Randomly, split the whole dataset of size n into D folds of roughly equal size.
2- • For a grid of S values of λ: s in 1:S.

• For d in 1:D.

• Consider D − 1 folds as a training set, and dth fold as a test set.
• By the training set, using an estimation method to estimate the regression

coefficient at λs value, and denoted by the fitted function f̂d,λs
(z).

• Calculate the prediction error (PE) on the test set.

PEd,λs =
nd

∑
i=1

(
Vi − f̂d,λs

(zi)
)2

(8)

• End for d.

• Repeat for d = 1, 2, . . . , D
• For each λs overall fold, calculate the average of D prediction errors.

CVλs =
1
D

D

∑
d=1

PEd,λs (9)

• End for s.

• Repeat for s in 1 : S
3- Choose the optimal λ that gives a minimum average CV.

λopt = argmins=1,2,S
{

CVλs

}
End.

Figure 1 describes the process of D-CV where the dataset is split for D folds. Each
row represents one iteration and each column represents one fold. For example, in the first
iteration, the 1st fold represents the test set, whereas the remaining D − 1 folds represent
the training set. In the second iteration, the 2nd fold represents the test set, and the other
folds are the training set. Thus, repeat this until every D fold serves as the test set.

The size of each training set is equal to [(D − 1)n]/D observations, as the D value
increase leads to a decrease in the bias of the fit model, whereas the variance will increase,
as will the correlation among the fitted model because of the overlap among the training
sets (Gareth et al. 2013). Usually, the D value is chosen at 5 or 10, where these values yield
estimates that achieve an intermediate level of bias and are not excessively biased nor from
high variance; Thus, D = 5 or 10 involve the bias-variance trade-off (Gareth et al. 2013;
Kuhn and Johnson 2013; Al-Jawarneh and Ismail 2024).

2.4. Proposed Penalized Quantile Regression Method

The Elastic-net quantile regression method based on D-CV (ELNET.QR) is presented
to explain the significance of the predictor variables on the response variable and enhance
the prediction error of the final model based on the optimal tuning parameters as follows:

1. Apply the QR method at τ = (0.25, 0.50, 0.75) using all the variables:

β̂QR
τ = min

β
∑n

i=1 ρτ

(
yi − xT

i β
)

(10)

2. Using the training set only, select the optimal parameters via the D-CV method at D =
10 as follows:

i. The regularization parameter αopt value of the sequence 0 < α < 1, where αopt
represents the relative contribution of the L1 penalty versus L2 penalty.

αopt = argmink=1:K
{

CVαk

}
; (11)
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CVαk =
1
10

10

∑
d=1

PEαk ; αk ∈ (0, 1)

where k represents the number of α values between one and zero and will be
chosen. In this study, we choose K = 50.

ii. The tuning parameter λopt value is at αopt

λopt = argmins=1:S

{
CVαopt , λs

}
; (12)

CVαopt , λs =
1

10∑10
d=1 MSEαopt , λs

3. Based on the Equations (7) and (10) at αopt and λopt, the ELNET penalized regression
is used as the following formula:

β̂ELNET. QR
τ = min

β
∑n

i=1 ρτ

(
yi − xT

i β
)
+ λopt

(
αopt∥β̂∥1 +

(
1 − αopt

)
2

∥β̂∥2
2

)
; (13)

ρτ(v) = v
(

τ − I{v<0}

)
Finally, a comparison was made between the proposed methods with traditional

methods. The performance of the proposed estimated method has been tested by using
several well-known criteria, namely; Residual Sum of Squares (RSS (Equation (14)), root
mean square error (RMSE; Equation (15)), mean absolute error (MAE; Equation (16)), mean
absolute percentage error (MAPE; Equation (17)), and mean absolute scaled error (MASE;
Equation (18)).

RSS =
n

∑
i=1

(y i − ŷi)
2 (14)

RMSE =

√
1
n∑n

l=1(yl − ŷl)
2 (15)

MAE =
1
n∑n

l=1|yl − ŷl | (16)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (17)

MASE =
1
n

n

∑
l=1

|yl − ŷl |
1

n−1 ∑n
l=2|yl − yl−1|

(18)

3. Application

This section implemented the numerical simulation experiment and a real dataset
application to show the capacity of the proposed methods. The analyses are performed
using open-source R 4.3.1 software by using the hqreg package and our developed code
to calculate the function of obtaining the best tuning parameters value for ELNET.QR
regression.

3.1. Simulation Study

In this section, we present the results of the numerical simulation for the eight methods:
namely; RR.QR, LASSO.QR, ELNET.QR at the best αopt value, ELNET.QR at α = 0.25,
ELNET.QR at α = 0.5, ELNET.QR at α = 0.75, AdLASSO.QR method based on the
minimum MSE (λmin), and minimum MSE with one standard error (λ1se) of weighted
RR. We evaluate and illustrate these eight methods of variable selection and prediction
performance under a normal distribution. Simulation scenarios considered three QR levels
at τ = 0.25, 0.5, 0.75, a sample size of n = 150, and iteration= 1000. The 10-CV was applied
to select the best tuning parameter values. The simulated data are split into two parts:
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70% for training, and 30% for testing the estimated models then evaluated by using the
performance criteria.

3.2. Application Datasets

The European Union (EU) is an economic and political union of 27 countries. It
operates an internal (or single) market, which allows the free movement of goods, capital,
services, and people between member states. In recent years, the European Union has made
significant and noticeable progress in implementing new policies in energy consumption to
shift to low carbon emissions, while crude oil market prices have experienced important
changes and is more volatile than the price of other tradable commodities that have negative
effects on investment.

The dataset of energy oil prices with the relevant affected factors is included to evaluate
the performance of the penalized regression methods. The explanatory variable is crude
oil prices (y) measured by local currency per barrel, while the predictor variables are the
consumer price index, retail trade, the foreign exchange rate (Euro/USD), and interest rates
represented by x1, . . . , x4 respectively. The data are collected on a monthly basis from the
beginning of the year 2000 to the end of the year 2022 to include the highest affected period,
such as the financial crisis in 2008, COVID-19 in 2020, and the Russian-Ukraine war in 2022.
The data for all variables are gathered from Bloomberg (2023). There are several variables
used to examine oil price changes, but we included the variables that are available every
quarter, and those variables have effects on changes in the oil price according to economic
theory, policy, and literature.

Recent literature included those variables as independent variables to measure the
effects on crude oil prices (Kirikkaleli and Doğan 2021; Yılmaz and Altay 2016; Alsayed
2023; Amano and Van Norden 1998). Their findings showed that it significantly affects
oil prices at various levels. Other studies used advanced statistical methods such as a
multivariate adaptive regression splines model to detect the effect of foreign exchange
(USD-TRY), credit default swap spread, global uncertainty, and global volatility on local
currency oil prices at a local economy level in Turkey during the COVID-19 pandemic using
daily data from July 2019 to October 2020 (Kartal 2020). Doğrul and Soytas (2010) detected
the relationship between oil prices, interest rate, economic activity, and unemployment
in Turkey by applying the Toda–Yamamoto technique. Their findings support that the
volatility index is the most important factor influencing crude oil prices.

Descriptive statistics of our dataset are presented in Figure 2a–c. We can observe
that crude oil prices were facing three serious shocks with an exponential increase in 2008,
the spread of the COVID-19 pandemic in 2020, and the recent oil price slump in 2022,
which have substantially raised the economic uncertainty and geopolitical risk levels. The
combination of those economic degradations will likely initiate a long-term economic
downturn and drive the European Union economy into the next recession.

The estimated model consists of four independent variables x1, . . . , x4, and the terms
of interaction between variables are x5, . . . , x10. The dataset is divided into two parts: 70%
(192 cases) which used for the training dataset and the remaining 30% of the dataset (83
cases) is used for testing. The whole dataset has been made stationarity at first difference
and then standardized before doing the analysis. The interested estimated model is as
follows.

yt = αt + β 1tx1 + β2tx2 + β3t x3 + β4t x4+β5tx5 +β6tx6 +β7tx7 +β8tx8 + β9tx9 +β10tx10 + εt

where y represents the oil price at day t in Europe, x1 is the consumer price index, x2 is retail
trade, x3 is exchange rate, x4 is interest rates, x5 = x1x2, x6 = x1x3, x7 = x1x4, x8 =
x2x3, x9 = x2x4, x10 = x3x4 and εt is the error term.
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Figure 2. (a) The monthly crude oil prices in the European Union. (b) The consumer price index and
retail trade in the European Union. (c) The monthly exchange rate and interest rates in the European
Union.

4. Results and Discussion

In this section, we provide the result of the numerical experiment and the application
based on the real dataset.

4.1. Simulation Results

Table 1 describes the average of the performance criteria in terms of RSS, RMSE,
MAE, MASE, and MAPE for all the regression methods used in this study. In cases of
study at τ = (0.25, 0.50, 0.75), the results show that the proposed regression method
ELNET.QR αopt, λmin (by determining the best optimal α value) has the smallest error value
in these criteria tests. Therefore, ELNET.QR αopt, λmin improves the prediction accuracy by
producing the smallest error values in terms of RSS, RMSE, MAE, MASE, and MAPE.
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Table 1. Performance criteria of the simulation scenarios.

Method λ RSS RMSE MAE MAPE MASE

τ = 0.25

RR.QR
λmin 35.5827 0.88624 0.71977 3.657265 0.794615

λ1se 39.4718 0.93395 0.76183 4.024955 0.841051

LASSO.QR
λmin 14.1830 0.56093 0.40053 1.746325 0.442176

λ1se 15.3082 0.58278 0.43724 1.999109 0.482706

AdLASSO.QR (RR.W. λmin)
λmin 14.5157 0.56762 0.41579 2.082011 0.459031

λ1se 16.0379 0.59633 0.45133 2.030926 0.498263

AdLASSO.QR (RR.W. λ1se)
λmin 14.7190 0.57034 0.41830 2.092005 0.461806

λ1se 16.2224 0.59878 0.45343 2.044566 0.500584

ELNET.QR α = 0.25
λmin 19.0338 0.64701 0.50269 2.272781 0.554958

λ1se 22.9179 0.71031 0.56536 2.504381 0.624143

ELNET.QR α = 0.5
λmin 14.7433 0.57177 0.41665 1.89485 0.459972

λ1se 17.4372 0.62082 0.47837 2.131715 0.528107

ELNET.QR α = 0.75
λmin 14.2895 0.56306 0.40377 1.780631 0.445752

λ1se 15.7379 0.59067 0.44563 2.044958 0.491972

ELNET.QR αopt
λmin 13.9615 0.55671 0.39654 1.776101 0.437778

λ1se 15.7195 0.59049 0.44696 2.020386 0.493431

τ = 0.5

RR.QR
λmin 30.8563 0.82567 0.69494 2.127862 0.76720

λ1se 33.5667 0.86207 0.72893 2.019126 0.80472

LASSO.QR
λmin 11.7178 0.50823 0.39718 2.592074 0.438483

λ1se 13.6771 0.54948 0.45072 2.456135 0.497588

AdLASSO.QR (RR.W. λmin)
λmin 13.385 0.53733 0.44051 2.604391 0.486318

λ1se 14.9137 0.56951 0.46914 2.488478 0.517925

AdLASSO.QR (RR.W. λ1se)
λmin 13.4163 0.53805 0.44168 2.602395 0.487607

λ1se 14.9282 0.56976 0.46944 2.48853 0.518257

ELNET.QR α = 0.25
λmin 16.1670 0.59738 0.48819 2.668777 0.538961

λ1se 19.3541 0.65371 0.53790 2.602162 0.593840

ELNET.QR α = 0.5
λmin 13.1976 0.53957 0.44388 2.665215 0.490041

λ1se 15.5554 0.58596 0.47915 2.659132 0.528980

ELNET.QR α = 0.75
λmin 12.3296 0.52141 0.42639 2.639871 0.470737

λ1se 14.3324 0.56247 0.46268 2.544796 0.510792

ELNET.QR αopt
λmin 10.3090 0.47689 0.37236 2.564913 0.411081

λ1se 13.6800 0.54953 0.45087 2.515077 0.497758

τ = 0.75

RR.QR
λmin 42.7458 0.96993 0.79680 6.288212 0.879659

λ1se 46.8397 1.01652 0.83617 6.47382 0.923126

LASSO.QR
λmin 12.9671 0.53623 0.45390 4.716719 0.501104

λ1se 14.3718 0.5644 0.46955 4.696969 0.518382

AdLASSO.QR (RR.W. λmin)
λmin 14.4291 0.55778 0.47079 4.889332 0.519747

λ1se 15.8043 0.58392 0.48687 4.910642 0.537499
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Table 1. Cont.

Method λ RSS RMSE MAE MAPE MASE

AdLASSO.QR (RR.W. λ1se)
λmin 14.5222 0.55917 0.47169 4.892964 0.520746

λ1se 15.8926 0.58537 0.48803 4.916813 0.538782

ELNET.QR α = 0.25
λmin 20.6517 0.67191 0.55133 5.073862 0.608665

λ1se 23.6645 0.71873 0.58854 5.305833 0.649741

ELNET.QR α = 0.5
λmin 13.7992 0.55295 0.46196 4.620298 0.510000

λ1se 15.1615 0.57941 0.47896 4.653668 0.528763

ELNET.QR α = 0.75
λmin 13.0885 0.53868 0.45467 4.68214 0.501955

λ1se 14.5195 0.56725 0.47102 4.675978 0.520007

ELNET.QR αopt
λmin 12.8468 0.53376 0.45244 4.714046 0.499487

λ1se 14.3309 0.56360 0.46864 4.683324 0.517377

Note: The bold number indicates the lowest values in favor of the superior performance method compared to the
other methods.

4.2. Application Results and Discussion

Figure 3 shows the curve of RSS to choose the optimal alpha ( αopt
)

in three cases of
τ = 0.25, 0.50, 0.75 he y-axis represents the estimation of the RSS and the x-axis represents
the alpha values. At τ = 0.25, the minimum RSS value appears at αopt = 0.38, whereas at
τ = 0.50, 0.75, the minimum RSS values are at 0.02 in two cases. These results indicate that
the optimal alpha can reduce the RSS value more than the traditional methods for chosen
alpha at fixed points like α = 0.25, 0.5, 0.75, or other methods like lasso and ridge methods.
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Figure 4 shows the 10-CV estimate plot of the ELNET.Qr αopt; (αopt = 0.38, 0.02, and 0.02)
and τ = 0.25, 0.50, 0.75, respectively. In each plot, the red dotted line is the mean square
error (MSE) curve with one standard error band along the error bars. The y-axis represents
the MSE and the x-axis denotes the log(λ) function. The upper horizontal line of the plot
represents the numbers of nonzero regression coefficients in the model at log(λ) value. The
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first vertical dotted lines from the right represent the point selected at a minimum of the
MSE (λ min) rule, while the second vertical line denotes the location of the point selected
at a minimum of MSE with the one standard error (λ 1se) rule. These two lines show the
numbers of nonzero regression coefficients selected at λ1se and λmin rules. The increase in
λ value leads to a decrease in the number of non-zero coefficients in the model. Therefore,
the selection of the λ is based on the optimal minimum MSE value.
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Figure 4. 10-CV estimation of the ELNET.QR αopt at τ = 0.25, 0.50, 0.75.

Figure 5 illustrates the relationship between log(λ) and the selected nonzero coefficient
estimation in the ELNET.QR αopt(0.38, 0.02, and 0.02) at current λ, which represents the
actual degrees of freedom. All methods have regularization and variable selection. In each
one of the figures from right to left, the estimation of the coefficients decreases toward zero
with the increase in the λ value and forces it to become zero for the unnecessary coefficient
estimation (i.e., i f λ → ∞, then the estimated coefficients → 0). For instance, at τ = 0.25,
the ELNET.QR as the αopt = 0.38 method selected eight nonzero coefficients at λmin and
five nonzero coefficients at λ1se with different significant strengths.

Table 2 display the RSS values and the number of variable selections (Num. of V.S.) of
the proposed method compared to those of the previous methods in the testing datasets.
Based on the RSS values, the order of the proposed methods among all used methods
in this study is as follows: The first-order method among all methods is achieved by
ELNET.QR αopt = 0.38, τ = 0.25 (λ min = 0.0787; RSS = 84.426; Num. of V.S. = 8), c,
τ = 0.5 (λ min = 0.3392; RSS = 72.9008; Num. of V.S. = 10). At τ = 0.75 (λ min = 0.2555;
RSS = 97.6474; Num. of V.S. = 9), it has the smallest RSS value.
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Table 2. Selected number of variables and RSS error values.

Method λ RSS Num. of V.S. V.S.

RR λmin = 0.041839 109.177 10 x1, . . . , x10

λ1se = 0.74835 77.0141 10 x1, . . . , x10

LASSO λmin = 0.003994 120.091 9 x1, . . . , x4, x6, . . . , x10

λ1se = 0.078399 82.3651 7 x1, . . . , x4, x6, x8, x10

ELNET α = 0.25 λmin = 0.013263 116.129 10 x1, . . . , x10

λ1se = 0.260352 76.9288 7 x1, . . . , x4, x6, x8, x10

ELNET α = 0.5 λmin = 0.007987 117.951 9 x1, . . . , x4, x6, . . . , x10

λ1se = 0.142868 79.5524 7 x1, . . . , x4, x6, x8, x10

ELNET α = 0.75 λmin = 0.005844 118.623 9 x1, . . . , x4, x6, . . . , x10

λ1se = 0.104532 80.8656 7 x1, . . . , x4, x6, x8, x10

τ = 0.25

RR.QR
λmin = 0.1322 103.907 10 x1, . . . , x10

λ1se = 0.5480 92.046 10 x1, . . . , x10

LASSO.QR
λmin = 0.0471 87.492 4 x1, . . . , x4

λ1se = 0.0720 93.659 3 x1, x2, x4

AdLASSO.QR (RR.W. λmin)
λmin = 0.0008 100.139 4 x1, x3, x4, x10

λ1se = 0.0028 100.797 3 x1, x3, x4

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0003 96.542 4 x1, . . . , x4

λ1se = 0.0012 99.369 3 x1, x3, x4

ELNET.QR α = 0.25
λmin = 0.0911 86.377 8 x1, . . . , x6, x8, x10

λ1se = 0.2002 87.614 5 x1, . . . , x4, x10

ELNET.QR α = 0.5
λmin = 0.0317 100.762 9 x1, . . . , x6, x8, x9, x10

λ1se = 0.1275 90.6738 4 x1, . . . , x4

ELNET.QR α = 0.75
λmin = 0.054 87.045 5 x1, . . . , x4, x6

λ1se = 0.0931 92.967 4 x1, . . . , x4

ELNET.QR αopt = 0.38
λmin = 0.0787 84.426 8 x1, . . . , x6, x8, x10

λ1se = 0.1532 89.458 5 x1, . . . , x4, x10

τ = 0.5

RR.QR
λmin = 0.0678 79.0412 10 x1, . . . , x10

λ1se = 0.6563 74.8137 10 x1, . . . , x10

LASSO.QR
λmin = 0.0228 77.2748 8 x1, . . . , x4, x6, x8 . . . , x10

λ1se = 0.0531 75.0064 5 x1, . . . , x4, x8

AdLASSO.QR (RR.W. λmin)
λmin = 0.0006 79.3498 3 x1, x3, x4

λ1se = 0.0035 77.0606 2 x1, x3

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 73.2189 5 x1, . . . , x4, x10

λ1se = 0.0009 80.3982 3 x1, x3, x4

ELNET.QR α = 0.25
λmin = 0.0390 76.283 9 x1, . . . , x6, x8, x9, x10

λ1se = 0.1719 74.4287 8 x1, . . . , x4, x6, x8 . . . , x10

ELNET.QR α = 0.5
λmin = 0.0357 77.3792 9 x1, . . . , x6, x8, x9, x10

λ1se = 0.1000 74.9740 6 x1, . . . , x4, x8, x10

ELNET.QR α = 0.75
λmin = 0.0277 77.5181 8 x1, . . . , x4, x6, x8, x9, x10

λ1se = 0.0687 74.9286 6 x1, . . . , x4, x8, x10
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Table 2. Cont.

Method λ RSS Num. of V.S. V.S.

ELNET.QR αopt = 0.02
λmin = 0.3392 72.9008 10 x1, . . . , x10

λ1se = 0.7450 74.9729 9 x1, . . . , x4, x6, x7 . . . , x10

τ = 0.75

RR.QR
λmin = 0.0511 99.8799 10 x1, . . . , x10

λ1se = 0.6298 99.3733 10 x1, . . . , x10

LASSO.QR
λmin = 0.0053 108.9124 8 x1, . . . , x4, x6, x8, . . . , x10

λ1se = 0.0354 101.6289 5 x1, x3, x4, x6, x10

AdLASSO.QR (RR.W. λmin)
λmin = 0.0004 113.2957 5 x1, x3, x4, x6, x10

λ1se = 0.0011 118.7315 4 x1, x3, x6, x10

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 100.7581 5 x1, x3, x4, x6, x10

λ1se = 0.0003 105.5192 3 x1, x3, x4

ELNET.QR α = 0.25
λmin = 0.0204 103.2303 8 x1, . . . x4, x6, x8 . . . , x10

λ1se = 0.1334 102.9762 6 x1x3, x4, x6, x8, x10

ELNET.QR α = 0.5
λmin = 0.0102 106.1962 8 x1, . . . x4, x6, x8 . . . , x10

λ1se = 0.0688 101.7987 5 x1x3, x4, x6, x10

ELNET.QR α = 0.75
λmin = 0.0068 107.9645 8 x1, . . . x4, x6, x8 . . . , x10

λ1se = 0.0458 101.4287 5 x1x3, x4, x6, x10

ELNET.QR αopt = 0.02
λmin = 0.2555 97.6474 9 x1, . . . , x6, x8 . . . , x10

λ1se = 0.8571 105.4114 8 x1, . . . x4, x6, x8 . . . , x10

Note: The bold number indicates the lowest values in favor of the superior performance method compared to the
other methods.

Table 3 shows the performance criteria of the prediction accuracy for comparing the
penalized QR regressions methods by using RMSE, MAE, MAPE, and MASE. The proposed
method is ELNET.QR αopt. In three cases of study at τ = 0.25, 0.5, 0.75, it provides the
smallest error value in terms of RMSE, MAE, MASE, and MAPE. For instance, τ = 0.25
at λmin = 0.0787 provides the first-order method with the smallest error value, and it
remains the same for τ = 0.5 at λmin = 0.3392 and τ = 0.75 at λmin = 0.2555. However,
τ = 0.25 and 0.5 provides a different order in terms of MAPE, and at τ = 0.75, it provides a
second order in terms of MAE. Therefore, ELNET.QR αopt improves prediction accuracy
by producing the smallest error values in terms of RSS, RMSE, MAE, and MAPE.

Generally, in this application, the proposed ELNET.QR αopt at τ = 0.25, 0.50, 0.75,
and λmin is better in three cases of τ. Moreover, it proved that these predictors have a great
significance on the response variable. The ELNET.QR αopt method has achieved the best
method for reducing the number of components and selecting predictor variables with
high prediction accuracy. The ELNET.QR αopt method deals with multicollinearity in
three cases of τ by choosing some of these variables and forcing the other to be zero in
the final model, whereas the RR.QR method lost reliability and accuracy for the selection.
This method has been selected for all the predictor variables. The rest of the methods are
LASSO.QR and AdLASSO.QR methods to deal with multicollinearity.

Based on the findings in the previous section, we will rely on the ELNET.QR αopt
estimated coefficients to interpret the oil price model as shown in Table 4, as it is more
consistent in terms of RMSE, MAE, MAPE, and MASE. These results imply that the changes
in the oil prices could be explained with the variables included in the analysis with different
significant strengths, particularly the exchange rate (x3), as it has the highest effect on oil
prices. As expected, there is a positive relationship between crude oil prices and exchange
rate, retail trade, interest rates and the consumer price index. In other words, crude oil
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prices increase when the exchange rate and other variables increase. In addition, the results
reveal that the interaction team has a very important role and a mixed effect on the changes
in oil prices. The results obtained are consistent with the literature. The oil prices in Europe
have an increasing trend during several periods, but are low in comparison during the
COVID-19 pandemic until the period at the start of the Russian-Ukraine war; they have
been quite high since the beginning of the war (Krozer 2013; Borowski 2020; Balashova and
Serletis 2021).

Table 3. Performance criteria.

Method λ RMSE MAE MAPE MASE

RR λmin = 0.041839 1.1469 0.7806 1.7260 0.8729

λ1se = 0.74835 0.9633 0.7105 1.2235 0.7945

LASSO λmin = 0.003994 1.2029 0.8069 1.8265 0.9022

λ1se = 0.078399 0.9962 0.7161 1.3324 0.8008

ELNET α = 0.25 λmin = 0.013263 1.1829 0.7974 1.7923 0.8916

λ1se = 0.260352 0.9627 0.7046 1.2343 0.7879

ELNET α = 0.5 λmin = 0.007987 1.1921 0.8018 1.8080 0.8966

λ1se = 0.142868 0.9790 0.7096 1.2885 0.7935

ELNET α = 0.75 λmin = 0.005844 1.1955 0.8035 1.8136 0.8985

λ1se = 0.104532 0.9871 0.7129 1.3112 0.7972

τ = 0.25

RR.QR
λmin = 0.1322 1.1189 0.8876 2.537 0.9924

λ1se = 0.5480 1.0531 0.8610 2.727 0.9628

LASSO.QR
λmin = 0.0471 1.0267 0.8217 2.514 0.9187

λ1se = 0.0720 1.0623 0.8520 2.571 0.9527

AdLASSO.QR (RR.W. λmin)
λmin = 0.0008 1.0984 0.8644 2.618 0.9667

λ1se = 0.0028 1.1020 0.8742 2.639 0.9776

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0003 1.0785 0.8527 2.704 0.9534

λ1se = 0.0012 1.0942 0.8661 2.671 0.9685

ELNET.QR α = 0.25
λmin = 0.0911 1.0201 0.8259 2.4273 0.9236

λ1se = 0.2002 1.0274 0.8387 2.5879 0.9378

ELNET.QR α = 0.5
λmin = 0.0317 1.1018 0.8779 2.5650 0.9817

λ1se = 0.1275 1.0452 0.8432 2.5592 0.9429

ELNET.QR α = 0.75
λmin = 0.054 1.0241 0.8195 2.5257 0.9164

λ1se = 0.0931 1.0583 0.8500 2.5636 0.9505

ELNET.QR αopt = 0.38
λmin = 0.0787 1.0086 0.8180 2.444 0.9146

λ1se = 0.1532 1.0382 0.8404 2.565 0.9398

τ = 0.5

RR.QR
λmin = 0.0678 0.9759 0.7058 1.6486 0.7893

λ1se = 0.6563 0.9494 0.6876 1.2275 0.7689

LASSO.QR
λmin = 0.0228 0.9649 0.7037 1.6693 0.7869

λ1se = 0.0531 0.9506 0.6907 1.4299 0.7724

AdLASSO.QR (RR.W. λmin)
λmin = 0.0006 0.9778 0.7109 1.7108 0.7949

λ1se = 0.0035 0.9636 0.7151 1.6833 0.7996
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Table 3. Cont.

Method λ RMSE MAE MAPE MASE

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 0.9392 0.6872 1.5984 0.7685

λ1se = 0.0009 0.9842 0.7099 1.3913 0.7938

ELNET.QR α = 0.25
λmin = 0.0390 0.9590 0.6993 1.6403 0.7820

λ1se = 0.1719 0.9470 0.6876 1.3001 0.7689

ELNET.QR α = 0.5
λmin = 0.0357 0.9655 0.7031 1.6494 0.7863

λ1se = 0.1000 0.9504 0.6895 1.3276 0.7710

ELNET.QR α = 0.75
λmin = 0.0277 0.9664 0.7040 1.6612 0.7872

λ1se = 0.0687 0.9501 0.6901 1.3927 0.7717

ELNET.QR αopt = 0.02
λmin = 0.3392 0.9372 0.6827 1.3390 0.7634

λ1se = 0.7450 0.9504 0.6914 1.1955 0.7731

τ = 0.75

RR.QR
λmin = 0.0511 1.0970 0.7913 2.9823 0.8848

λ1se = 0.6298 1.0942 0.7899 2.9192 0.8833

LASSO.QR
λmin = 0.0053 1.1455 0.8323 3.1377 0.9307

λ1se = 0.0354 1.1065 0.7785 2.9182 0.8705

AdLASSO.QR (RR.W. λmin)
λmin = 0.0004 1.1683 0.8644 3.1510 0.9665

λ1se = 0.0011 1.1960 0.9016 3.4228 1.0082

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 1.1018 0.7837 2.909 0.8764

λ1se = 0.0003 1.1275 0.8137 3.1028 0.9099

ELNET.QR α = 0.25
λmin = 0.0204 1.1152 0.8057 3.0121 0.9010

λ1se = 0.1334 1.1139 0.7947 2.9758 0.8886

ELNET.QR α = 0.5
λmin = 0.0102 1.1311 0.8191 3.0654 0.9159

λ1se = 0.0688 1.1075 0.7847 2.9390 0.8775

ELNET.QR α = 0.75
λmin = 0.0068 1.1405 0.8278 3.1141 0.9256

λ1se = 0.0458 1.1055 0.7801 2.9212 0.8723

ELNET.QR αopt = 0.02
λmin = 0.2555 1.0847 0.7812 2.8845 0.8736

λ1se = 0.8571 1.1270 0.8156 3.0404 0.9120

Note: The bold number indicates the lowest values in favor of the superior performance method compared to the
other methods.

Table 4. Coefficients estimation for the predictor variables by ELNET.QR method.

τ =0.25, αopt= 0.38 τ =0.5, αopt= 0.02 τ =0.75, αopt= 0.02

λmin λ1se λmin λ1se λmin λ1se

β̂1 0.1686 0.1313 0.1545 0.0904 0.1054 0.0548
β̂2 0.1225 0.0415 0.1066 0.0614 0.0306 0.0184
β̂3 0.3038 0.2110 0.2072 0.1061 0.1421 0.0703
β̂4 0.1151 0.0948 0.1360 0.0879 0.0761 0.0487
β̂5 0.0150 0 −0.0172 0 −0.0277 0
β̂6 0.0529 0 0.0413 0.0123 0.0648 0.0158
β̂7 0 0 0.0033 0.0026 0 0
β̂8 0.0037 0 0.0448 0.0128 0.0489 0.0093
β̂9 0 0 0.0133 0.0013 −0.0357 −0.0048
β̂10 0.0802 0.0062 0.0862 0.0531 0.1022 0.0425
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5. Conclusions

In this study, we proposed ELNET.QR based on selecting the best alpha value αopt
using a cross-validation method. The method was used to identify the relationship between
the predictor variables and the response variable to improve the accuracy of model selection
and to deal with heavy-tailed distributions, heterogeneity, and multicollinearity between
the predictor variables by determining the best alpha value. Numerical experiments and
actual time-series datasets were carried out. The results showed that the ELNET.QR αopt
method effectively selected the actual predictor variables that were most significant for the
response variable with a reduced prediction error at τ = 0.25, 0.5, 0.75. The ELNET.QR
αopt method selected the best-fitting model with high prediction accuracy, compared to the

other methods. It also proved that not all of the alpha values can be used to represent the
Elastic net. Thus, the cross-validation represents the best way to choose an alpha value and
use it as the optimal value for building the final model.

This method offers additional insights into the behaviour of crude oil prices, as it
provides evidence of how oil prices have changed by the exchange rate, retail trade, interest
rates, and consumer price index during the economic shocks in the European Union, while
the findings reveal that the exchange rate has the highest effect on changing the crude
oil price. In conclusion, this research indicates that the selected penalized QR method
is well suited for modelling crude oil prices while considering the dynamic effect on the
factors that influence local currency and the global economy in the European Union. By
considering these results, the European Union should make the exchange rate stable so that
the effect of these variables on oil prices are less significant. The main reason behind this
recommendation is the focus on local factors, as it is either mostly or partially under the
control of European policy.
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