Research on the Dynamic Interrelationship between Economic Policy Uncertainty and Stock Market Returns
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. Empirical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
US_EPU | IPI | SR | DEPU | |
---|---|---|---|---|
Panel A: emerging economies | ||||
L1.US_EPU | −0.273 *** | −0.014 ** | −0.010 | 0.115 *** |
L1.IPI | −0.256 ** | −0.249 *** | 0.042 | −0.216 |
L1.SR | −0.444 *** | 0.070 *** | 0.140 *** | −0.515 *** |
L1.DEPU | 0.023 | −0.001 | 0.000 | −0.393 *** |
Final GMM Criterion Q(b) = 5.67 × 10−34 | ||||
Panel B: advanced economies | ||||
L1.US_EPU | −0.295 *** | −0.002 | 0.009 * | 0.071 *** |
L1.IPI | −0.197 | −0.153 ** | 0.048 | 0.088 |
L1.SR | −0.707 *** | 0.100 *** | 0.126 *** | −0.667 *** |
L1.DEPU | −0.001 | −0.008 ** | −0.005 | −0.404 *** |
Final GMM Criterion Q(b) = 8.40 × 10−34 |
1 | Events that may increase EPU turbulence during the sample period include the Gulf War II (2003), the Global Financial Crisis (2008), the European Sovereign Debt Crisis (2009), the European Immigration Crisis (2015), the Brexit referendum (2016), the China–United States trade war (2018), the COVID-19 pandemic (2020), and the Russia-Ukraine war (2022). |
2 | More details about the EPU index can be obtained from www.policyuncertainty.com (accessed on 2 August 2024). |
3 | In the PVAR model constructed using level variables, some eigenvalues lie on the unit circle, indicating that the model does not satisfy stability conditions. This implies that any minor shock can lead to permanent changes in the variables, preventing the economic system from gradually returning to equilibrium after a shock. |
4 | The discounted valuation method of future cash flow in modern financial theory shows that stock price is the net present value of future cash flow. The net present value is affected by two factors: expected future dividend and expected future discount rate. |
5 | According to the Real Option, investment behavior and consumption behavior of households and enterprises can be regarded as a Real Option that can be obtained by the decision-making body to be able to invest and consume in the future. |
References
- Abid, Abir, and Christophe Rault. 2021. On the exchange rates volatility and economic policy uncertainty nexus: A panel VAR approach for emerging markets. Journal of Quantitative Economics 19: 403–25. [Google Scholar] [CrossRef]
- Abrigo, Michael R. M., and Inessa Love. 2016. Estimation of panel vector autoregression in Stata. The Stata Journal 16: 778–804. [Google Scholar] [CrossRef]
- Alvarez, Javier, and Manuel Arellano. 2003. The time series and cross-section asymptotics of dynamic panel data estimators. Econometrica 71: 1121–59. [Google Scholar] [CrossRef]
- Andrews, Donald W. K. 1999. Consistent moment selection procedures for generalized method of moments estimation. Econometrica 67: 543–63. [Google Scholar] [CrossRef]
- Antonakakis, Nikolaos, David Gabauer, Rangan Gupta, and Vasilios Plakandaras. 2018. Dynamic connectedness of uncertainty across developed economies: A time-varying approach. Economics Letters 166: 63–75. [Google Scholar] [CrossRef]
- Antonakakis, Nikolaos, Ioannis Chatziantoniou, and George Filis. 2013. Dynamic co-movements of stock market returns, implied volatility and policy uncertainty. Economics Letters 120: 87–92. [Google Scholar] [CrossRef]
- Arouri, Mohamed, Christophe Estay, Christophe Rault, and David Roubaud. 2016. Economic policy uncertainty and stock markets: Long-run evidence from the US. Finance Research Letters 18: 136–41. [Google Scholar] [CrossRef]
- Bahmani-Oskooee, Mohsen, and Sujata Saha. 2019. On the effects of policy uncertainty on stock prices. Journal of Economics Finance 43: 764–78. [Google Scholar] [CrossRef]
- Baker, Scott R., Nicholas Bloom, and Steven J. Davis. 2016. Measuring economic policy uncertainty. The Quarterly Journal of Economics 131: 1593–636. [Google Scholar] [CrossRef]
- Bloom, Nicholas. 2014. Fluctuations in uncertainty. Journal of Economic Perspectives 28: 153–76. [Google Scholar] [CrossRef]
- Bloom, Nick, Stephen Bond, and John Van Reenen. 2007. Uncertainty and investment dynamics. The Review of Economic Studies 74: 391–415. [Google Scholar] [CrossRef]
- Brogaard, Jonathan, and Andrew Detzel. 2015. The asset-pricing implications of government economic policy uncertainty. Management Science 61: 3–18. [Google Scholar] [CrossRef]
- Caggiano, Giovanni, Efrem Castelnuovo, and Juan Manuel Figueres. 2017. Economic policy uncertainty and unemployment in the United States: A nonlinear approach. Economics Letters 151: 31–34. [Google Scholar] [CrossRef]
- Christou, Christina, Juncal Cunado, Rangan Gupta, and Christis Hassapis. 2017. Economic policy uncertainty and stock market returns in PacificRim countries: Evidence based on a Bayesian panel VAR model. Journal of Multinational Financial Management 40: 92–102. [Google Scholar] [CrossRef]
- Dakhlaoui, Imen, and Chaker Aloui. 2016. The interactive relationship between the US economic policy uncertainty and BRIC stock markets. International Economics 146: 141–57. [Google Scholar] [CrossRef]
- Das, Debojyoti, and Surya Bhushan Kumar. 2018. International economic policy uncertainty and stock prices revisited: Multiple and Partial wavelet approach. Economics Letters 164: 100–8. [Google Scholar] [CrossRef]
- Davis, Steven J. 2016. An Index of Global Economic Policy Uncertainty. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Gilchrist, Simon, Jae W. Sim, and Egon Zakrajšek. 2014. Uncertainty, Financial Frictions, and Investment Dynamics. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Guo, Peng, Huiming Zhu, and Wanhai You. 2018. Asymmetric dependence between economic policy uncertainty and stock market returns in G7 and BRIC: A quantile regression approach. Finance Research Letters 25: 251–58. [Google Scholar] [CrossRef]
- Handley, Kyle, and Nuno Limao. 2015. Trade and investment under policy uncertainty: Theory and firm evidence. American Economic Journal: Economic Policy Limao 7: 189–222. [Google Scholar] [CrossRef]
- Hansen, Lars Peter. 1982. Large sample properties of generalized method of moments estimators. Econometrica: Journal of the Econometric Society 23: 1029–54. [Google Scholar] [CrossRef]
- Im, Kyung So, M. Hashem Pesaran, and Yongcheol Shin. 2003. Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53–74. [Google Scholar] [CrossRef]
- Judson, Ruth A., and Ann L. Owen. 1999. Estimating dynamic panel data models: A guide for macroeconomists. Economics Letters 65: 9–15. [Google Scholar] [CrossRef]
- Kannadhasan, Manoharan, and Debojyoti Das. 2020. Do Asian emerging stock markets react to international economic policy uncertainty and geopolitical risk alike? A quantile regression approach. Finance Research Letters 34: 101276. [Google Scholar] [CrossRef]
- Klößner, Stefan, and Rodrigo Sekkel. 2014. International spillovers of policy uncertainty. Economics Letters 124: 508–12. [Google Scholar] [CrossRef]
- Kose, M. Ayhan, Csilla Lakatos, Franziska Ohnsorge, and Marc Stocker. 2017. The Global Role of the US Economy: Linkages, Policies and Spillovers. Washington: World Bank. [Google Scholar]
- Li, Dongxin, Li Zhang, and Lihong Li. 2023. Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model. International Review of Financial Analysis 88: 102708. [Google Scholar] [CrossRef]
- Li, Xiao-lin, Mehmet Balcilar, Rangan Gupta, and Tsangyao Chang. 2016. The causal relationship between economic policy uncertainty and stock returns in China and India: Evidence from a bootstrap rolling window approach. Emerging Markets Finance Trade 52: 674–89. [Google Scholar] [CrossRef]
- Luo, Yan, and Chenyang Zhang. 2020. Economic policy uncertainty and stock price crash risk. Research in International Business Finance 51: 101112. [Google Scholar] [CrossRef]
- Masoud, Najeb M. H. 2013. The impact of stock market performance upon economic growth. International Journal of Economics Financial Issues 3: 788–98. [Google Scholar]
- Momin, Ebaad, and Mansur Masih. 2015. Do US Policy Uncertainty, Leveraging Costs and Global Risk Aversion Impact Emerging Market Equities? An Application of Bounds Testing Approach to the BRICS. Munich: University Library of Munich. [Google Scholar]
- Muzaffar, Zumara, and Imran Riaz Malik. 2024. Market liquidity and volatility: Does economic policy uncertainty matter? Evidence from Asian emerging economies. PloS ONE 19: e0301597. [Google Scholar] [CrossRef] [PubMed]
- Nowzohour, Laura, and Livio Stracca. 2020. More than a feeling: Confidence Stracca, uncertainty, and macroeconomic fluctuations. Journal of Economic Surveys 34: 691–726. [Google Scholar] [CrossRef]
- Pástor, Ľuboš, and Pietro Veronesi. 2013. Political uncertainty and risk premia. Journal of Financial Economics 110: 520–45. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem. 2004. General Diagnostic Tests for Cross Section Dependence in Panels. Berlin/Heidelberg: Springer. [Google Scholar]
- Pesaran, M. Hashem. 2007. A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics 22: 265–312. [Google Scholar] [CrossRef]
- Phan, Dinh Hoang Bach, Susan Sunila Sharma, and Vuong Thao Tran. 2018. Can economic policy uncertainty predict stock returns? Global evidence. Journal of International Financial Markets, Institutions Money 55: 134–50. [Google Scholar] [CrossRef]
- Prüser, Jan, and Alexander Schlösser. 2020. The effects of economic policy uncertainty on European economies: Evidence from a TVP-FAVAR. Empirical Economics 58: 2889–910. [Google Scholar] [CrossRef]
- Sum, Vichet. 2013. The ASEAN stock market performance and economic policy uncertainty in the United States. Economic Papers: A Journal of Applied Economics Policy 32: 512–21. [Google Scholar] [CrossRef]
- Tsai, I-Chun. 2017. The source of global stock market risk: A viewpoint of economic policy uncertainty. Economic Modelling 60: 122–31. [Google Scholar] [CrossRef]
- Ulrich, Maxim. 2012. Economic Policy Uncertainty & Asset Price Volatility. SSRN 1566909. New York: Columbia University. [Google Scholar]
- Varma, Neha, and Vivek Kapoor. 2009. A Study of the Chinese Economy and Stimulus in Light of the Economic Crisis: A Comparison of the Chinese and American Economic Policies to Counter the Recession. Bengaluru: Indian Institute of Management Bangalore. [Google Scholar]
- Wu, Tsung-Pao, Shu-Bing Liu, and Shun-Jen Hsueh. 2016. The causal relationship between economic policy uncertainty and stock market: A panel data analysis. International Economic Journal 30: 109–22. [Google Scholar] [CrossRef]
- Xu, Yongan, Jianqiong Wang, Zhonglu Chen, and Chao Liang. 2021. Economic policy uncertainty and stock market returns: New evidence. The North American Journal of Economics Finance 58: 101525. [Google Scholar] [CrossRef]
- Yang, Miao, and Zhi-Qiang Jiang. 2016. The dynamic correlation between policy uncertainty and stock market returns in China. Physica A: Statistical Mechanics Its Applications 461: 92–100. [Google Scholar] [CrossRef]
- Yin, Libo, and Liyan Han. 2014. Spillovers of macroeconomic uncertainty among major economies. Applied Economics Letters 21: 938–44. [Google Scholar] [CrossRef]
- Youssef, Manel, Khaled Mokni, and Ahdi Noomen Ajmi. 2021. Dynamic connectedness between stock markets in the presence of the COVID-19 pandemic: Does economic policy uncertainty matter? Financial Innovation 7: 13. [Google Scholar] [CrossRef]
Panel A: Emerging Economies | Panel B: Advanced Economies | ||
---|---|---|---|
Brazil | Bovespa | Belgium | BEL 20 |
Chile | S&P CLX IPSA | Canada | S&P_TSX Composition |
China | Shanghai Composite | France | CAC 40 |
Colombia | FTSE Colombia | Germany | DAX 30 |
Croatia | CROBEX | Greece | Athens General Composite |
India | BSE Sensex 30 | Ireland | ISEQ Overall |
Mexico | IPC MEXICO | Italy | FTSE MIB |
Russia | MOEX | Japan | Nikkei 225 |
South Korea | KOSPI | Singapore | FTSE Singapore |
Spain | IBEX 35 | ||
UK | FTSE 100 |
Variables | Mean | sd | Min | Max |
---|---|---|---|---|
Panel A: emerging economies | ||||
SR | 0.806 | 6.521 | −40.512 | 29.676 |
DEPU | 0.379 | 42.326 | −256.406 | 274.269 |
IPI | 0.182 | 4.510 | −77.490 | 51.305 |
US_EPU | 0.163 | 28.548 | −91.889 | 107.653 |
Panel B: advanced economies | ||||
SR | 0.278 | 5.808 | −32.673 | 25.620 |
DEPU | 0.144 | 32.608 | −171.634 | 204.015 |
IPI | 0.055 | 3.778 | −32.994 | 36.879 |
US_EPU | 0.163 | 28.548 | −91.889 | 107.653 |
Variables | CD Test | p-Value |
---|---|---|
Panel A: emerging economies | ||
SR | 27.908 *** | 0.000 |
DEPU | 10.741 *** | 0.000 |
IPI | 6.398 *** | 0.000 |
Panel B: advanced economies | ||
SR | 70.155 *** | 0.000 |
DEPU | 20.355 *** | 0.000 |
IPI | 37.740 *** | 0.000 |
Variables | Constant | Constant and Trend | ||
---|---|---|---|---|
Statistic | p Value | Statistic | p Value | |
Panel A: emerging economies | ||||
SR | −4.510 *** | 0.000 | −4.632 *** | 0.000 |
DEPU | −6.123 *** | 0.000 | −6.245 *** | 0.000 |
IPI | −5.564 *** | 0.000 | −5.673 *** | 0.000 |
Panel B: advanced economies | ||||
SR | −4.938 *** | 0.000 | −5.108 *** | 0.000 |
DEPU | −6.096 *** | 0.000 | −6.273 *** | 0.000 |
IPI | −5.926 *** | 0.000 | −6.157 *** | 0.000 |
Panel C: foreign EPU (ADF statistic) | ||||
US_EPU | −7.777 *** | 0.000 | −7.813 *** | 0.000 |
GEPU | −7.288 *** | 0.000 | −7.303 *** | 0.000 |
Lag | CD | J | J p-Value | MBIC | MAIC | MQIC |
---|---|---|---|---|---|---|
Panel A: emerging economies | ||||||
1 | −0.848 | 103.719 | 0.039 | −322.122 * | −56.281 | −163.808 * |
2 | −1.434 | 65.013 | 0.441 | −275.659 | −62.987 | −149.008 |
3 | −6.793 | 30.947 | 0.973 | −224.557 | −65.053 * | −129.568 |
4 | −25.631 | 17.079 | 0.986 | −153.257 | −46.921 | −89.931 |
Panel B: advanced economies | ||||||
1 | −0.030 | 121.693 | 0.640 | −557.766 * | −134.307 * | −305.639 * |
2 | −1.731 | 93.405 | 0.899 | −501.121 | −130.595 | −280.510 |
3 | −2.226 | 70.910 | 0.974 | −438.684 | −121.090 | −249.589 |
4 | −2.052 | 33.171 | 1.000 | −391.491 | −126.829 | −233.912 |
Eigenvalue | Graph | ||
---|---|---|---|
Panel A: emerging economies | |||
Real | Imaginary | Modulus | |
−0.411 | 0.000 | 0.411 | |
−0.313 | 0.000 | 0.313 | |
−0.212 | 0.000 | 0.212 | |
0.162 | 0.000 | 0.167 | |
Panel B: advanced economies | |||
Real | Imaginary | Modulus | |
−0.397 | 0.000 | 0.397 | |
−0.296 | 0.000 | 0.296 | |
−0.169 | 0.000 | 0.169 | |
0.135 | 0.000 | 0.135 |
Excluded/Equation | SR | DEPU | IPI | US_EPU |
---|---|---|---|---|
Panel A: emerging economies | ||||
SR | - | 30.260 *** | 22.097 *** | 52.262 *** |
DEPU | 1.334 | - | 2.322 | 5.529 |
IPI | 2.990 | 7.918 | - | 12.833 ** |
US_EPU | 19.050 *** | 22.494 *** | 9.473 * | - |
ALL | 31.427 *** | 69.415 *** | 38.410 *** | 70.772 *** |
Panel B: advanced economies | ||||
SR | - | 32.382 *** | 20.145 *** | 32.371 *** |
DEPU | 1.764 | - | 6.295 ** | 0.003 |
IPI | 2.539 | 0.094 | - | 1.680 |
US_EPU | 6.381 ** | 7.549 *** | 0.327 | - |
ALL | 0.073 *** | 50.643 *** | 26.237 *** | 34.844 *** |
Response Variable | Forecast Horizon | Impulse Variable | |||
---|---|---|---|---|---|
US_EPU | IPI | SR | DEPU | ||
Panel A: emerging economies | |||||
US_EPU | 1 | 1.000 | 0.000 | 0.000 | 0.000 |
10 | 0.962 | 0.005 | 0.028 | 0.004 | |
20 | 0.947 | 0.011 | 0.034 | 0.007 | |
IPI | 1 | 0.000 | 1.000 | 0.000 | 0.000 |
10 | 0.016 | 0.964 | 0.016 | 0.004 | |
20 | 0.024 | 0.953 | 0.016 | 0.008 | |
SR | 1 | 0.010 | 0.000 | 0.990 | 0.000 |
10 | 0.041 | 0.010 | 0.946 | 0.004 | |
20 | 0.046 | 0.014 | 0.935 | 0.005 | |
DEPU | 1 | 0.067 | 0.001 | 0.010 | 0.923 |
10 | 0.073 | 0.004 | 0.014 | 0.909 | |
20 | 0.079 | 0.008 | 0.016 | 0.897 | |
Panel B: advanced economies | |||||
US_EPU | 1 | 1.000 | 0.000 | 0.000 | 0.000 |
10 | 0.951 | 0.004 | 0.038 | 0.008 | |
20 | 0.931 | 0.010 | 0.050 | 0.009 | |
IPI | 1 | 0.000 | 1.000 | 0.000 | 0.000 |
10 | 0.014 | 0.929 | 0.037 | 0.020 | |
20 | 0.014 | 0.927 | 0.038 | 0.021 | |
SR | 1 | 0.072 | 0.000 | 0.928 | 0.000 |
10 | 0.095 | 0.010 | 0.893 | 0.002 | |
20 | 0.100 | 0.011 | 0.885 | 0.004 | |
DEPU | 1 | 0.091 | 0.000 | 0.014 | 0.894 |
10 | 0.076 | 0.014 | 0.020 | 0.889 | |
20 | 0.077 | 0.019 | 0.022 | 0.883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Park, H. Research on the Dynamic Interrelationship between Economic Policy Uncertainty and Stock Market Returns. J. Risk Financial Manag. 2024, 17, 347. https://doi.org/10.3390/jrfm17080347
Zhao M, Park H. Research on the Dynamic Interrelationship between Economic Policy Uncertainty and Stock Market Returns. Journal of Risk and Financial Management. 2024; 17(8):347. https://doi.org/10.3390/jrfm17080347
Chicago/Turabian StyleZhao, Mingguo, and Hail Park. 2024. "Research on the Dynamic Interrelationship between Economic Policy Uncertainty and Stock Market Returns" Journal of Risk and Financial Management 17, no. 8: 347. https://doi.org/10.3390/jrfm17080347
APA StyleZhao, M., & Park, H. (2024). Research on the Dynamic Interrelationship between Economic Policy Uncertainty and Stock Market Returns. Journal of Risk and Financial Management, 17(8), 347. https://doi.org/10.3390/jrfm17080347