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Abstract: We study recent monthly data to help long-term investors buy or sell from the 30 Dow Jones
Industrial Average (DJIA) Index components. The recommendations are based on six stock-picking
algorithms and their average ranks. We explain the reasons for ignoring the claim that the Sharpe
ratio algorithm lacks monotonicity. Since the version of “omega” in the literature uses weights that
distort the actual gain–pain ratio faced by investors, we propose new weights. We use data from
30 stocks using the past 474 months (39+ years) of monthly closing prices, ending in May 2024. Our
buy-sell recommendations also use newer “pandemic-proof” out-of-sample portfolio performance
comparisons from the R package ‘generalCorr’. We report twelve sets of ranks for both out-of- and
in-sample versions of the six algorithms. Averaging the twelve sets yields the top and bottom k stocks.
For example, k = 2 suggests buying Visa Inc. and Johnson & Johnson while selling Coca-Cola and
Procter & Gamble.

Keywords: Sharpe ratio monotonicity; stock picking tools; out-of-sample performance; pandemic-proof

1. Introduction

Investing in the stock market is vital in directing national resources to the most
productive applications. The stock-picking activity of the financial services sector annually
commands billions of dollars in fees. Malkiel (2013) argues that ever-growing fees for
financial services are a deadweight loss for the US economy. The misallocation of resources
creates waste and other losses to the economy. This paper offers tools to reduce such
losses by proposing public domain stock-picking tools using free, open-source software
by R Core Team (2023).

Wall Street investment outfits use stock prices attached to stock symbols. We use
pretty long price data concerning 39 years and six months, ending in May 2024. If $1 is
invested in buying a stock priced at Pt at time t, if the price (adjusted for dividends) at time
t + 1 is higher, the net return rt = [(Pt+1 − Pt)/Pt] will exceed the initial investment of $1.
Since the net return is negative when losses are incurred, one defines the gross return as
(1 + rt) = 1 + (Pt+1 − Pt)/Pt = Pt+1/Pt. The gross return is always positive since prices
are positive.

Continuously compounded return is the exponential return, exp(rt), which is always
positive. The series expansion of exp(rt) is (1 + rt + r2

t /2! + ..). Assuming higher order
terms in the expansion can be ignored, (|rt| < 1), one can write exp(rt) = 1 + rt. It is cus-
tomary to equate the exponential return to the gross return and write rt = log(Pt+1/Pt) =
log Pt+1 − log Pt. Many published papers use the first difference of logs of prices evaluated at
time t + 1 as a return from investment. Since the return data do not always satisfy (|rt| < 1)
for certain time periods, let us define rt = [(Pt − Pt−1)/Pt−1] for our monthly returns from
the Dow Jones Industrial Average’s 30 (DJ30) stocks.

Let f (r) denote the probability distribution function of returns (r) from investing in
one of the 30 stocks, and let F(r) denote the (cumulative) distribution function of returns.
Denote the expected value (mean) of f (r) by µ and the standard deviation by σ. The Sharpe
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ratio, Sharpe (1966), is named after a Nobel-winning economist. It represents a risk-adjusted
average return from investment X, defined as

SR(rX) = µ(rX)/σ(rX), (1)

where the denominator makes risk adjustment. Typical SR ranks investment opportu-
nities based on data on market returns represented by the probability distribution f (r)
mentioned before.

Although (1) can also be used for ranking gambles, this paper uses it for stock-picking.
Gambling is a zero-sum or negative-sum game. By contrast, buying (selling) a share of
companies contributing to socially desirable (undesirable) goods and services often yields
positive µ and a larger SR.

Aumann and Serrano (2008) propose an ‘index of riskiness’ of an investment as if it is
a gamble. They conjure imaginary gambling situations to assess their riskiness using an
axiomatic framework and an economic decision-making context. They reject the reciprocal
of SR of (1) as a measure of riskiness because it fails monotonicity property based on first-
order stochastic dominance. Aumann and Serrano (2008) focus too much on the attributes
of the stock buyer measured by a buyer’s risk-averse utility function. These authors refer
to a constant absolute risk-averse “CARA person” (page 816).

Cheridito and Kromer (2013), or “CK13,” is an impressive study of mathematical
formulas defining 45 performance measures similar to the reward–risk ratio (1). Among the
45 are tweaks on Sharpe ratios and ratios involving the value at risk (VaR). They evaluate
the following four properties:

• (M) monotonicity means that more is better than less. This is a common-sense minimal
requirement. All performance measures should satisfy it.

• (Q) Quasi-concavity describes uncertainty aversion linked to economists’ utility and
decision theories. It is not relevant if we include investors who allocate a (small)
proportion of investor funds as if they are risk-loving. We need not accept this
criterion for our purposes.

• (S) Scale Invariance or SR(X) = SR(λX) where λ is a constant. The invariance
requirement is inappropriate for modern investing where some technologies need
very large (or small) scale and transaction costs are low for large transactions.

• (D) Distribution-based. All six stock-picking algorithms in this paper are distribution-
based.

CK13 evaluations are not necessarily for stock market investment, but include the
ranking of gambles where the “probability measure” (as in the measure theory of Statistics)
may be unknown. By contrast, our probability measure is well approximated by f (r),
and its riskiness is well represented by its dispersion. CK13 claim that 17 measures out
of 45, including the Sharpe ratio (SR), fail to meet the minimal monotonicity requirement
(M). The next four paragraphs show the limitations of the CK13 claim. We shall show
that CK13 proof assumes certain artificial gambles that are irrelevant for our stock-picking
based on f (r).

Proposition 4.1 in CK13 allegedly proves that SR = µ(X)/σ(X) fails (M). The proof
involves the existence of pathological cases involving three constants satisfying properties
as follows: [(a, b, c) > 0, a > c, b ≥ 1, bc > a]. The proof needs to assume a non-
negative random variable Z ≥ 0. Since stock returns can be both positive and negative, the
assumption Z ≥ 0 is invalid for our f (r).

We begin by showing that SR fails (M) when Z ≥ 0. CK13 proof defines X = a + b ∗ Z
and Y = c + Z. For example, choose a = 2.5, b = 2.4, c = 1.5, Z = 1, and σ(Z) = 1.
Now, X = 2.5 + 2.4 ∗ Z = 4.9 and Y = 1.5 + Z = 2.5, with X > Y. Now, E(X) = 4.9
is 96% larger than E(Y) = 2.5, whereas σ(X) = 2.4 is 240% larger than σ(Y) = 1. Hence,
SR(X) = 4.9/2.4 = 2.04 < SR(Y) = 2.5. Since X is larger while SR(X) is smaller, the
Sharpe ratio indeed fails (M) for Z ≥ 0.
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Consider a realistic negative realization of the random variable Z, representing losses,
with Z = −1. Let us keep the above choices of (a, b, c) and formulas for X and Y in CK13
unchanged. Now, X = 2.5 + 2.4 ∗ Z = 0.1 and Y = 1.5 + Z = 0.5, implying that X < Y.
This E(X) = 0.1 is 500% smaller than E(Y) = 0.5, whereas σ(X) = 2.4 is 240% larger than
σ(Y)=1. Hence, SR(X) = 0.1/2.4 = 0.04 < SR(Y) = 2.5. Since X is smaller while SR(X) is
also smaller, the Sharpe ratio passes (M).

The CK13 alleged failure to pass (M) holds only for artificially constructed gambles
satisfying peculiarly demanding unrealistic restrictions (X = a − bc + bY) with a non-
negative random variable Z denying any presence of losses, unlike typical f (r). Thus, stock
market investors can safely ignore the claim that SR fails (M).

We further argue that property (Q) linked to utility theory can be ignored when allo-
cating resources. After all, economists have long avoided interpersonal utility comparisons.
An individual investor’s utility experience is personal, rarely identical across individuals,
and exhibits marked change for the same individual over time and space. Psychologists
have documented that utility from profits and losses is asymmetric and sensitive to profit
and loss sizes. It is futile to assess whether someone is a “CARA person” before deciding
which decision theory applies to him. In summary, the M, Q, S, and D criteria proposed
by CK13 can be misleading when applied to stock-picking purposes.

Let us turn to the 30 stocks comprising DJIA. We begin with Tables 1 and 2 for the
company names studied here in two parts with fifteen companies each. We report ticker
symbols, relative weights in DJIA, and a (case-sensitive) single-character name to identify
the stock for later use in graphics and tables. Figure 1 is inspired by Markowitz’s efficient
frontier model, without the straight line representing a risk-free rate. This Figure has
the mean return on the vertical axis and the standard deviation of returns measuring the
volatility (risk) for that stock on the horizontal axis. We depict thirty letters in Figure 1 for
each DJIA index component sticker.

The basic idea behind Figure 1 is that we imagine grouping stocks into a certain
number (=7) of unequal width ranges of standard deviation class intervals. Our 30 stocks
are implicitly assigned to these seven σ intervals. Now, the stock yielding the highest
average return for each level of risk (measured by the midpoints of the sd class interval)
dominates all those below it in Figure 1. The dominating stocks from DJIA are graphically
identified as (j, v, h, f, C, a, z). The corresponding longer company names of dominating
stocks, according to Tables 1 and 2, are Johnson & Johnson, Visa, Home Depot, Microsoft,
Salesforce, Apple, and Amazon.

Table 1. Company names, ticker symbols, weight in DJIA, and abbreviations with only one character.
Part 1.

Seq. Company Symbol Weight Char1

1 Apple Inc. AAPL 2.93 a
2 Amgen Inc. AMGN 4.65 A
3 Amazon.com Inc. AMZN 2.99 z
4 American Express Co. AXP 4.09 x
5 Boeing Co. BA 2.88 b
6 Caterpillar Inc. CAT 5.83 c
7 Salesforce Inc. CRM 4.71 C
8 Cisco Systems Inc. CSCO 0.83 S
9 Chevron Corp. CVX 2.85 e

10 Walt Disney Co. DIS 1.94 d
11 Dow Inc. DOW 0.97 D
12 Goldman Sachs Group Inc. GS 7.24 g
13 Home Depot Inc. HD 5.72 h
14 Honeywell International Inc. HON 3.33 H
15 Intl Business Machines Corp. IBM 2.91 i
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Table 2. Company names, ticker symbols, weight in DJIA, and abbreviations with only one character.
Part 2.

Seq. Company Symbol Weight Char1

16 Intel Corp. INTC 0.61 I
17 Johnson & Johnson JNJ 2.53 j
18 JP Morgan Chase & Co JPM 3.33 J
19 Coca Cola Co. KO 1.06 k
20 McDonald’s Corp. MCD 4.75 m
21 3m Co. MMM 1.58 M
22 Merck & Co. Inc. MRK 2.25 K
23 Microsoft Corp. MSFT 6.88 f
24 Nike Inc Cl B NKE 1.62 n
25 Procter & Gamble Co. PG 2.80 p
26 Travelers Cos Inc. TRV 3.69 t
27 Unitedhealth Group Inc. UNH 8.52 u
28 Visa Inc Class A Shares V 4.75 v
29 Verizon Communications Inc. VZ 0.68 V
30 Walmart Inc. WMT 1.04 w
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Figure 1. Mean–standard deviation efficiency frontier for Dow Jones 30 stocks.

1.1. Descriptive Statistics for the DJIA Stock Returns

This section reports some basic information about our data using standard descriptive
stats. We report ‘min’ for the smallest return, Q1 for the first quartile, where 25% of data
are below Q1 and 75% are above Q1. ‘Median’ and ‘Mean’ are self-explanatory. Q3 is for
the third quartile (75% below and 25% above), and ‘max’ denotes the largest return.

In finance, two additional descriptive stats are referenced. The SR = µ/σ defined
before and the ‘expected gain–expected pain ratio’. The latter is called ‘omega’ (Ω) in Keat-
ing and Shadwick (2002), or “KS02” hereafter. While we include SR and Ω among the
descriptive statistics associated with each stock, we include them among our six stock-
picking algorithms.

1.1.1. Sharpe Ratios for Risk-Adjusted Stock Returns

The SR of (1) is a popular stock-picking tool. Many researchers have studied it
and suggested modifications. SR treats a symmetric measure σ as an approximation to
the risk. It treats volatility on the profit and loss side as equally undesirable. Volatil-
ity on the loss side is undesirable but desirable on the profit side. An adjusted version,
SRdsd = µ/DSD, replaces the σ in the original denominator by downside standard devia-
tion (DSD =

√
DSV) from the square root of DSV, the downside variance. Let nb denote

the number of observations below the mean. The downside variance in Vinod and Reagle
(2005) (page 111, Equation (5.2.2)) is computed as

DSV = [Σtwt(rt − r̄)2]/nb, (2)
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where wt = 0 when rt > r̄, and wt = 1 otherwise. The summation is over nb returns
involving possible losses. The adjusted version

SRdsd = µ/
√

DSV, (3)

is not difficult to compute. The online Appendix A provides software for SRdsd.
Page 114 of Vinod and Reagle (2005) was perhaps the first to identify an often-ignored

serious problem with Sharpe ratios. Now, we show how SR provides the wrong rankings
when risk-adjusting any stocks with negative average returns. We explain the wrong ranking
using an example of two stocks, p and q, with Sharpe ratios, SRp = µp/σp, and SRq = µq/σq.
Now, assume that both have a negative average loss of 100, or µp = µq = −100. Next, assume
that stock p is twice as volatile (risky) as stock q, or σp = 10 and σq = 5. We expect that the
money-losing and more risky stock p is worse than q. Note that SRp = −100/10 = −10 is
larger than SRq = −100/5 = −20. The ranking by SR says q is worse than p, which is against
common sense.

Page 114 of Vinod and Reagle (2005) also explains how to use suitably large “add
factors” to obtain the SR to yield the correct ranking. Fortunately, columns entitled ‘Mean’
in Tables 3 and 4 (of descriptive stats reported later) show that all thirty stocks have positive
average returns. Thus, we do not need any ‘add factor’ adjustment in our context.

Note that our SR = µ/σ assumes that the researcher has true unknown values of µ
and σ, rather than their sample estimates ignoring estimation errors. A “Double Sharpe
ratio” divides the sample estimate ŝr by its standard error (SE), the standard deviation
of the sampling distribution. The division penalizes stocks with a higher estimation risk.
A double SR, which penalizes for estimation risk represented by a bootstrap standard error,
is discussed on page 227 of Vinod and Reagle (2005). We denote it as SR with subscript
‘se’ as

SRse = ŝr/SE(sr), (4)

The online Appendix A provides software for computing SRdsd of (3) using downside
standard deviation in the denominator. Next, the appendix software computes a large
number J of SRj

dsd based on bootstrap replicates. Then, the code computes SE(sr) in the

denominator of (4), which becomes the standard deviation of J bootstrap values SRj
dsd.

Recall that the risk (horizontal axis) versus return (vertical axis) scatterplot of Figure 1
suggests that Johnson & Johnson, Visa, Home Depot, Microsoft, Salesforce, Apple, and Ama-
zon graphically dominate others. The respective Sharpe ratios of these stocks are (0.22, 0.26,
0.23, 0.25, 0.22, 0.19, 0.15). Note that the Sharpe ratio is a direct measure of risk-adjusted
return, bypassing the grouping of stock returns into standard deviation (sd) intervals.

The lowercase versions of ticker symbols for the top seven Sharpe ratios in increasing
order of magnitude are amzn = 0.22, jnj = 0.22, crm = 0.22, unh = 0.23, hd = 0.23, msft = 0.25,
and v = 0.26, respectively. Markowitz’s theory supports a stock-picking algorithm based
on the Sharpe ratio. It is one of the six algorithms listed later in Section 3.

1.1.2. Original Computation of “Omega” for Stock Returns

KS02 name a “cumulative probability weighted” gain–loss ratio “omega” (Ω), and claim
that it is a “universal” performance measure. We regard it as one of many and find that
the weighting used in its original computation can be simplified without sacrificing its
intent. This subsection describes the need for simplification, while the following subsection
describes a recommended version. A referee has suggested that some readers are not
interested in knowing exactly how our simplified version maintains the intent behind the
gain–loss ratio. Uninterested readers can skip the present subsection.

The title of KS02 claims universality for their performance measure. Since a larger
omega means a larger preponderance of positive returns, a stock having a larger omega is
more desirable. The idea of measuring a gain–loss ratio is first mentioned by Bernardo and
Ledoit (2000), who define r as a risk-adjusted excess return over a target return. Their risk
adjustment requires assumptions about the utility function of investors. This paper avoids
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any assumption regarding investor utility functions. We retain their distinction between
r+ = max(0, r), the positive part of returns, and r− = max(r, 0), the negative part. Their
gain–loss ratio is Ωbl , (where the subscript ‘bl’ identifies authors) is as follows:

Ωbl = E(r+)/E(r−). (5)

Section 3.1 of CK13 states that Bernardo–Ledoit-type ratios satisfy all four (M, Q, S, D)
properties mentioned above.

KS02 do not assume anything about the utility function of investors. The gains and
losses in KS02 are compared to a target return. If all stocks in a data set have a common
target return, we can subtract it from all returns and work with returns in “excess of target”.
Hence, there is no loss of generality in letting the target be zero. Therefore, our target
return is mostly zero in the sequel. Metel et al. (2017) explain how omega generalizes the
mean variance-based Sharpe ratio by encompassing the entire f (r) (page 4) “therefore
incorporating higher moment properties”. Their Theorem 1 proves that, within the class
of elliptical density functions, using the Sharpe ratio or the Omega measure to optimize
portfolio performance leads to the same optimal portfolio. The theorem has no practical
implications for our purposes when working with real-world market returns, usually not
from any known density.

KS02 define
Ωks = E(gain)/E(loss), (6)

where the expectation operator from the probability theory in E(gain) is represented
by choosing weights (1 − F(r)) by assuming continuous distributions. Similarly, KS02
represent E(loss) by choosing F(r) weights. The subscript ‘ks’ in Ωks identifies the authors
of KS02.

Considerable literature on “omega” assumes a continuous f (r), usually with a known
(Gaussian, Elliptical) form. By contrast, this paper assumes a nonparametric representation
of f (r) based on actual market returns data. Since observable data are always discrete,
we replace F(r) with the empirical cumulative distribution function (ECDF), a step func-
tion of returns. It uses all the information in the data on returns and is considered a
“sufficient statistic”.

Figure 2 illustrates the ECDF for an imaginary stock A with n = 4, returns
rt = (−3,−1, 2, 5), for t = 1, 2, ., n. A vertical axis at r = 0, shown in Figure 2, sepa-
rates the ECDF for stock A into the loss side on the left (for r− = max(r, 0)) and the gain
side on the right (for r+ = max(0, r)).

How do we represent the E operator weights in the discrete case? Usually, mathemat-
ical expectation E(x) = Σxt pt (return xt with probability pt) is the average return. KS02
formulate the mathematical expectation of aggregate loss based on cumulative sums of
negative returns rt times corresponding cumulative probabilities from F(r) as weights.
Their gain side weights based on (1 − F(r)) are from the areas above the ECDF steps.
The following paragraph uses Figure 2 to explain the numerical computation of KS02’s
cumbersome weighting for toy stock A mentioned above.

The ECDF on the loss side for toy stock A has two negative ranges, (box intervals)
(−3,−1) and (−1, 0), with areas under the pillars for the two ranges of (1/n) and (2/n),
respectively. The respective gain side weights (2/n) and (1/n) are based on (1 − F(r)).
These weights represent the areas above the pillars for the two ECDF ranges (0, 2) and (2, 5)
on the right-hand side of the zero axis in Figure 2.

The KS02 weighting scheme of Ωks appears to be the same as that of the partial
moments of degree 1. Hence, Ωks of (6) is the ratio of the upper partial moment (UPM)
of degree 1 to the analogous lower partial moment (LPM), Viole and Nawrocki (2016). In
the R package called NNS, Viole (2021) has convenient functions called UPM and LPM to
compute them, and hence

Ωks = UPM(1, 0, r)/LPM(1, 0, r), (7)
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where r is a vector of returns, and where we have included the arguments (degree = 1,
target = 0) of the R functions in the NNS package. Considering that these ratios are
decades old, there is a need to compare the out-of-sample performance of Ωks from stock
market return data using the NNS package with the three versions of Sharpe ratios in
Equations (1), (3), and (4).

This subsection has explained the logic behind the cumbersome weighting scheme in
KS02. The following subsection shows how the ECDF weighting is not really needed to
achieve the intent in Bernardo and Ledoit (2000).
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Figure 2. Empirical Cumulative Distribution Function for a Toy Example.

1.1.3. Recommended Computation of “Omega” for Stock Returns

Recall that we regard omega as one of many stock-picking algorithms. This subsection
suggests a direct computation of Equation (5) for aggregate gain–aggregate loss ratios
without using F(r) and (1 − F(r)) weights. We divide the vector of returns rt into positive
(r+t ) and negative (r−t ) parts, proposing

Ωsum =
Σt(r+t )

Σt|(r−t )|
, (8)

where the subscript ‘sum’ refers to summations in the formula. The numerator and de-
nominator are both positive. For example, the stock A with returns rA

t = (−3,−1, 2, 5) has
Ωsum = ((2 + 5)/(3 + 1)) = 7/4. The stock B with returns rB

t = (−4, 1, 2, 4) has the same
Ωsum = 7/4. The computation of Ωsum is seen to be easy and intuitive.

An alternative formulation is

Ωavg =
Σt(r+t )/n+

Σt|(r−t )|/n− , (9)

where n+ denotes the number of positive returns in the data, n− denotes the number of
negative returns, and the subscript ‘avg’ refers to the averages in the formula. If the stock
returns arose from an independent and identically distributed (IID) process, the probability
of observing each return rt is 1/n and averages equal mathematical expectations. Hence,
it is tempting to prefer Ωavg over Ωsum. However, market returns are almost never IID. A
stock’s return is intimately related to its own past, the returns of other stocks in its class,
the socio-political conditions, etc. Since the joint density of all stocks is unknown, the
probability of the sum of k returns (Σkrt) is also unknown.

Can we use the averages in Ωavg as an approximation by pretending that returns are
IID? Let us compare the two Formulas (8) and (9). Observe that Ωavg is larger than Ωsum
when n− is large, and that Ωavg is smaller when n+ is large. The total gain–loss ratio is
being multiplied by (n−/n+). What are the implications of the relative sizes of (n+, n−) to
the investor’s bottom line? We use two imaginary stocks, A and B, to argue that a larger
(smaller) ratio (n−/n+) does not benefit (hurt) the bottom line of the investor and should
be ignored.
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Assume two sets of stock returns rA
t = (−3,−1, 2, 5) and rB

t = (−4, 1, 2, 4). They have
the same ΩA

sum = 1.75 = ΩB
sum, though the 1.75 = ΩA

avg >> ΩB
avg = 7/12 = 0.58333. If

one relies on ΩB
avg, we have to conclude that the gain–pain ratio for stock A is over three

times better than stock B. The aggregate gain (=7), aggregate loss (=4), and gain–loss ratio
(7/4 = 1.75) to the investor is exactly the same for stocks A and B. The aggregate gain of 7
for stock B is spread over n+

B = 3 periods, while the aggregate loss (=4) is spread over only
one period n−

B = 1. The aggregate gain and loss for stock A is spread over two periods
n+

A = 2 = n−
A . The practically irrelevant (to the investor) sizes of (n+, n−) should not be

allowed to contaminate the computation of the gain–loss ratio. We conclude this section by
stating that there are sound reasons for rejecting Ωavg of (9) in favor of the simpler Ωsum
of (8).

Table 3. Table of basic descriptive stats. ‘Sharpe’ is the ratio of mean to standard deviation (sd). Ωs is
Ωsum, the sum of all positive returns divided by the sum of all negative returns. Number of non-missing
or available sample size in the last column, ‘Av.N’. Part 1.

Ticker Min Q1 Median Mean Q3 Max Sd Sharpe Ωs Av.N

aapl −57.74 −4.66 2.53 2.40 9.81 45.38 12.20 0.20 1.7 473
amgn −41.53 −3.62 1.59 2.17 6.36 45.88 9.94 0.22 1.9 473
amzn −41.16 −4.73 2.47 3.61 9.74 126.38 16.56 0.22 2.0 324

axp −32.09 −2.38 1.37 1.31 5.86 85.03 8.72 0.15 1.6 473
ba −45.47 −3.82 1.45 1.18 6.99 45.93 8.83 0.13 1.4 473
cat −35.91 −4.16 1.69 1.52 7.15 40.14 8.96 0.17 1.6 473

crm −36.03 −4.61 1.75 2.39 8.98 40.26 11.08 0.22 1.8 239
csco −36.73 −4.01 1.70 2.19 8.27 38.92 10.48 0.21 1.8 411
cvx −21.46 −2.57 1.09 1.15 4.76 26.97 6.47 0.18 1.6 473
dis −28.64 −3.34 1.05 1.28 5.73 31.26 7.91 0.16 1.5 473

dow −26.45 −3.37 1.24 0.86 6.30 25.48 9.41 0.09 1.3 62
gs −27.73 −5.20 1.33 1.15 6.64 31.38 9.22 0.12 1.4 300
hd −28.57 −3.41 1.71 1.91 7.06 30.33 8.14 0.23 1.8 473

hon −38.19 −2.39 1.33 1.18 5.06 51.05 7.75 0.15 1.5 473
ibm −24.86 −3.61 0.75 0.84 5.00 35.38 7.44 0.11 1.4 473

Table 4. Table of basic descriptive stats. Sharpe is the ratio of mean to standard deviation (sd).
Ωs is Ωsum, the sum of all positive returns divided by the sum of all negative returns. Number of
non-missing or available sample size in the last column, ‘Av.N’. Part 2.

Ticker Min Q1 Median Mean Q3 Max Sd Sharpe Ωs Av.N

intc −44.47 −4.39 1.25 1.52 7.05 48.81 10.67 0.14 1.5 473
jnj −16.34 −2.23 1.25 1.22 4.43 19.29 5.59 0.22 1.8 473

jpm −32.68 −3.86 1.22 1.32 6.36 33.75 9.17 0.14 1.5 473
ko −19.33 −2.08 1.24 1.20 4.62 22.64 5.83 0.21 1.7 473

mcd −25.67 −2.16 1.36 1.26 5.04 18.26 5.94 0.21 1.7 473
mmm −27.83 −2.46 1.22 1.01 4.40 25.80 6.07 0.17 1.5 473

mrk −26.62 −3.02 1.12 1.33 5.86 23.29 6.94 0.19 1.6 473
msft −34.35 −3.56 2.25 2.36 6.80 51.55 9.45 0.25 2.0 458
nke −37.50 −3.30 1.84 1.90 7.02 39.34 9.40 0.20 1.7 473
pg −35.42 −1.77 1.20 1.20 4.92 24.69 5.57 0.22 1.8 473
trv −53.47 −3.17 1.42 1.09 5.03 52.51 7.34 0.15 1.5 473

unh −36.51 −3.21 2.50 2.18 7.39 40.70 9.57 0.23 1.9 473
v −19.69 −2.47 2.27 1.58 5.25 16.83 6.14 0.26 1.9 194

vz −20.48 −2.75 0.52 0.89 4.92 37.61 6.17 0.14 1.5 473
wmt −27.06 −2.40 1.25 1.37 5.55 26.59 6.48 0.21 1.7 473

2. Unbiased Out-of-Sample Calculations

Most authors define their out-of-sample range from the last few periods of the data.
Since any such out-of-sample time series is sensitive to the peculiar characteristics of the
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last few periods, their calculations can be biased. For example, if the out-of-sample (oos)
series coincides with the 2020 pandemic, the calculations will have a pessimistic bias.
Vinod (2023) suggests removing the bias by “pandemic proofing” the calculations on (40%
here) randomly chosen ‘oos’ data. Each j-th choice yields a ranking of stocks. Repeating
the ranking J (=50, say) times, we compute their mean µ and standard deviation σ for
the i-th stock-picking algorithm. We have i = 1, . . . , 6 here. Assuming no transaction
costs, Vinod (2023) computes a zero-cost arbitrage, executing the following trades. One
short sells (selling without first possessing) certain dollars worth of the worst stock in DJIA
and buys the appropriate fraction of the best stock as determined by each method.

Our unbiased ‘oos’ strategy here does not seek a zero-cost arbitrage. Instead, we just
compute distinct stock rankings by each method in-sample and randomly choose 40%
observations for each j-th ‘oos’ realization. Finally, the average of the ranks over j = 1, . . . , J
random choices determines the ‘oos’ stock choice by that method.

3. Ranking 30 Stocks by Six Algorithms

We split our report into three tables, ranking the 30 DJIA stocks by two versions of six
stock-picking algorithms. Each table has ten stocks at a time in alphabetical order of their
ticker symbols. Tables 5–7 report two versions of the ranks produced by each algorithm for
(a) in-sample ranks and (b) unbiased out-of-sample ranks.

1. Sharpe-in/out: Section 1.1.1 mentions the Sharpe ratio as a stock-picking algorithm.
2. Omega-in/out: Our computation is described in Section 1.1.3 and Equation (8)

for Ωsum.
3. Decile-in/out: It is generally agreed that the stock whose probability distribution of

returns is more to the right-hand side is more desirable. One way to achieve this is
to compare their deciles. The R package ‘generalCorr,’ offers a convenient function
called decileVote(.).

4. Descr-in/out: We compare the traditional descriptive stats of each stock’s data. Most
stats are in the “the larger, the better” category and are obtains (+1) as weight. The
standard deviation represents risk and obtains (−1) weight. This algorithm uses a
weighted summary of these stats for stock-picking.

5. Momen-in/out: Moment values: The first four moments of a probability distribution
provide information about centering, variability, skewness, and kurtosis. Our weights
incorporate the prior knowledge that low variability and low kurtosis are desirable,
while larger mean and skewness are desirable. A weighted summary is implemented
in the R package ‘generalCorr,’ function called momentVote(.).

6. Exact-in/out: This algorithm refers to the exact stochastic dominance mentioned in
Section 3.1. The stochastic dominance (SD) of the first four orders is summarized in the
R package ‘generalCorr’. See the R function called exactSd(). The theoretical details
are available in Vinod (2024), where iterated integrals of cumulative distribution
functions are used. See the following Section 3.1 for a summary of general ideas
behind the theory of stochastic dominance.

3.1. Ranking Stocks by Exact Stochastic Dominance

We apply some of the tools described in Vinod (2024) to the portfolio selection problem
for the DJ30 data set used here. We use the exact computation of stochastic dominance
using a worse imaginary stock (x.ref) than the worst-performing stock in DJ30.

We shall see that stochastic dominance needs a reference stock. Accordingly, we plan
to compute the return for each of the 30 DJIA stocks with reference to the return in excess
of the money-losing imaginary 31-st stock (x.ref). The lowest return over all included
DJ30 data sets and over all 30 stocks is −86.14151, where the negative sign suggests a loss.
Let us choose (x.ref) return −87.38904, which is a little smaller than −86.14151, implying
consistently the largest losses throughout the data period. Thus, all 30 stocks in our data
always dominate (x.ref) throughout the period with varying dominance amounts.
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The exact stochastic dominance computation invented by Vinod (2024) measures the
dominance of each one of the thirty DJ30 stocks over the (x.ref) imaginary stock. The thirty
dominating amounts are comparable to each other and allow the ranking of the thirty
stocks. The computation of dominating amounts depends on the order k of stochastic
dominance (SDk).

The first-order computation of the dominating amount depends on the exact area
between two empirical cumulative distribution functions (ECDFs). It is customary to use
iterated integrals for the higher-order computation of dominating areas since Levy (1973).
The R package ‘generalCorr’ computes dominating areas from SD1 to SD4 and summarizes
their rankings.

Tables 5–7 report the rank of stock tickers named in the column heading. The stocks
ranked with low numbers (e.g., 1 to 8) are worth buying according to the algorithm implied
by the row name. On the other hand, stocks ranked with high numbers (e.g., 23 to 30) are
worth selling. Interestingly, stocks recommended for buying using in-sample data do not
generally agree with the unbiased out-of-sample averages, even for the same algorithm.

Table 5. All criteria summary ranks of DJ30 stocks for in-sample and average over the randomized
out-of-sample returns. Part 1.

Algorithm aapl amgn amzn axp ba cat crm csco cvx dis

Sharpe-in 15.0 6.0 7.0 22.0 27.0 18.0 8.0 12.0 17.0 20.0
Sharpe-out 29.0 23.0 24.0 15.0 20.0 22.0 13.0 8.0 9.0 21.0
Omega-in 15.0 5.0 2.0 18.0 27.0 19.0 9.0 11.0 17.0 22.0

Omega-out 29.0 22.0 24.0 15.0 21.0 23.0 14.0 7.0 11.0 20.0
Decile-in 9.0 15.0 4.5 7.0 22.5 13.0 10.5 6.0 28.0 26.0

Decile-out 25.0 21.5 24.0 4.0 11.0 6.5 19.0 8.0 26.5 23.0
Descr-in 14.3 16.0 13.0 12.0 17.0 14.6 14.1 14.9 17.6 18.0

Descr-out 21.9 17.4 16.6 14.6 13.6 15.9 13.0 14.9 16.6 17.7
Momen-in 7.0 3.0 1.0 10.0 24.0 11.5 4.0 6.0 20.0 15.0

Momen-out 19.0 10.0 7.0 14.0 23.0 21.5 3.0 1.0 17.0 20.0
Exact-in 8.0 10.0 5.0 18.0 25.0 14.0 4.0 6.0 26.0 19.0

Exact-out 29.0 18.0 5.0 13.0 21.0 22.0 2.0 6.0 19.0 23.0
AvgRank 21.0 13.0 7.0 11.0 27.0 16.0 6.0 3.0 22.0 24.0

Table 6. All criteria summary ranks of DJ30 stocks for in-sample and average over the randomized
out-of-sample returns. Part 2.

Algorithm dow gs hd hon ibm intc jnj jpm ko mcd

Sharpe-in 30.0 28.0 3.0 21.0 29.0 26.0 5.0 24.0 13.0 10.0
Sharpe-out 30.0 27.0 7.0 6.0 28.0 26.0 4.0 10.0 1.0 17.0
Omega-in 30.0 28.0 6.0 21.0 29.0 25.0 8.0 24.0 10.0 13.0

Omega-out 30.0 27.0 8.0 5.0 28.0 25.0 4.0 12.0 1.0 17.0
Decile-in 24.5 27.0 8.0 14.0 30.0 21.0 18.0 24.5 16.0 12.0

Decile-out 16.5 16.5 10.0 5.0 30.0 28.0 12.0 2.0 9.0 26.5
Descr-in 19.6 18.7 12.7 15.4 19.6 17.7 14.4 18.1 14.7 14.0

Descr-out 18.3 16.7 13.9 14.6 20.1 19.3 13.6 13.9 11.6 17.0
Momen-in 30.0 25.0 8.0 16.0 28.0 11.5 18.0 17.0 26.0 23.0

Momen-out 30.0 27.0 5.0 11.0 24.0 12.5 18.0 6.0 9.0 29.0
Exact-in 1.0 3.0 11.0 24.0 30.0 13.0 21.0 17.0 22.0 20.0

Exact-out 1.0 4.0 9.0 12.0 30.0 20.0 17.0 10.0 11.0 27.0
AvgRank 28.0 26.0 4.0 12.0 30.0 25.0 10.0 14.0 8.0 23.0
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Table 7. All criteria summary ranks of DJ30 stocks. Part 3.

Algorithm mmm mrk msft nke pg trv unh v vz wmt

Sharpe-in 19.0 16.0 2.0 14.0 9.0 23.0 4.0 1.0 25.0 11.0
Sharpe-out 19.0 16.0 14.0 25.0 3.0 12.0 11.0 2.0 5.0 18.0
Omega-in 20.0 16.0 1.0 14.0 7.0 23.0 4.0 3.0 26.0 12.0

Omega-out 19.0 16.0 13.0 26.0 3.0 9.0 10.0 2.0 6.0 18.0
Decile-in 22.5 19.0 3.0 2.0 17.0 20.0 1.0 4.5 29.0 10.5

Decile-out 18.0 20.0 29.0 14.0 13.0 6.5 1.0 3.0 15.0 21.5
Descr-in 18.3 16.3 11.9 13.7 16.7 16.9 11.7 11.7 17.1 14.3

Descr-out 17.7 16.9 14.7 18.1 10.7 14.7 11.6 11.1 11.6 17.0
Momen-in 29.0 19.0 2.0 9.0 21.0 22.0 5.0 13.0 27.0 14.0

Momen-out 28.0 21.5 2.0 26.0 12.5 15.0 4.0 16.0 8.0 25.0
Exact-in 28.0 16.0 7.0 12.0 23.0 27.0 9.0 2.0 29.0 15.0

Exact-out 28.0 24.0 7.0 25.0 14.0 16.0 8.0 3.0 15.0 26.0
AvgRank 29.0 20.0 5.0 15.0 9.0 18.0 2.0 1.0 19.0 17.0

The three tables, Tables 5–7, represent the main findings of our study of monthly
data spanning over 39 years. The tables report alphabetically arranged ticker symbols
in the column headings. Each table has ten stocks out of the thirty stocks of the DJIA.
The bodies of the tables report rank by each of the twelve methods for six algorithms in
two versions. For example, the first column of Table 5 has ranks of the Apple stock via
the twelve methods. The first four ranks (15, 29, 15, 29) contain some repetitions, but the
twelve methods rarely agree. If we respect the independent logic of all twelve algorithms,
the average rank reported in the last (13-th) row may be thought of as a gist from the twelve
ranks along the first twelve rows.

The buy or sell recommendations from our study needs some slicing and dicing of
Tables 5–7. Accordingly, Table 8 reports abridged (case-sensitive single-character) names of
the top eight stocks for buying (ranked 1 to 8) and the bottom eight for selling (ranked 23
to 30) by each of our six algorithms. Algorithm names are listed in Section 3. The algorithm
names also appear as row names in Tables 5–7. We must abridge the row names to only
three characters to save table space. Column names are lowercase versions of the stock
ticker symbols. We are reporting twelve rows, two for each of the six criteria (in-sample
and out-of-sample). The last row, named AvgRank, refers to the average rank from all
12 criteria listed above. Table 9 considers only the top and bottom two stocks for buying
and selling.

Table 8. One character name of the top and bottom eight stocks for buying and selling by each of
our six algorithms. Algorithm names from earlier tables are abridged to only three characters (suffix
i = in-sample, o = out-of-sample). Column names are the ranks by the criterion named along the row.

algo 1 2 3 4 5 6 7 8 23 24 25 26 27 28 29 30

Shi v m w S k n a K h D u j A z C p
Sho k J u t C f x K p D j V H h S e
Omi f k S w m n a K v D u A h p j C
Omo k u e J f C x K p D j H V S h t
Dci u C w m c H A k f i z v S x h a
Dco u h b j p n V D v i x H c t S k
Dsi u v f x h z n m e I d J M g D i
Dso p v k u V C b j A d M n D I i a
Moi z x c I v w d H A D C u S a h n
Moo S A H I p x t v C D u h J z V k
Exi D A h n I c w K g i C z S f a u
Exo D J k H x p V t v i g z S f u h
avg v j x H A J n c S i h f C z k p
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Table 9. Unabridged ticker symbols of the top two stocks for buying and the bottom two for selling
by each of our six algorithms. Row names are algorithm names, as in earlier tables. Column names
are ranks.

Criterion 1 2 29 30

Sharpe-in v mcd crm pg
Sharpe-out ko jpm csco cvx
Omega-in msft ko jnj crm

Omega-out ko unh hd trv
Decile-in unh crm hd aapl

Decile-out unh hd csco ko
Descr-in unh v dow ibm

Descr-out pg v ibm aapl
Momen-in amzn axp hd nke

Momen-out csco amgn vz ko
Exact-in dow amgn aapl unh

Exact-out dow jpm unh hd
AvgRank v jnj ko pg

4. Final Remarks

We describe the probability distribution of returns f (r) and various stock-picking
tools. We review Cheridito and Kromer’s M, Q, S, D properties. We reject their claim that
the Sharpe ratio fails to satisfy monotonicity by showing the limitations in their proof. We
also introduce new weights for the Omega ratio to address the distortions in the gain–pain
ratio faced by investors.

This paper describes six stock-picking algorithms for long-term investment in the DJ30
stocks. Our implementations of omega (gain–pain ratio) and exact stochastic dominance
appear to be new. We use monthly return data for the recent 39+ years to find that each
algorithm leads to a distinct ranking. We report the ranks by each criterion, implying that
rank 1 is the top stock worthy of buying and that rank 30 is the bottom stock worthy of
selling. As we change the time periods (e.g., quarters, months, weeks, hours, etc.) included
in the selected DJ30 data sets, the entire analysis will change, and our data-driven buy-sell
recommendations are also expected to change. For example, Table 8 lists the top eight
one-character abbreviations of ticker symbols to buy or sell. Table 9 lists the top two ticker
symbols for stocks to buy and sell.

Our research shows that the ultimate choice of stock tickers to buy or sell in suitable
quantities within one’s own budget is possible for anyone. Long-term investors need price
data for long time intervals. It helps to compare many stock-picking algorithms along the
lines shown here using a clear statement of the algorithms. The in-sample and unbiased
out-of-sample ranks rarely coincide, even for the same algorithm. Averaging the ranks over
six criteria using in-sample and an average of 50 randomized out-of-sample results suggests
a choice of Visa and Johnson & Johnson for buying. The least desirable average ranks
indicate that investors should consider selling Coca-Cola and Procter & Gamble shares.
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retclass = “zoo”, compression = “m”).
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Appendix A. Online Computational Hints

Please use the link https://faculty.fordham.edu/vinod/onlineDJ30jrfm.docx (ac-
cessed on 5 August 2024), where we provide online computational hints in the form
of R code ready to copy and paste.
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