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Abstract: This article provides exact analytical formulae for various kinds of rainbow step barrier
options. These are highly flexible and sophisticated multi-asset barrier options based on the following
principle: the option life is divided into several time intervals on which different barriers are moni-
tored w.r.t. different underlying assets. From a mathematical point of view, new results are provided
for the first passage time of a multidimensional geometric Brownian motion to a boundary defined as
a step function. The article shows how to implement the obtained option valuation formulae in a
simple and very efficient manner. Numerical results highlight a strong sensitivity of rainbow step
barrier options to the correlations between the underlying assets.
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1. Introduction

Barrier options are characterised by the introduction in the option contract of a pa-
rameter called the “barrier”, which, in the most standard form, is a predefined reference
value of the underlying asset S that may be located above the spot value of the underlying
(upward barrier or “up-barrier”) or below it (downward barrier or “down-barrier”). The
barrier may be of a “knock-out” type, i.e., the option expires worthless if the barrier is hit
by S at any time during the option life (in which case the barrier is called “continuous”) or
at one or a few predefined times (in which case the barrier is called “discrete”). The first
passage time of an underlying to a knock-out barrier, before the option expiry, triggers the
“deactivation” of the option. Alternatively, the barrier may be of a “knock-in” type, i.e., the
option expires worthless unless the barrier has been hit at least once before expiry, an event
called “activation”.

Barrier options are the oldest and the most widely traded non-vanilla options. They
are embedded in a lot of popular structured derivatives in stock and interest rate markets
(see, e.g., Bouzoubaa and Osseiran 2010). They are also extensively used as analytical
tools in financial modelling, for instance, in the so-called “structural models” of default
risk (see, e.g., Bielecki and Rutkowski 2004) or in the valuation of investments (theory of
“real options”). Since their first appearance in the financial markets during the 1970s, there
have been a huge number of variations in their original payoff, leading to an extraordinary
variety of non-standard barrier options. Among the most well-known of them are the
step barrier options, which divide the option lifetime into several time intervals on which
the barrier takes on different values. In its standard form, a step barrier option features a
piecewise constant barrier, i.e., a barrier defined as a step function. This allows modulation
of the barrier level during the option life, thus offering increased flexibility and enhanced
risk management capabilities, relative to a traditional barrier option. For instance, up-and-
out barrier levels can be raised and down-and-out barrier levels can be lowered during
time intervals when more protection is required, thus reducing the risk of deactivation.
Likewise, up-and-in barrier levels can be lowered and down-and-in barrier levels can be
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raised in time intervals during which the implicit volatility of the underlying rises, thus,
increasing the chances of activation.

The exact analytical valuation of step barrier functions was first achieved by
Guillaume (2001). Further mathematical details on how closed-form valuation can
be achieved, as well as exact results for more general deterministic step barriers, are
provided in Guillaume (2015, 2016). In the last couple of years, there has been a renewed
interest in step barrier options, as they stand out as an essential component of innovative
forms of investment, such as autocallable structured products and other equity-linked
products. This has led to a new series of academic contributions, such as Lee et al. (2019a,
2019b), Lee et al. (2021), Lee et al. (2022). Unlike previously cited references, these
articles do not provide explicit formulae, except for a few simple and already known
cases, nor do they handle outside step barriers as in Guillaume (2001), alternatively
upward and downward steps as in Guillaume (2015) and exponentially moving step
barriers as in Guillaume (2016). These recent contributions ignore previous results given
in references they do not cite, such as Guillaume (2001), that actually solve the problems
they discuss. They also claim to be able to analytically value a step barrier option with an
arbitrary number of steps, but without explaining how they intend to solve the difficult
problem known in numerical integration as the “curse of dimensionality”, nor even
beginning to discuss the numerical implementation of their approach, which constitutes
the main issue, though.

There are still a number of unsolved problems related to the valuation of step barrier
options. In particular, multi-asset step barrier options are barely touched upon in the
existing literature, apart from an isolated formula for an “outside” step barrier option given
in Guillaume (2001), also called an “external” step barrier option, featuring one underlying
asset w.r.t. which barrier crossing is monitored and another underlying asset w.r.t. which
the moneyness of the option is measured at expiry (the reader may refer to Heynen and
Kat 1994, or to Kwok et al. 1998, for background on outside barrier options in general). Yet,
multi-asset contracts with step barriers are actively traded in today’s financial markets,
as they allow investors to benefit from the advantages of diversification in terms of risk
control and expansion of investment opportunities. A particularly important subset of these
contracts is the so-called “rainbow” step barrier option. Broadly speaking, in the literature
on options, the denomination “rainbow” applies to payoffs linked to the performances
of two or more underlying assets (Chang et al. 2005; Gao and Wu 2022); metaphorically,
each underlying represents a different color, so that the association of all of these factors
makes up a rainbow. In the realm of barrier options, the rainbow step barrier option is
characterised by the property that, at each time interval, the barrier is monitored w.r.t.
a different underlying asset. A contract featuring a number n ∈ N of underlying assets
associated with n time intervals [t0 = 0, t1], . . ., [tn−1, tn], on which n steps of a piecewise
constant barrier are monitored, is called an n−the colour rainbow barrier option. Each time
interval is matched with a specific step of the barrier and a specific underlying asset. In
the standard form of the contract, it is the n−th asset associated with the n−th last step
of the barrier that is used to determine the moneyness of the contract at expiry. Rainbow
step barrier options are typically priced by Monte Carlo simulation, even in a standard
Black–Scholes model, because of the difficulties of the entailed analytical calculations and
also because the dimension of the valuation problem quickly increases with the number of
“colors”, leading to non-trivial issues of numerical evaluation of high-dimensional integrals.
Due to these obstacles, the present article is restricted to two-colour rainbow step barrier
options. Closed-form valuation is achieved not only for standard two-colour contracts but
also for two-colour outside step barrier options involving a third correlated asset at expiry,
and for two-colour contracts featuring a two-sided barrier (also known as a double barrier),
i.e., both an upward and a downward barrier on each time interval. Numerical evaluation
of the obtained analytical solutions is dealt with so that the valuation formulae derived
in this paper can be immediately implemented and yield extremely accurate results in a
few tenths of one second. Numerical results are provided, which reveal a strong and stable
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dependency of rainbow step barrier options on the correlations between the underlying
assets, as well as the importance of the volatility of the asset used to measure moneyness
when dealing with rainbow outside step barrier options. These findings suggest clear
application ideas to traders and investors, whether for a hedging or speculative purposes.
They highlight the specificity of rainbow step barrier options as instruments highly sensitive
to correlation, in contrast to standard step barrier options, which are sensitive to volatility
but, by constuction, cannot be sensitive to correlation.

This article is organised as follows: Section 2 states the main analytical results, provides
numerical results, and discusses their implications; Section 3 gives the mathematical proofs
of the analytical results presented in Section 2.

2. Formulae and Numerical Results

Let us begin with a few definitions. Let S1 and S2 be two GBMs (geometric Brownian
motions) modelling two asset prices, whose differentials, under a given probability measure
P, are given by:

dS1(t) = v1S1(t)dt + σ1S1(t)dB1(t) (1)

dS2(t) = v2S2(t)dt + σ2S2(t)dB2(t) (2)

where v1, v2 ∈ R, σ1, σ2 ∈ R+, and B1 and B2 are two standard Brownian motions whose
correlation coefficient is denoted by ρ1.2.

The measure P is characterised by the pair (v1, v2) or, equivalently, by the pair:(
µ1 = v1 − σ2

1 /2, µ2 = v2 − σ2
2 /2

)
(3)

If we refer to the log-return processes Xi(t) = ln(Si(t)/Si(0)), i ∈ {1, 2}, whose differen-
tials under P are given by:

dXi(t) = µidt + σidBi(t) (4)

Let H1, H2, K1, K2, K3 be positive real numbers. The numbers H1, H2 are the values of
two knock-out continuous barriers. H1 is monitored w.r.t. S1 on a time interval [t0 = 0, t1],
while H2 is monitored w.r.t. S2 on a time interval [t1, t2]. The numbers K1, K2, K3 are the
values of three discrete knock-out barriers; K1 is monitored w.r.t. S1 at time t1, while K2
and K3 are monitored w.r.t. S2 at times t1 and t2, respectively.

We can now begin to value two-colour step barrier options in the following order:

- both steps either upward or downward (Section 2.1);
- one upward step and one downward step (Section 2.2);
- reverse-type contract (Section 2.3);
- outside or external two-colour step barrier (Section 2.4);
- two-colour step double barrier (Section 2.5).

2.1. Valuation of Two-Colour Step Barrier Options When the Steps of the Barrier Are on the Same
Side in Each Time Interval

Section 2.1 deals with the valuation of two-colour step barrier options when the steps
of the barrier are either both upward or both downward. Our objective is to find the value
of the joint cumulative distribution function P[RUU](µ1, µ2) defined by:

P[RUU](µ1, µ2) ≜ P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K3

)
(5)

where the acronym “[RUU]” stands for “Rainbow Up and Up”.
The main result of Section 2.1 is given by the following Proposition 1.

Proposition 1. The exact value of P[RUU](µ1, µ2) is given by:

P[RUU](µ1, µ2) = N3

[
min(k1, h1)− µ1t1

σ1
√

t1
,

min(k2, h2)− µ2t1

σ2
√

t1
,

min(k3, h2)− µ2t2

σ2
√

t2
; θ1.2, θ1.3, θ2.3

]
(6)
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− exp
(

2µ1h1
σ2

1

)
×N3

[
min(k1,h1)−2h1−µ1t1

σ1
√

t1
, min(k2,h2)−µ2t1

σ2
√

t1
− 2θ1.2h1

σ1
√

t1
, min(k3,h2)−µ2t2

σ2
√

t2
− 2θ1.2h1

σ1
√

t2
;

θ1.2, θ1.3, θ2.3

] (7)

− exp
(

2µ2h2
σ2

2

)
×N3

[
min(k1,h1)−µ1t1

σ1
√

t1
+ 2θ1.2µ2

√
t1

σ2
, min(k2,h2)+µ2t1

σ2
√

t1
, min(k3,h2)−2h2−µ2t2

σ2
√

t2
;

θ1.2,−θ1.3,−θ2.3

] (8)

+ exp
((

2µ1
σ2

1
− 4µ2θ1.2

σ1σ2

)
h1 +

2µ2h2
σ2

2

)
×N3

 min(k1,h1)−2h1−µ1t1
σ1
√

t1
+ 2θ1.2µ2

√
t1

σ2
, min(k2,h2)+µ2t1

σ2
√

t1
− 2θ1.2h1

σ1
√

t1
,

min(k3,h2)−2h2−µ2t2
σ2
√

t2
+ 2θ1.2h1

σ1
√

t2
; θ1.2,−θ1.3,−θ2.3

 (9)

where the µi′s are given by (3) and:

- N3[b1, b2, b3; c12, c13, c23] is the trivariate standard normal cumulative distribution function
with correlation coefficients c12, c13, c23

h1 = ln
(

H1

S1(0)

)
, h2 = ln

(
H2

S2(0)

)
, k1 = ln

(
K1

S1(0)

)
, k2 = ln

(
K2

S2(0)

)
, k3 = ln

(
K3

S2(0)

)
(10)

θ1.2 = ρ1.2, θ1.3 =

√
t1

t2
ρ1.2, θ2.3 =

√
t1

t2
(11)

Corollary 1. It suffices to multiply by (−1) all the first three arguments of each N3[., ., .; ., ., .] func-
tion and to substitute each min operator by a max operator in Proposition 1 to obtain an exact
formula for P[RDD](µ1, µ2) defined as:

P[RDD](µ1, µ2) ≜ P
(

inf
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≥ K2, inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K3

)
(12)

where the acronym “[RDD]” stands for “Rainbow Down and Down”.

Corollary 2. The term numbered (9) in Proposition 1 gives the value of the corrresponding
knock-in probability denoted by P(I)

[RUU]
(µ1, µ2) and defined by:

P(I)
[RUU]

(µ1, µ2) ≜ P

(
sup

0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≤ K3

)
(13)

Corollary 3. It suffices to substitute each argument θ2.3 in each N3[., ., .; ., ., .] function of Proposi-

tion 1 by
√

t2
t3

, ∀t3 ≥ t2, to obtain an exact formula for the early-ending variant P[EERUU](µ1, µ2) de-
fined by:

P[EERUU](µ1, µ2) ≜ P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S2(t3) ≤ K3

)
(14)

Corollary 4. Let p̂ be the value of P[RUU](µ1, µ2) when the value of K3 becomes “very high”, i.e.,
high enough for the probability P(S2(t2) ≤ K3) to tend to zero; then, the difference
p̂ − P[RUU](µ1, µ2) provides the value of the following minor variant:
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p̂ − P[RUU](µ1, µ2) = P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) > K3

)
(15)

End of Proposition 1.

Equipped with Proposition 1, one can value in closed form a two-colour step barrier
option with two successive upward or two successive downward steps. Applying the
theory of non-arbitrage pricing in a complete market (Harrison and Kreps 1979; Harrison
and Pliska 1981), the value of a two-colour up-and-up knock-out put, denoted by V[RUU], is
given by:

V[RUU] = e−rt2
(

EQ

[
K31{A} − S2(t2)1{A}

])
(16)

where r is the riskless interest rate assumed to be constant, 1{.} is the indicator function
and A is the set constructed by the intersection of elements of the σ−algebra generated by
the pair of processes (S1(t), S2(t)) that characterises the probability P[RUU](µ1, µ2) as given
by the arguments of the probability operator in (5).

A simple application of the Cameron–Martin–Girsanov theorem yields:

V[RUU] = e−rt2 K3P[RUU]

(
µ
(Q)
1 , µ

(Q)
2

)
− S2(0)P[RUU]

(
µ
(P2)
1 , µ

(P2)
2

)
(17)

where

µ
(Q)
i = r −

σ2
i

2
, µ

(P2)
1 = r −

σ2
1

2
+ σ1σ2ρ1.2, µ

(P2)
2 = r +

σ2
2

2
, (18)

Q is the measure under which
{

Bi(t) +
µi−r

σi
t, t ≥ 0

}
is a standard Brownian motion (the

classical so-called risk-neutral measure), while P2 is the measure under which

{B1(t)− σ2ρ1.2t, t ≥ 0} and
{

B2(t)− σ2

√
1 − ρ2

1.2t, t ≥ 0
}

are two independent standard
Brownian motions.

To factor in a continuous dividend rate δi associated with each asset Si, simply replace
r by r − δi.

All the other two-colour rainbow barrier options subsequently mentioned in
Sections 2.1 and 2.2, whether they be knock-in or feature a mixture of a downward and an
upward barrier, are identically valued, by taking the relevant P[.] probability along with

the pairs
(

µ
(Q)
1 , µ

(Q)
2

)
and

(
µ
(P2)
1 , µ

(P2)
2

)
.

The numerical implementation of Proposition 1 is easy. Using Genz’s (2004) algorithm
to evaluate the trivariate standard normal cumulative distribution function, the accuracy
and efficiency required for all practical purposes can be achieved in computational times in
the order of 0.1 s. Table 1 provides the prices of a few two-colour up-and-up knock-out put
options, for various levels of the volatility and correlation parameters of the underlying
assets S1 and S2, and different values of the knock-out barriers. All the initial values of the
underlying assets Si(0) and the strike prices Ki are set at 100. Expiry is 1 year. The two time
intervals [t0, t1] and [t1, t2] have equal length, i.e., t1 =6 months, but unequal time lengths
can be handled just as well by the formulae. The riskless interest rate is assumed to be 2.5%.

In each cell, four prices are reported: the first one is the exact analytical value as
obtained by implementing Proposition 1, while the prices in brackets are three successive
approximations obtained by performing increasingly large Monte Carlo simulations. More
specifically, these approximations rely on the conditional Monte Carlo method, which is
well known for its accuracy and efficiency (Glasserman 2003). The number of simulations
performed is 500,000 for the first approximation, 2,000,000 for the second approximation,
and 10,000,000 for the third approximation. The pseudo-random numbers are drawn from
the reliable Mersenne Twister generator (Matsumoto and Nishimura 1998).
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Table 1. Two-colour up-and-up knock-out put.

ρ1.2 = −0.6 ρ1.2 = −0.2 ρ1.2 = 0.2 ρ1.2 = 0.6

σ1 = σ2 = 20%
H1 = H2 = 115

1.189
(1.123,1.168,

1.182)

2.163
(2.237, 2.141,

2.161)

3.134
(3.082, 3.116,

3.132)

4.141
(4.174, 4.127,

4.140)

σ1 = σ2 = 60%
H1 = H2 = 125

4.065
(4.109, 4.072,

4.061)

6.440
(6.392, 6.449,

6.442)

8.769
(8.734, 8.755,

8.763)

11.213
(11.278, 11.196,

11.218)

σ1 = 20%, σ2 = 60%
H1 = 115, H2 = 125

4.454
(4.411, 4.443,

4.454)

7.260
(7.355, 7.301,

7.264)

9.979
(9.912, 9.101,

9.975)

12.844
(12.957, 12.892,

12.848)

σ1 = 60%, σ2 = 20%
H1 = 125, H2 = 115

1.096
(1.082, 1.108,

1.091)

1.921
(1.107, 1.953,

1.928)

2.753
(2.796, 2.745,

2.752)

3.617
(3.692, 3.599,

3.614)

In purely numerical terms, it can be clearly observed that the conditional Monte Carlo
approximations gradually converge to the analytical values as more and more simulations
are performed. A minimum of 10,000,000 simulations are necessary to guarantee a modest
10−3 convergence. This requires a computational time of approximately 35 s on a computer
equipped with a Core i7 CPU. Much more accurate values can be obtained by means of
Proposition 1 in only two-tenths of a second. This gap in accuracy and efficiency makes a
particularly valuable difference when pricing large portfolios of options.

From a financial point of view, the most striking phenomenon observed in Table 1 is
that the option price regularly and significantly increases with the value of the correlation
coefficient between assets S1 and S2, whatever the volatilities and the levels of the barriers.
Roughly speaking, the price of an at-the-money two-colour up-and-up knock-out put
option when ρ1.2 = 0.6 is three times greater than when ρ1.2 = −0.6. This property can be
exploited by traders who take positions on correlation, as the prices of these options will
substantially increase if implicit correlation turns out to be underestimated by the markets.
This property can also be harnessed by traders to construct hedges on sold derivatives
that are sensitive to pairwise correlation. From an investor’s perspective, the observed
phenomenon allows to define effective strategies to reduce the cost of hedging by tapping
into negative correlation. Such a significant functional relation w.r.t. correlation is a major
attraction of rainbow step barrier options relative to non-rainbow step barrier options, as
the latter can only handle volatility effects.

Another noticeable fact in Table 1 is that lowering the up-and-out barriers seems much
more effective in reducing the option’s price than lowering the volatilities of assets S1 and
S2, regardless of the sign and the magnitude of correlation. Indeed, looking at row 1 in
Table 1, one can see that the options are relatively cheap, although the volatilities of both
assets S1 and S2 are low, because the knock-out barriers are located quite near the spot
prices of the underlying assets; and looking at row 2 in Table 1, one can see that the options
are relatively expensive, although the volatilities of both assets S1 and S2 are high because
the knock-out barriers are more distant. This shows that the barrier effect, which drives
prices down as up-and-out barriers become lower and conversely drives prices up as the
up-and-out barrier becomes higher, and prevails over the volatility effect, which exerts its
influence in the opposite direction, i.e., a lower volatility pushes prices up by decreasing
the probability of knocking out before expiry and a higher volatility pushes prices down
by increasing the latter probability. This phenomenon can be explained by the ambivalent
nature of volatility: on the one hand, less volatility means less risk of being deactivated
before expiry, but on the other hand, it also means fewer chances of ending in-the-money
at expiry; whichever of this positive and this negative effect weighs more on the option
price depends on the relative values of barrier, strike, volatility and expiry parameters in a
complex manner.
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2.2. Valuation of Two-Colour Step Barrier Options Involving One Upward Step and One
Downward Step

Section 2.2 deals with the case when the steps of the barrier are not on the same
side in each time interval, i.e., either first downward, then upward, or first upward, then
downward.

The main result of Section 2.2 is given by the following Proposition 2.

Proposition 2. Let P[RUD](µ1, µ2) denote the joint cumulative distribution function defined by:

P[RUD](µ1, µ2) ≜ P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≥ K2, inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K3

)
(19)

where the acronym “[RUD]” stands for “Rainbow Up and Down”.

Then, the exact value of P[RUD](µ1, µ2) is given by:

P[RUD](µ1, µ2)

= N3

[
min(k1,h1)−µ1t1

σ1
√

t1
, −max(k2,h2)+µ2t1

σ2
√

t1
, −max(k3,h2)+µ2t2

σ2
√

t2
;−θ1.2,−θ1.3, θ2.3

] (20)

− exp
(

2µ1h1
σ2

1

)
×N3

 min(k1,h1)−2h1−µ1t1
σ1
√

t1
, −max(k2,h2)+µ2t1

σ2
√

t1
+ 2θ1.2h1

σ1
√

t1
,

−max(k3,h2)+µ2t2
σ2
√

t2
+ 2θ1.2h1

σ1
√

t2
;−θ1.2,−θ1.3, θ2.3

 (21)

− exp
(

2µ2h2
σ2

2

)
×N3

[
min(k1,h1)−µ1t1

σ1
√

t1
+ 2θ1.2µ2

√
t1

σ2
, −max(k2,h2)−µ2t1

σ2
√

t1
, −max(k3,h2)+2h2+µ2t2

σ2
√

t2
;

−θ1.2, θ1.3,−θ2.3

] (22)

+ exp
((

2µ1
σ2

1
− 4µ2θ1.2

σ1σ2

)
h1 +

2µ2h2
σ2

2

)
×N3

 min(k1,h1)−2h1−µ1t1
σ1
√

t1
+ 2θ1.2µ2

√
t1

σ2
, −max(k2,h2)−µ2t1

σ2
√

t1
+ 2θ1.2h1

σ1
√

t1
,

−max(k3,h2)+2h2+µ2t2
σ2
√

t2
− 2θ1.2h1

σ1
√

t2
; θ1.2,−θ1.3,−θ2.3

 (23)

where all the notations are identical, as in Proposition 1.

Corollary 1. It suffices to multiply by (−1) all the first three arguments of each N3[., ., .; ., ., .] func-
tion and substitute each min operator by a max operator as well as each max operator by a min op-
erator in Proposition 2 to obtain an exact formula for P[RDU](µ1, µ2) defined as:

P[RDU](µ1, µ2) ≜ P

(
inf

0≤t≤t1
S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≤ K2, sup

t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K3

)
(24)

Corollary 2. The term numbered (23) in Proposition 2 provides the value of the corrresponding
up-and-in, then down-and-in probability, denoted as P(I)

[RUD]
(µ1, µ2) and defined by:

P(I)
[RUD]

(µ1, µ2) ≜ P

(
sup

0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≥ K2, inf
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≥ K3

)
(25)

End of Proposition 2.

Equipped with Proposition 2, one can value in closed form a two-colour step barrier
option with one upward step and one downward step, by taking the relevant P[.] or P(I)

[.]
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probability along with the pairs
(

µ
(Q)
1 , µ

(Q)
2

)
and

(
µ
(P2)
1 , µ

(P2)
2

)
defined in (18), as explained

in Section 2.1. Table 2 reports the prices of a few down-and-up two-colour knock-out put
options by implementing Proposition 2 to obtain exact analytical values and by computing
three successive conditional Monte Carlo approximations in the same way, as in Table 1.

Table 2. Two-colour down-and-up knock-out put.

ρ1.2 = −0.6 ρ1.2 = −0.2 ρ1.2 = 0.2 ρ1.2 = 0.6

σ1 = σ2 = 20%
H1 = 85, H2 = 115

4.299
(4.287, 4.305,

4.297)

3.293
(3.318, 3.286,

3.292)

2.307
(2.282, 2.298,

2.305)

1.303
(1.284, 1.309,

1.304)

σ1 = σ2 = 60%
H1 = 75, H2 = 125

10.221
(10.142, 10.228,

10.224)

7.610
(7.563, 7.597,

7.612)

5.212
(5.255, 5.204,

5.214)

2.862
(2.834, 2.854,

2.865)

σ1 = 20%, σ2 = 60%
H1 = 85, H2 = 125

13.377
(13.385, 13.391,

13.376)

10.496
(10.472, 10.482,

10.948)

7.735
(7.783, 7.717,

7.731)

4.857
(4.894, 4.866,

4.857)

σ1 = 60%, σ2 = 20%
H1 = 75, H2 = 115

3.344
(3.387, 3.358,

3.346)

2.401
(2.383, 2.413,

2.402)

1.545
(1.596, 1.530,

1.542)

0.748
(0.884, 0.787,

0.752)

In Table 2, the most salient feature is still the functional dependency of the option’s
price on the correlation between assets S1 and S2, but, this time, the direction is opposite to
that in Table 1, i.e., the two-colour down-and-up knock-out put prices steadily decrease as
ρ1.2 goes from −60% to 60%. In a trader’s perspective, one could sum up the argument by
saying that two-colour rainbow barrier options are a bet on a positive correlation when both
barriers are on the same side (upward or downward), while they are a bet on a negative
correlation when the barriers stand on opposite sides (up-and-down or down-and-up).

The barrier effect also prevails over the volatility effect in Table 2. Overall, two-
colour down-and-up knock-out puts display maximum values that are a little higher, and
minimum values that are a little lower than two-colour up-and-up knock-out puts, although
up-and-out barriers and down-and-out barriers are designed with the exact same distance
to the spot prices of S1 and S2.

2.3. Valuation of Reverse Two-Colour Step Barrier Options

A two-colour rainbow barrier option is said to be reverse when the moneyness of the
option is defined w.r.t. the first and former “colour” (i.e., asset S1) instead of the second
and last one (asset S2): the option, so to speak, reverts back to asset one at expiry, hence
the denomination. From a computational standpoint, this is not a trivial difference since it
adds an additional dimension to the integral formulation of the problem. Let us define as
P[RRUU](µ1, µ2) the following cumulative joint distribution at the core of reverse rainbow
option valuation:

P(Rev)
[RRUU]

(µ1, µ2) = P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S1(t2) ≤ K3

)
(26)

where the acronym “[RRUU]” stands for “Reverse Rainbow Up and Up”.
Then, Proposition 3 provides the exact value of P[RRUU](µ1, µ2) in the form of a

triple integral.

Proposition 3.

P[RRUU](µ1, µ2) =
1

(2π)3/2σ2|1σ3|1.2σ2
1 σ2t1

√
t2

min(k1,h1)∫
−∞

h2∫
−∞

min(k2,h2)∫
−∞

φ2(x1)φ3(x2, x3) (27)
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e
− 1

2 (
x1−µ1t1
σ1
√

t1
)

2
− 1

2σ2
2|1

(
x2−µ2t1
σ2
√

t1
−θ1.2(

x1−µ1t1
σ1
√

t1
))

2
− 1

2σ2
3|1.2

(
x3−µ2t2
σ2
√

t2
−θ1.3(

x1−µ1t1
σ1
√

t1
)−

θ2.3|1
σ2|1

(
x2−µ2t1
σ2
√

t1
−θ1.2(

x1−µ1t1
σ1
√

t1
)))

2

N

 1
σ4|1.2.3

 k3−µ1t2
σ1
√

t2
− θ1.4

x1−µ1t1
σ1
√

t1
− θ2.4|1

σ2|1

(
x2−µ2t1

σ2
√

t1
− θ1.2

x1−µ1t1
σ1
√

t1

)
− θ3.4|1.2

σ3|1.2

(
x3−µ2t2

σ2
√

t2
− θ1.3

x1−µ1t1
σ1
√

t1
− θ2.3|1

σ2|1

(
x2−µ2t1

σ2
√

t1
− θ1.2

x1−µ1t1
σ1
√

t1

)) dx3dx2dx1

where:

θ2.4|1 =
θ2.4 − θ1.2θ1.4√

1 − θ2
1.2

, θ3.4|1.2 =
θ3.4 − θ1.3θ1.4 − θ2.3|1θ2.4|1

σ3|1.2
, σ4|1.2.3 =

√
1 − θ2

1.4 − θ2
2.4|1 − θ2

3.4|1.2 (28)

- N[.] is the univariate standard normal cumulative distribution function;
- the functions φ2 and φ3 are defined by (80) and (81) in Section 3.

All the other notations in Proposition 3 have been previously defined.

Remark 1. Other types of reverse two-colour knock-out or knock-in barrier probability distributions
are handled similarly by modifying the upper bounds of the integral and, possibly, the φi functions,
according to the considered combination of events.

Remark 2. θ2.4|1 is the partial correlation between X2(t1) and X1(t2) conditional on X1(t1),
while θ3.4|1.2 is the partial correlation between X2(t2) and X1(t2) conditional on X1(t1) and X2(t1),
and σ4|1.2.3 is the conditional standard deviation of X1(t2) given X1(t1), X2(t1) and X2(t2).

End of Proposition 3.

The application of Proposition 3 to value a reverse two-colour step barrier option
is now discussed. The no-arbitrage price of a reverse two-colour rainbow up-and-up
knock-out put, denoted by V[RRUU], is given by:

V(R)
[RRUU]

= e−rt2
(

EQ

[
K31{A} − S1(t2)1{A}

])
= e−rt2 K3P(R)

[RRUU]

(
µ
(Q)
1 , µ

(Q)
2

)
− S2(0)P

(R)
[RRUU]

(
µ
(P1)
1 , µ

(P1)
2

)
(29)

where

µ
(P1)
1 = r +

σ2
1

2
, µ

(P1)
2 = r −

σ2
2

2
+ σ1σ2ρ1.2 (30)

- A is the set constructed by the intersection of elements of the σ−algebra generated by
the pair of processes (S1(t), S2(t)) that characterises the probability P[RRUU](µ1, µ2) as
given by the arguments of the probability operator in (26);

- P1 is the measure under which B1(t)− σ1t is a standard Brownian motion.

However, it is less easy to evaluate Proposition 3 than to evaluate Proposition 1
and Proposition 2. The problem at hand has two “nice” features from the standpoint of
numerical integration: first, the dimension, equal to 3, is moderate; second, the integrand
is continuous. The snag is the large number of parameters in each evaluation of the
integrand in a quadrature process, especially the various conditional standard deviations
at the denominators of the fractions, that may hinder fast convergence when they take on
absolute values that become smaller and smaller. That is why it is recommended to use
a subregion adaptive algorithm of numerical integration, as explained by Berntsen et al.
(1991), that adapts the number of integrand evaluations in each subregion according to the
rate of change of the integrand. Although more time-consuming than a fixed degree rule, it
is more accurate to control the approximation error, as the subdivision of the integration
domain stops only when the sum of the local error deterministic estimates becomes smaller
than some prespecified requested accuracy. Adaptive integration can be enhanced by a
Kronrod rule to reduce the number of required iterations (see, e.g., Davis and Rabinowitz
2007). These techniques are widely used in numerical integration, and it is easy to find
available code or built-in functions in the usual scientific computing software.
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2.4. Valuation of Two-Colour Outside Step Barrier Options

In this section, a third correlated asset S3 is introduced, w.r.t. which the option’s
moneyness is measured at expiry, while the assets S1 and S2 serve exclusively as the
underlyings w.r.t. which barrier crossing is monitored. This is an important extension,
as outside barrier options allow to manage volatility more consistently than standard
(non-outside) barrier options, as explained, e.g., by Das (2006).

Let us consider a third asset S3 with the following differential:

dS3(t) = v3S3(t)dt + σ3S3(t)dB3(t) (31)

The instantaneous pairwise correlations between the Brownian motions B′
is are de-

noted as ρi.j.
The objective is to compute the probabilities pm(µ1, µ2, µ3), m ∈ {1, 2, 3, 4} defined by:

p1(µ1, µ2, µ3) = P

 sup
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

 (32)

p2(µ1, µ2, µ3) = P

 inf
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

 (33)

p3(µ1, µ2, µ3) = P

 sup
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

 (34)

p4(µ1, µ2, µ3) = P

 inf
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

 (35)

Let x = [c1, c2, c3, c4, c5] be a vector of five coordinates where each ci ∈ ]−1, 1[,
∀i ∈ {1, . . . , 5}.

Let the function Ψ4[b1, b2, b3, b4; x], ∀b1, b2, b3, b4 ∈ R, be defined by:

Ψ4[b1, b2, b3, b4; x]

=

b1∫
x1=−∞

b2 − c1x1√
1 − c2

1∫
x2=−∞

b3 − c4x2

√
1 − c2

1 − c4c1x1√
1 − c2

2∫
x3=−∞

1

(2π)3/2 exp

(
−

x2
1

2
−

x2
2

2
−

x2
3

2

)
(36)

N


b4 − c5−c2c3

1−c2
2

(
x3

√
1 − c2

4 + x2c4

√
1 − c2

1

)
− x1

(
c3 +

c5−c2c3
1−c2

2
(c1c4 − c2)

)
√

1 − c2
3 −

(
c5−c2c3

1−c2
2

)2

dx3dx2dx1

The following Proposition 4 combines all the probabilities defined in (32)–(35) into a
single formula.

Proposition 4. The exact values of the probabilities pm(µ1, µ2, µ3), m ∈ {1, 2, 3, 4}, written in
shorter notation as pm, are given by:

pm = Ψ4

[
δ1

(
G1(k1, h1)− µ1t1

σ1
√

t1

)
, δ2

(
h2 − µ2t1

σ2
√

t1

)
, δ2

(
G2(k2, h2)− µ2t2

σ2
√

t2

)
, δ2

(
k3 − µ3t2

σ3
√

t2

)
; x1

]
(37)
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− exp

(
2µ1h1

σ2
1

)
× Ψ4


δ1

(
G1(k1,h1)−2h1−µ1t1

σ1
√

t1

)
, δ2

(
h2−µ2t1

σ2
√

t1
− θ1.2

2h1
σ1
√

t1

)
,

δ2

(
G2(k2,h2)−µ2t2

σ2
√

t2
− θ1.2

2h1
σ1
√

t2

)
,

δ2

(
k3−µ3t2
σ3
√

t2
− θ1.4

2h1
σ1
√

t1
− θ3.4|1

(
θ1.2

2h1
σ1
√

t2
− θ1.3

2h1
σ1
√

t1

))
; x1

 (38)

− exp

(
2µ2h2

σ2
2

)
× Ψ4


δ1

(
G1(k1,h1)−µ1t1

σ1
√

t1
+ θ1.2

2µ2t1
σ2
√

t1

)
, δ2

(
h2+µ2t1

σ2
√

t1

)
,

δ2

(
G2(k2,h2)−2h2−µ2t2

σ2
√

t2

)
,

δ2

(
k3−µ3t2
σ3
√

t2
− θ3.4|1

(
2h2

σ2
√

t2
+ θ1.2θ1.3

2µ2t1
σ2
√

t1

)
+ θ1.2θ1.4

2µ2t1
σ2
√

t1

)
; x2

 (39)

+ exp
((

2µ1
σ2

1
− 4µ2ρ1.2

σ1σ2

)
h1 +

2µ2h2
σ2

2

)

×Ψ4



δ1

(
G1(k1,h1)−2h1−µ1t1

σ1
√

t1
+ θ1.2

2µ2t1
σ2
√

t1

)
,

δ2

(
h2+µ2t1

σ2
√

t1
− θ1.2

2h1
σ1
√

t1

)
,

δ2

(
G2(k2,h2)−2h2−µ2t2

σ2
√

t2
+ θ1.2

2h1
σ1
√

t2

)
,

δ2

 k3−µ3t2
σ3
√

t2
+ θ1.4

(
θ1.2

2µ2
√

t1
σ2

− 2h1
σ1
√

t1

)
−θ3.4|1

(
2h2

σ2
√

t2
− θ1.2

2h1
σ1
√

t2
+ θ1.3

(
θ1.2

2µ2
√

t1
σ2

− 2h1
σ1
√

t1

)) ; x2


(40)

where k1, k2, h1, h2 are as in Proposition 2, k3 = ln
(

K3
S3(0)

)
, and we have:

θ1.2 = ρ1.2, θ1.3 =

√
t1

t2
ρ1.2, θ1.4 =

√
t1

t2
ρ1.3, θ2.3 =

√
t1

t2
, θ3.4 = ρ2.3, θ3.4|1 =

θ3.4 − θ1.3θ1.4√
1 − θ2

1.3

(41)

δ1 =

{
1 if pm = p1 or pm = p3
−1 if pm = p2 or pm = p4

, δ2 =

{
1 if pm = p1 or pm = p4
−1 if pm = p2 or pm = p3

(42)

G1(., .) =
{

min(., .) if pm = p1 or pm = p3
max(., .) if pm = p2 or pm = p4

, G2(., .) =
{

max(., .) if pm = p1 or pm = p3
min(., .) if pm = p2 or pm = p4

(43)

x1 =

{
[θ1.2, θ1.3, θ1.4, θ2.3, θ3.4] if pm = p1 or pm = p2
[−θ1.2,−θ1.3,−θ1.4, θ2.3, θ3.4] if pm = p3 or pm = p4

(44)

x2 =

{
[θ1.2, θ1.3, θ1.4,−θ2.3, θ3.4] if pm = p1 or pm = p2
[−θ1.2,−θ1.3,−θ1.4,−θ2.3, θ3.4] if pm = p3 or pm = p4

(45)

Corollary 1. The corresponding knock-in probabilities can be inferred in the same way as
in Proposition 1 and Proposition 2. Let the probabilities p(I)

m (µ1, µ2, µ3), m ∈ {1, 2, 3, 4} be
defined by:

p(I)
1 (µ1, µ2, µ3) = P

 sup
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

 (46)

p(I)
2 (µ1, µ2, µ3) = P

 inf
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≥ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

 (47)

p(I)
3 (µ1, µ2, µ3) = P

 sup
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

 (48)

p(I)
4 (µ1, µ2, µ3) = P

 inf
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≥ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

 (49)
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Then, p(I)
m (µ1, µ2, µ3) is given by (40).

Corollary 2. It suffices to substitute each argument θ3.4 in each Ψ4[., ., ., .; ., ., ., ., .] function

of Proposition 4 by ρ2.3

√
t2
t3

, ∀t3 ≥ t2, to obtain an exact formula for the early-ending variant
of pm(µ1, µ2, µ3).

End of Proposition 4.

Equipped with Proposition 4, one can value in closed form a two-colour outside step
barrier option. More precisely, the value of a two-colour outside up-and-out put, denoted
by V[ORUU], is given by:

V[ORUU] = e−rt2
(

EQ

[
K31{A} − S3(t2)1{A}

])
(50)

where A is the set constructed by the intersection of elements of the σ−algebra generated
by the pair of processes (S1(t), S2(t)) that characterises the probability p1(µ1, µ2) as given
by the arguments of the probability operator in (32), and the acronym “[ORUU]” stands for
“Outside Rainbow Up and Up”.

Using the following orthogonal decomposition of Brownian motion B3(t):

B3(t) = ρ1.3W1(t) + ρ2.3|1W2(t) + σ3|1.2W3(t) (51)

where:
ρ2.3|1 =

ρ2.3 − ρ1.2ρ1.3√
1 − ρ2

1.2

, σ3|1.2 =
√

1 − ρ2
1.3 − ρ2

2.3|1 (52)

and (W1(t), W2(t), W3(t)) is a basis of three independent Brownian motions (Guillaume
2018), the multidimensional Cameron-Martin-Girsanov theorem yields:

V[ORUU] = e−rt2 K3 p1

(
µ
(Q)
1 , µ

(Q)
2 , µ

(Q)
3

)
− S3(0)p1

(
µ
(P3)
1 , µ

(P3)
2 , µ

(P3)
3

)
(53)

where:

µ
(P3)
1 = r −

σ2
1

2
+ σ1σ3ρ1.3, µ

(P3)
2 = r −

σ2
2

2
+ σ2σ3ρ2.3, µ

(P3)
3 = r +

σ2
3

2
(54)

The measure P3 is the measure under which B1(t) − σ3ρ1.3t, B2(t) − σ3ρ2.3|1t and
B3(t)− σ3σ3|1.2t are three independent standard Brownian motions.

A simple and robust numerical evaluation of the function Ψ4 consists in selecting an
appropriate cutoff value for the negative infinity lower bounds and then applying a fixed-
degree quadrature rule. Given the smoothness of the integrand, even a low-degree rule
will perform well. Table 3 provides the prices of a few two-colour outside up-and-down
knock-out call options for various levels of the volatility and correlation parameters of
the underlying assets S1, S2, and S3, and different values of the knock-out barriers. The
parameters Si(0), Ki, t1, t2, and r are identical as those as in Tables 1 and 2. In each cell, the
first reported value is the exact analytical price, as obtained by implementing Proposition 4
by means of a classical 16-point Gauss–Legendre quadrature, while the numbers in the
brackets are three successive Monte Carlo approximations, as explained in Section 2.1.

From a purely numerical standpoint, the pattern of convergence of conditional Monte
Carlo approximations to the analytical values is as clear in Table 3 as in Tables 1 and 2. This
illustrates the robustness of our numerical integration scheme for the Ψ4 function. The
efficiency gap between Monte Carlo pricing and analytical pricing is even more pronounced
than for non-outside rainbow step barrier options due to the presence of an additional
stochastic process to simulate: the average computational time required by simulation is
42 s, whereas the evaluation of the analytical formula based on Proposition 4 only takes a
few tenths of a second.
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Table 3. Outside two-colour up-and-down knock-out call.

ρ1.2 = −0.6,
ρ1.3 = ρ2.3
= −0.4

ρ1.2 = −0.6,
ρ1.3 = ρ2.3

= 0.4

ρ1.2 = 0.6
ρ1.3 = ρ2.3

= 0.4

ρ1.2 = 0.6
ρ1.3 = ρ2.3
= −0.4

σ1 = σ2 = 20%
σ3 = 20%

H1 = 115, H2 = 85

2.378
(2.452, 2.361,

2.375)

2.772
(2.914, 2.812,

2.779)

1.717
(1.585, 1.731,

1.720)

1.182
(1.193, 1.178,

1.180)

σ1 = σ2 = 20%
σ3 = 60%

H1 = 115, H2 = 85

5.769
(5.728, 5.781,

5.764)

7.053
(7.137, 7.036,

7.054)

4.522
(4.534, 4.541,

4.524)

2.897
(2.852, 2.923,

2.893)

σ1 = σ2 = 60%
σ3 = 20%

H1 = 125, H2 = 75

1.627
(1.592, 1.614,

1.628)

2.783
(2.848, 2.767,

2.788)

1.351
(1.320, 1.365,

1.353)

0.849
(0.915, 0.828,

0.842)

σ1 = σ2 = 60%
σ3 = 60%

H1 = 125, H2 = 75

3.864
(3.814, 3.872,

3.865)

7.554
(7.518, 7.535,

7.558)

3.823
(3.856, 3.829,

3.827)

2.076
(2.011, 2.091, 2.072)

σ1 = 20%, σ2 = 60%
σ3 = 20%

H1 = 115, H2 = 75

1.534
(1.502, 1.526,

1.535)

2.573
(2.495, 2.556,

2.577)

1.188
(1.207, 1.179,

1.185)

0.621
(0.774, 0.684,

0.613)

σ1 = 20%, σ2 = 60%
σ3 = 60%

H1 = 115, H2 = 75

3.629
(3.787, 3.662,

3.621)

6.697
(6.724, 6.684,

6.692)

3.217
(3.051, 3.252,

3.221)

1.518
(1.586, 1.476,

1.511)

σ1 = 60%, σ2 = 20%
σ3 = 20%

H1 = 125, H2 = 85

2.572
(2.734, 2.548,

2.567)

2.989
(3.125, 3.016,

2.994)

1.931
(2.071, 1.965,

1.938)

1.496
(1.634, 1.454,

1.489)

σ1 = 60%, σ2 = 20%
σ3 = 60%

H1 = 125, H2 = 85

6.248
(6.304, 6.237,

6.241)

7.953
(8.060, 7.984,

7.961)

5.323
(5.212, 5.348,

5.324)

3.707
(3.569, 3.726,

3.702)

From a financial point of view, the prices in Table 3 display a very different pattern
from those in Tables 1 and 2. With regard to correlation, the highest option values attained
are when the correlation between S1 and S2 is negative and the correlation between S3
and both S1 and S2 is positive. The lowest option values are when the correlation between
S1 and S2 is positive and the correlation between S3 and both S1 and S2 is negative. On
average across all volatilities and barrier levels in Table 3, options are approximately three
times more expensive under the former correlation structure than under the latter one. In
terms of volatility, the highest option values attained are when the volatility of asset S3
is high. This remains true under very different combinations of values for all the other
parameters (volatilities of S1 and S2, barrier levels and correlation structure). Such an
observation highlights the prominent role of the volatility of the asset chosen to determine
the moneyness of the option at expiry. In particular, the value of a rainbow outside step
barrier option is a monotonically increasing function of σ3, whereas the value of a rainbow
step barrier option is not a monotonically increasing function of σ2, just like the value
of a reverse rainbow step barrier option is not a monotonically increasing function of σ1.
This is because a rainbow outside step barrier option allows to make a clear distinction
between the functions of each underlying asset: two of them, S1 and S2, are only concerned
with barrier crossing during the option life, and the third one, S3, is only concerned with
moneyness testing at the option expiry. That distinction is impossible to make when it
comes to non-outside rainbow step barrier options, so that the impact of volatility becomes
ambiguous and difficult to handle. It should be emphasised that, for the vast majority of
parameters, the sensitivities of the rainbow outside step knock-out barrier options to σ1
and σ2 is negative, reflecting an increased risk of being deactivated before expiry. Only
for quite specific correlation structures between the underlying assets and quite specific
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combinations of barrier values can these sensitivities be positive. A major advantage of
closed form formulae such as those derived in this article is precisely to allow measurement
of such sensitivities with high precision by mere differentiation of the formulae w.r.t. the
relevant parameters.

One more noticeable difference in the reported numerical results between outside and
non-outside rainbow step barrier options is that the volatility effect prevails over the barrier
effect in Table 3, in contrast to Tables 1 and 2. Indeed, in row 2 of Table 3, tight barrier levels
do not preclude relatively high option prices thanks to the volatility of asset S3 set at 60%.
Likewise, in row 3 of Table 3, wider barrier levels do not preclude relatively low option
prices due to the volatility of asset S3 set at only 20%.

2.5. Valuation of Two-Sided, Two-Colour Step Barrier Options

In this section, a two-sided barrier is introduced in each time interval, i.e., the valuation
of rainbow step double barrier options is handled.

Let H1 and H2 denote an upward and a downward barrier, respectively, on the time
interval [t0 = 0, t1]. Similarly, H3 and H4 represent an upward and a downward barrier,
respectively, on the time interval [t1, t2]. As in the previous sections, barrier crossing
is monitored w.r.t. process S1 following Equation (1) on [t0 = 0, t1] and w.r.t. process
S2 following Equation (2) on [t1, t2]. Our objective now is to find the value of the joint
cumulative distribution function P[RDKO](µ1, µ2) defined by:

P[RDKO](µ1, µ2) (55)

= P

 sup
0≤t≤t1

S1(t) ≤ H1, inf
0≤t≤t1

S1(t) ≥ H2, S1(t1) ≤ min(K1, H1),

sup
t1≤t≤t2

S2(t) ≤ H3, inf
t1≤t≤t2

S2(t) ≥ H4, S2(t2) ≤ min(H3, K2)


where the acronym “[RDKO]” stands for “Rainbow Double Knock Out”.

The main result of Section 2.5 is given by the following Proposition 5.

Proposition 5. The exact value of P[RDKO](µ1, µ2) is given by:

P[RDKO](µ1, µ2) =
∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
2µ1

σ2
1

n1a1 +
2µ2

σ2
2

n2a2

)
{N3[A1(min(k1, h1)), A2(h3), A3(min(h3, k2)); x1] − N3

[
A1(h2), A2(h3),
A3(min(h3, k2)); x1

]
−N3[A1(min(k1, h1)), A2(h4), A3(min(h3, k2)); x1] + N3

[
A1(h2), A2(h4),
A3(min(h3, k2)); x1

]
−N3[A1(min(k1, h1)), A2(h3), A3(h4); x1] + N3[A1(h2), A2(h3), A3(h4); x1]
+N3[A1(min(k1, h1)), A2(h4), A3(h4); x1]− N3[A1(h2), A2(h4), A3(h4); x1]}

(56)

−
∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
n1a1

(
2µ1

σ2
1

− 4ρ1.2µ2

σ1σ2

)
+

2µ2

σ2
2
(h4 − n2a2)

)
{N3[A4(min(k1, h1)), A5(h3), A6(min(h3, k2)); x2] − N3

[
A4(h2), A5(h3),
A6(min(h3, k2)); x2

]
−N3[A4(min(k1, h1)), A5(h4), A6(min(h3, k2)); x2] + N3

[
A4(h2), A5(h4),
A6(min(h3, k2)); x2

]
−N3[A4(min(k1, h1)), A5(h3), A6(h4); x2] + N3[A4(h2), A5(h3), A6(h4); x2]
+N3[A4(min(k1, h1)), A5(h4), A6(h4); x2]− N3[A4(h2), A5(h4), A6(h4); x2]}

(57)
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−
∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
2µ1

σ2
1
(h2 − n1a1) +

2µ2

σ2
2

n2(h3 − a2)

)
{N3[A7(min(k1, h1)), A8(h3), A9(min(h3, k2)); x1] − N3

[
A7(h2), A8(h3),
A9(min(h3, k2)); x1

]
−N3[A7(min(k1, h1)), A8(h4), A9(min(h3, k2)); x1] + N3

[
A7(h2), A8(h4),
A9(min(h3, k2)); x1

]
−N3[A7(min(k1, h1)), A8(h3), A9(h4); x1] + N3[A7(h2), A8(h3), A9(h4); x1]
+N3[A7(min(k1, h1)), A8(h4), A9(d2); x1]− N3[A7(h2), A8(h4), A9(d2); x1]}

(58)

+
∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
(h2 − n1a1)

(
2µ1

σ2
1

− 4ρ1.2µ2

σ1σ2

)
+

2µ2

σ2
2
(h4 − n2a2)

)
{N3[A10(min(k1, h1)), A11(h3), A12(min(h3, k2)); x2] − N3

[
A10(h2), A11(h3),
A12(min(h3, k2)); x2

]
−N3[A10(min(k1, h1)), A11(h4), A12(min(h3, k2)); x2] + N3

[
A10(h2), A11(h4),
A12(min(h3, k2)); x2

]
−N3[A10(min(k1, h1)), A11(h3), A12(h4); x2] + N3[A10(h2), A11(h3), A3(h4); x2]
+N3[A10(min(k1, h1)), A11(h4), A12(h4); x2]− N3[A10(h2), A11(h4), A12(h4); x2]}

(59)

where:

− h1 = ln
(

H1

S1(0)

)
> 0, h2 = ln

(
H2

S1(0)

)
< 0, h3 = ln

(
H3

S2(0)

)
, h4 = ln

(
H4

S2(0)

)
(60)

− a1 = h1 − h2, a2 = h3 − h4 (61)

− A1(x) =
x − 2n1a1 − µ1t1

σ1
√

t1
, A2(x) =

x − µ2t1

σ2
√

t1
− 2ρ1.2n1a1

σ1
√

t1
(62)

− A3(x) =
x − 2n2a2 − µ2t2

σ2
√

t2
− 2ρ1.2n1a1

σ1
√

t2
(63)

− A4(x) = A1(x)− 2ρ1.2µ2
√

t1

σ2
, A5(x) =

x + µ2t1

σ2
√

t1
− 2ρ1.2n1a1

σ1
√

t1
(64)

− A6(x) =
x − 2h4 + 2n2a2 − µ2t2

σ2
√

t2
+

2ρ1.2n1a1

σ1
√

t2
(65)

− A7(x) =
x − 2h2 + 2n1a1 − µ1t1

σ1
√

t1
, A8(x) =

x − µ2t1

σ2
√

t1
− 2ρ1.2(h2 − n1a1)

σ1
√

t1
(66)

− A9(x) =
x − 2n2a2 − µ2t2

σ2
√

t2
− 2ρ1.2(h2 − n1a1)

σ1
√

t2
(67)

− A10(x) = A7(x)− 2ρ1.2µ2
√

t1

σ2
, A11(x) =

x + µ2t1

σ2
√

t1
− 2ρ1.2(h2 − n1a1)

σ1
√

t1
(68)

− A12(x) =
x − 2h4 + 2n2a2 − µ2t2

σ2
√

t2
+

2ρ1.2(h2 − n1a1)

σ1
√

t2
(69)

− x1 =

{
ρ1.2, ρ1.2

√
t1

t2
,
√

t1

t2

}
, x2 =

{
ρ1.2,−ρ1.2

√
t1

t2
,−
√

t1

t2

}
(70)

All other notations have been defined in the previous sections.
End of Proposition 5.

Pricing two-colour double knock-out barrier options can be achieved through the
same changes of probability measures as those applicable to two-colour single knock-out
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barrier options, i.e., the value of a two-colour double knock-out put, denoted as V[RDKO], is
given by:

V[RDKO] = e−rt2 K3P[RDKO]

(
µ
(Q)
1 , µ

(Q)
2

)
− S2(0)P[RDKO]

(
µ
(P2)
1 , µ

(P2)
2

)
(71)

where the parameters µ
(Q)
i and µ

(P2)
i are given by Equation (18).

Table 4 provides the prices of a few two-colour knock-out double barrier puts for
various levels of the volatility and correlation parameters of the underlying assets S1 and
S2, and different values of the knock-out barriers. Expiry is 6 months and t1 is one quarter
of a year. The parameters Si(0), Ki, and r are identical to those in Tables 1–3. In each cell,
the first number is the exact analytical value as derived from (71), while the numbers in the
brackets are three successive Monte Carlo approximations, as explained in Section 2.1.

Table 4. Two-colour rainbow double knock-out put.

ρ1.2 = −0.6 ρ1.2 = −0.2 ρ1.2 = 0.2 ρ1.2 = 0.6

σ1 = σ2 = 15%
H1 = H3 = 120
H2 = H4 = 80

2.919
(2.985, 2.956,

2.916)

2.938
(2.792, 2.883,

2.932)

2.936
(2.974, 2.918,

2.931)

3.027
(3.191, 3.088,

3.032)

σ1 = σ2 = 30%
H1 = H3 = 130
H2 = H4 = 70

4.370
(4.529, 4.281,

4.365)

5.791
(5.978, 5.697,

5.786)

4.427
(4.196, 4.443,

4.426)

5.175
(5.329, 5.092,

5.158)

σ1 = 15%, σ2 = 30%
H1 = 120, H3 = 130
H2 = 80, H4 = 70

4.726
(4.594, 4.752,

4.728)

4.744
(4.868, 4.785,

4.749)

4.724
(4.574, 4.771,

4.728)

5.042
(5.226, 5.018,

5.045)

σ1 = 30%, σ2 = 15%
H1 = 130, H3 = 120
H2 = 70, H4 = 80

2.614
(2.429, 2.576,

2.610)

2.683
(2.872, 2.612,

2.679)

2.771
(2.602, 2.742,

2.773)

2.942
(3.165, 3.036,

2.953)

Thanks to the rapidly decaying exponential functions in the integrands, a level of 10−7

convergence is attained by stopping at 8, the number of iterations controlled by the absolute
values of n1 and n2 in the double sum operators, which results in a total computational
time of less than 1 s. For higher values of the volatility parameters than those in Table 4,
however, the uniform convergence of the double sums in (56)–(59) may require a greater
number of iterations and thus take more time. The implementation of Proposition 5 using
the Φ3 function introduced in Section 3 is slightly faster than the one using the trivariate
standard normal cumulative distribution function N3, although the difference is relatively
negligible for most practical purposes. Both methods of implementation yield prices equal
to at least 4 decimals.

From a financial standpoint, a striking contrast between the numerical results in Table 4
and those of the previous sections is the much weaker dependency of the option value on
the correlation structure, as illustrated by the smaller differences between the four option
prices associated with each combination of volatility and barrier parameters. It seems
that, the more volatility, the more dependency on the correlation structure, as suggested
by the comparison between row 1 and row 2. Another noticeable difference is that the
functional relation with the correlation structure is not monotonic. This is particularly clear
in row 2 where a relatively significant increase in value from ρ1.2 = −0.6 to ρ1.2 = −0.2 is
followed by a relatively significant decrease in value from ρ1.2 = −0.2 to ρ1.2 = 0.2, before
a new increase in value from ρ1.2 = 0.2 to ρ1.2 = 0.6. This more complex and unstable
dependency on correlation structure suggests that two-colour knock-out double barrier
options are a less suitable instrument for correlation trading than two-colour knock-out
single barrier options. However, one should remain wary of drawing hasty conclusions
from the comparison of the results in Table 4 and those in the previous sections, as the
option parameters are not identical, especially regarding volatility and expiry.



J. Risk Financial Manag. 2024, 17, 356 17 of 25

3. Proofs of Formulae

The proofs of Propositions 2 and 3 are only outlined as they essentially follow the
same steps as the proof of Proposition 1.

Proof of Proposition 1. Since the log function is strictly increasing, we have:

P[RUU](µ1, µ2) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, X1(t1) ≤ k1, X2(t1) ≤ k2, sup
t1≤t≤t2

X2(t) ≤ h2, X2(t2) ≤ k3

)
(72)

Next, it can be noticed that, despite the non-zero correlation between X1(t) and X2(t),
the law of sup

0≤t≤t1

X1(t) conditional on X1(t1) and X2(t1) is equal to the law of sup
0≤t≤t1

X1(t1)

conditional on X1(t1).
Indeed, denoting the density function operator as f (.) and making use of the Markov

property of X2(t) we have:

f

(
sup

0≤t≤t1

X1(t)|X1(t1), X2(t1)

)
=

f

(
X2(t1)

∣∣∣∣∣ sup
0≤t≤t1

X1(t), X1(t1)

)
f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1), X2(t1))

(73)

=

f (X2(t1)|X1(t1) ) f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1), X2(t1))

=
f (X1(t1), X2(t1))

f (X1(t1))

f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1), X2(t1))

(74)

=

f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1))

= f

(
sup

0≤t≤t1

X1(t)|X1(t1)

)
(75)

A translation from the time interval [t0 = 0, t1] to the time interval [t1, t2], through the
substitution of X1(0) with X2(t1), of X1(t1) with X2(t2) and of X2(t1) with X1(t2), shows
similarly that the law of sup

t1≤t≤t2

X2(t) conditional on X2(t1), X2(t2) and X1(t2) is equal to

the law of sup
t1≤t≤t2

X2(t) conditional on X2(t1) and X2(t2).

Thus, by conditioning w.r.t. the absolutely continuous random variables X1(t1), X2(t1)
and X2(t2), we can express the problem as the following integral:

P[RUU](µ1, µ2)

=
min(k1,h1)∫

−∞

min(k2,h2)∫
−∞

min(k3,h2)∫
−∞

φ1(x1, x2, x3)φ2(x1)φ3(x2, x3)dx3dx2dx1
(76)

where

φ1(x1, x2, x3) = P(X1(t1) ∈ dx1, X2(t1) ∈ dx2, X2(t2) ∈ dx3)dx3dx2dx1 (77)

φ2(x1) = P

(
sup

0≤t≤t1

X1(t) ≤ h1|X1(t1) ∈ dx1

)
dx1 (78)

φ3(x2, x3) = P

(
sup

t1≤t≤t2

X2(t) ≤ h2|X2(t1) ∈ dx2, X2(t2) ∈ dx3

)
dx2dx3 (79)

The functions φ2 and φ3 in (78) and (79) can be expanded by applying known formulae
that can be found in Wang and Pötzelberger (1997):

φ2(x1) = 1 − exp

(
2h1(x1 − h1)

σ2
1 t1

)
(80)
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φ3(x2, x3) = 1 − exp

(
2(h2 − x2)(x3 − h2)

σ2
2 (t2 − t1)

)
(81)

The function φ1 derives from the trivariate normality of the triple (X1(t1), X2(t1), X2(t2)).
It is elementary to obtain the marginal distributions:

X1(t1) ∼ N
(

µ1t1, σ2
1 t1

)
, X2(t1) ∼ N

(
µ2t1, σ2

2 t1

)
, X2(t2) ∼ N

(
µ2t1, σ2

2 t1

)
(82)

where N
(
a, b2) refers to the normal distribution with expectation a and variance b2.

Denoting by Z1, Z2, Z3 three independent standard normal random variables, the
pairwise covariances can be written as follows:

cov[X1(t1), X2(t1)] = cov
[

µ1t1 + σ1
√

t1Z1, µ2t1 + σ2
√

t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)]
= σ1σ2ρ1.2t1 (83)

cov[X2(t1), X2(t2)] = cov

 µ2t1 + σ2
√

t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)
,

µ2t2 + σ2
√

t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)
+ σ2

√
t2 − t1Z3

 = σ2
2 t1 (84)

cov[X1(t1), X2(t2)] = cov
[
µ1t1 + σ1

√
t1Z1, µ2t2 + σ2

√
t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)
+ σ2

√
t2 − t1Z3

]
= σ1σ2ρ1.2t1

(85)

where we have applied the bilinearity of the covariance operator, the independence of
increments of Brownian motion, and the orthogonal decomposition of two-dimensional
correlated Brownian motion. The correlation coefficients θ1.2, θ1.3, θ2.3 in Proposition 1
ensue. Expanding the trivariate normal density function φ1(x1, x2, x3) as a product of
normal conditional densities (Guillaume 2018), we obtain:

φ1(x1, x2, x3)

= e
− 1

2 (
x1−µ1t1
σ1
√

t1
)
2
− 1

2σ2
2|1

(
x2−µ2t1
σ2
√

t1
−θ1.2(

x1−µ1t1
σ1
√

t1
))

2
− 1

2σ2
3|1.2

(
x3−µ2t2
σ2
√

t2
−θ1.3(

x1−µ1t1
σ1
√

t1
)−

θ2.3|1
σ2|1

(
x2−µ2t1
σ2
√

t1
−θ1.2(

x1−µ1t1
σ1
√

t1
)))

2

(2π)3/2σ2|1σ3|1.2σ2
2 σ1t1

√
t2

(86)

where:
σ2|1 =

√
1 − θ2

1.2, θ2.3|1 =
θ2.3 − θ1.2θ1.3√

1 − θ2
1.2

, σ3|1.2 =
√

1 − θ2
1.3 − θ2

2.3|1 (87)

The terms σ2|1, θ2.3|1 and σ3|1.2 have the following precise meanings:

- σ2|1 is the conditional standard deviation of X2(t1) given X1(t1);
- θ2.3|1 is the conditional correlation between X2(t1) and X2(t2) given X1(t1);
- σ3|1.2 is the conditional standard deviation of X2(t2) given X1(t1) and X2(t1).

The rest of the proof, whose cumbersome details are omitted, then consists in solving
the four integrals implied by (76). The final result takes the form of the linear combination
of four N3 functions written in Proposition 1.

Corollary 1 comes from the property of symmetry of Brownian paths.
Corollary 2 is a consequence of the fact that:

P(I)
[RUU]

(µ1, µ2)

=
min(k1,h1)∫

−∞

min(k2,h2)∫
−∞

min(k3,h2)∫
−∞

φ1(x1, x2, x3) exp

(
2h1(x1 − h1)

σ2
1 t1

)
exp

(
2(h2 − x1)(x2 − h2)

σ2
2 (t2 − t1)

)
dx3dx2dx1

(88)

Corollary 3 comes from the fact that the correlation coefficient between the random

variables S2(t2) and S2(t3) is equal to
√

t2
t3

.
Corollary 4 is a straightforward application of the law of total probability. □
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Proof of Proposition 2. Using similar steps as in the proof of Proposition 1, one can express
the problem at hand as the following integral:

P[RUD](µ1, µ2) =

min(k1,h1)∫
−∞

∞∫
max(k2,h2)

∞∫
max(k3,h2)

φ1(x1, x2, x3)φ2(x1)φ4(x2, x3)dx3dx2dx1 (89)

where the functions φ1 and φ2 are given by (86) and (80), respectively, and:

φ4(x2, x3) = P
(

inf
t1≤t≤t2

X2(t) ≥ h2|X2(t1) ∈ dx2, X2(t2) ∈ dx3

)
dx2dx3 = φ3(x2, x3) (90)

where the function φ3 is given by (81).
Performing the necessary calculations, one can obtain the linear combination of four

N3 functions given in Proposition 2.
As in Proposition 1, Corollary 1 comes from the property of symmetry of Brownian paths.
Corollary 2 is a consequence of the fact that:

P(I)
[RUD]

(µ1, µ2)

=
min(k1 ,h1)∫

−∞

∞∫
max(k2 ,h2)

∞∫
max(k3 ,h2)

φ1(x1, x2, x3)e

2µ1

σ2
1

h1 e
−

1
2
(
x1 − 2h1 − µ1t1

σ1
√

t1
)

2

σ1
√

2πt1
e

2µ2

σ2
2

(h2−x2) e
−

1
2
(
−x3 − x2 + 2h2 + µ2(t2 − t1)

σ2
√

t2 − t1
)

2

σ2
√

2π(t2 − t1)
dx1dx2dx3

(91)

□

Proof of Proposition 3. One can express the problem at hand as the following integral:

P[RRUU](µ1, µ2)

=
min(k1,h1)∫

−∞

h2∫
−∞

min(k2,h2)∫
−∞

k3∫
−∞

φ2(x1)φ3(x2, x3)φ5(x1, x2, x3, x4)dx4dx3dx2dx1
(92)

where

φ5(x1, x2, x3, x4) = P(X1(t1) ∈ dx1, X2(t1) ∈ dx2, X2(t2) ∈ dx3, X1(t2) ∈ dx4)dx4dx3dx2dx1 (93)

Plugging the quadrivariate normal joint density function of the set of random variables
X1(t1), X2(t1), X1(t2) and X2(t2), as a product of conditional density functions as explained
in Guillaume (2018), and then factoring in the conditional cumulative distribution function
of X1(t2) given the triple (X1(t1), X2(t1), X2(t2)), Proposition 3 ensues. □

Proof of Proposition 4. Proof is given only for p1(µ1, µ2, µ3) and p3(µ1, µ2, µ3), as
p2(µ1, µ2, µ3) and p4(µ1, µ2, µ3) can then be deduced by the same symmetry argument
as that already used in Corollary 1 of Proposition 1.

Following steps similar to the beginning of the proof of Proposition 1, one can express
the problem at hand as the following two integrals:

p1(µ1, µ2, µ3)

=
min(k1,h1)∫
x1=−∞

min(k2,h2)∫
x2=−∞

min(k3,h2)∫
x3=−∞

k4∫
x4=−∞

φ6(x1)φ7(x1, x2)φ8(x2, x3)φ9(x1, x3, x4)dx4dx3dx2dx1
(94)

p3(µ1, µ2, µ3)

=
min(k1,h1)∫
x1=−∞

∞∫
x2=max(k2,h2)

∞∫
x3=max(k3,h2)

∞∫
x4=k4

φ6(x1)φ7(x1, x2)φ10(x2, x3)φ9(x1, x3, x4)dx4dx3dx2dx1
(95)

where

φ6(x1) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, X1(t1) ∈ dx1

)
dx1 (96)



J. Risk Financial Manag. 2024, 17, 356 20 of 25

φ7(x1, x2) = P(X2(t1) ∈ dx2|X1(t1) ∈ dx1 )dx1dx2 (97)

φ8(x2, x3) = P

(
sup

t1≤t≤t2

X2(t) ≤ h2, X2(t2) ∈ dx3|X2(t1) ∈ dx2

)
dx2dx3 (98)

φ10(x2, x3) = P
(

inf
t1≤t≤t2

X2(t) ≥ h2, X2(t2) ∈ dx3|X2(t1) ∈ dx2

)
dx2dx3 (99)

φ9(x1, x3, x4) = P(X3(t2) ∈ dx4|X2(t2) ∈ dx3, X1(t1) ∈ dx1 ) (100)

The function φ6 is obtained by differentiating the classical formula for the joint cumu-
lative distribution of the maximum of a Brownian motion with drift and its endpoint over
a closed time interval (see, e.g., Karatzas and Shreve 2000):

φ6(x1) =
e
− 1

2 (
x1−µ1t1
σ1
√

t1
)

2

σ1
√

2πt1
− e

2µ1
σ2

1
h1 e

− 1
2 (

x1−2h1−µ1t1
σ1
√

t1
)

2

σ1
√

2πt1
dx1 (101)

The function φ7 is easily derived from the bivariate normality of the pair (X1(t1), X2(t1)):

φ7(x1, x2) =
e
− 1

2(1−ρ2
1.2)

(
x2−µ2t1
σ2
√

t1
−ρ1.2

x1−µ1t1
σ1
√

t1
)

2

σ2

√
2πt1

(
1 − ρ2

1.2
) dx1dx2 (102)

To handle the function φ8, we notice that, by conditioning w.r.t. the filtration at time t1
the same classical formula as the one used to derive φ6, we can obtain:

P

(
sup

t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ S2(0)ex3 |S2(t1) = S2(0)ex2

)

= N

 ln
(

S2(0)ex3

S2(0)ex2

)
− µ2(t2 − t1)

σ2
√

t2 − t1

−
(

H2

S2(0)ex2

) 2µ2
σ2

2 N


ln
(

S2(0)ex3

S2(0)ex2

)
− 2 ln

(
H2

S2(0)ex2

)
−µ2(t2 − t1)

σ2
√

t2 − t1

 (103)

for any given (x2, x3) ∈ R2 and H2 > S2(0)ex3 .
Equation (103) can be rewritten as follows:

P

(
sup

t1≤t≤t2

X2(t) ≤ h2, X2(t2) ≤ x3|X2(t1) ∈ dx2

)
(104)

= N
[

x3 − x2 − µ2(t2 − t1)

σ2
√

t2 − t1

]
− exp

(
2µ2

σ2
2
(h2 − x2)

)
N
[

x3 − x2 − 2(h2 − x2)− µ2(t2 − t1)

σ2
√

t2 − t1

]
Therefore, by differentiating (104) w.r.t. x3, we obtain:

φ8(x2, x3) =
e
− 1

2 (
x3−x2−µ2(t2−t1)

σ2
√

t2−t1
)

2

σ2
√

2π(t2 − t1)
− e

2µ2
σ2

2
(h2−x2) e

− 1
2 (

x3+x2−2h2−µ2(t2−t1)
σ2
√

t2−t1
)

2

σ2
√

2π(t2 − t1)
dx2dx3 (105)

By the symmetry of paths of Brownian motion, we have:

P
(

inf
t1≤t≤t2

X2(t) ≥ h2, X2(t2) ≥ x3|X2(t1) ∈ dx2

)
(106)



J. Risk Financial Manag. 2024, 17, 356 21 of 25

= N
[
−x3 + x2 + µ2(t2 − t1)

σ2
√

t2 − t1

]
− exp

(
2µ2

σ2
2
(h2 − x2)

)
N
[
−x3 + x2 + 2(h2 − x2) + µ2(t2 − t1)

σ2
√

t2 − t1

]
Hence,

φ10(x2, x3) = φ8(x2, x3) (107)

The function φ9 derives from the joint trivariate normality of the triple (X1(t1), X2(t2),
X3(t2)). The marginal distributions of the elements of this triple come from the known
marginal distributions of S1(t1), S2(t2) and S3(t2). The pairwise correlations, as given by
θ1.3, θ1.4 and θ3.4 in Proposition 4 can be easily determined using the same method as in the
proof of Proposition 3. We obtain:

φ9(x1, x3, x4) =
e
− 1

2ϕ2
4|1.3

(
x4−µ3t2
σ3
√

t2
−θ1.4(

x1−µ1t1
σ1
√

t1
)−θ3.4|1(

x3−µ2t2
σ2
√

t2
−θ1.3(

x1−µ1t1
σ1
√

t1
)))

2

ϕ4|1.3σ3
√

2πt2
(108)

where σ3|1 =
√

1 − θ2
1.3.

The rest of the proof, whose cumbersome details are omitted, then consists in solving
the integrals implied by (94) and (95). The final result can be expressed as the linear
combination of four Ψ4 functions written in Proposition 4. The origin of the function Ψ4,
which is a special form of quadrivariate normal cumulative distribution, lies in the FDD
(Finite Dimensional Distribution) of the quadruple [S1(t1), S2(t1), S2(t2), S3(t2)]. Indeed, a
little algebra shows that, ∀D1, D2, D3, D4 ∈ R+, we have:

P(S1(t1) ≤ D1, S2(t1) ≤ D2, S2(t2) ≤ D3, S3(t2) ≤ D4)

= Ψ4

 ln
(

D1
S1(0)

)
−µ1t1

σ1
√

t1
,

ln
(

D2
S2(0)

)
−µ2t1

σ2
√

t1
,

ln
(

D3
S2(0)

)
−µ2t2

σ2
√

t2
,

ln
(

D4
S3(0)

)
−µ3t2

σ3
√

t2
;

θ1.2, θ1.3, θ1.4, θ2.3, θ3.4

 (109)

Corollary 1 is a consequence of the fact that:

p(I)
1 (µ1, µ2) =

min(k1,h1)∫
x1=−∞

min(k2,h2)∫
x2=−∞

min(k3,h2)∫
x3=−∞

k4∫
x4=−∞

e

2µ1

σ2
1

h1 e
−

1
2
(
x1 − 2h1 − µ1t1

σ1
√

t1
)

2

σ1
√

2πt1
φ7(x1, x2)

e

2µ2

σ2
2

(h2−x2) e
−

1
2
(
x3 + x2 − 2h2 − µ2(t2 − t1)

σ2
√

t2 − t1
)

2

σ2
√

2π(t2 − t1)
φ9(x1, x3, x4)dx4dx3dx2dx1

(110)

and:

p(I)
3 (µ1, µ2) =

min(k1,h1)∫
x1=−∞

∞∫
x2=max(k2,h2)

∞∫
x3=max(k3,h2)

k4∫
x4=−∞

e

2µ1

σ2
1

h1 e
−

1
2
(
x1 − 2h1 − µ1t1

σ1
√

t1
)

2

σ1
√

2πt1
φ7(x1, x2)

e

2µ2

σ2
2

(h2−x2) e
−

1
2
(
−x3 − x2 + 2h2 + µ2(t2 − t1)

σ2
√

t2 − t1
)

2

σ2
√

2π(t2 − t1)
φ9(x1, x3, x4)dx4dx3dx2dx1

(111)

Corollary 2 comes from the fact that the correlation coefficient between the random

variables S2(t2) and S3(t3) is equal to ρ2.3

√
t2
t3

. □

Proof of Proposition 5. Following steps similar to the beginnings of the previous proofs,
one can express the problem at hand as the following integral:

P[RDKO](µ1, µ2) (112)
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=

min(k1,h1)∫
x1=h2

h3∫
x2=h4

min(k2,h3)∫
x3=h4

φ1(x1, x2, x3)φ11(x1, x2)φ12(x2, x3)dx3dx2dx1

where the function φ1 is given by Equation (86) and:

φ11(x1, x2) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, inf
0≤t≤t1

X1(t) ≥ h2|X1(t1) ∈ dx1

)
dx2dx1 (113)

φ12(x2, x3) (114)

= P

(
sup

t1≤t≤t2

X2(t) ≤ h3, inf
t1≤t≤t2

X2(t) ≥ h4|X2(t1) ∈ dx2, X2(t2) ∈ dx3

)
dx3dx2

From Pötzelberger and Wang (2001), one can plug:

φ11(x1, x2) =
∞

∑
n=−∞

e

2na1(x1 − na1)

σ2
1 t1 − e

2(h1 − na1)(x1 − h1 + na1)

σ2
1 t1 (115)

φ12(x2, x3) =
∞

∑
n=−∞

e

2na2(x3 − x2 − na2)

σ2
2 (t2 − t1) − e

2(h3 − x2 − na2)(x3 − h3 + na2)

σ2
2 (t2 − t1) (116)

The bulk of the proof, whose cumbersome details are omitted, then consists of solv-
ing the sixteen integrals implied by (112). The final result takes the form of the linear
combinations of double sums of N3 functions in Proposition 5.

An elementary adjustment identical to the one in Corollary 3 of Proposition 1 allows
to value an early-ending variant of P[RDKO](µ1, µ2).

Alternatively, one can also expand the problem as the following integral:

P[RDKO](µ1, µ2) =

min(k1,h1)∫
x1=h2

h3∫
x2=h4

min(k2,h3)∫
x3=h4

φ13(x1)φ7(x1, x2)φ14(x2, x3)dx3dx2dx1 (117)

where the function φ7 is given by Equation (102) and:

φ13(x1) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, inf
0≤t≤t1

X1(t) ≥ h2, X1(t1) ∈ dx1

)
dx1 (118)

φ14(x2, x3) (119)

= P

(
sup

t1≤t≤t2

X2(t) ≤ h3, inf
t1≤t≤t2

X2(t) ≥ h4, X2(t2) ∈ dx3|X2(t1) ∈ dx2

)
dx3dx2

According to the classical formula for the distribution of the maximum, the minimum
and the endpoint of a Brownian motion with drift over a closed time interval, which can be
traced back to Anderson (1960), we have:

P

(
sup

0≤t≤t1

S1(t) < H1, inf
0≤t≤t1

S1(t) > H2, S1(t1) < S1(0)ex1 |S1(0)

)

=
∞

∑
n1=−∞

exp

(
2µ1

σ2
1

n1a1

){
N
[

x1 − 2n1a1 − µ1t1

σ1
√

t1

]
− N

[
h2 − 2n1a1 − µ1t1

σ1
√

t1

]}
(120)

−
∞

∑
n1=−∞

exp

(
2µ1

σ2
1
(h2 − n1a1)

){
N
[

x1 − 2h2 + 2n1a1 − µ1t1

σ1
√

t1

]
− N

[
−h2 + 2n1a1 − µ1t1

σ1
√

t1

]}
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for a given x1 ∈ R, and ∀H1 > S1(0)ex1 .
Mere differentiation of (120) w.r.t. x1 yields the function φ13:

φ13(x1) =
∞

∑
n1=−∞

e

2µ1

σ2
1

n1a1−
1

2σ2t1
(x1−µ1t1−2n1a1)

2

σ1
√

2πt1
−

∞

∑
n1=−∞

e

2µ

σ2
1
(h2−n1a1)−

1
2σ2

1 t1
(x1−2h2−µ1t1+2n1a1)

2

σ1
√

2πt1
(121)

To handle the function φ14, we notice that, by conditioning w.r.t. the filtration at time
t1 the same classical formula as the one used to derive φ13, we can obtain:

P

(
sup

t1≤t≤t2

S2(t) < H3, inf
t1≤t≤t2

S2(t) > H4, S2(t2) ≤ S2(0)ex3 |S2(t1) = S2(0)ex2

)

=
∞

∑
n2=−∞

exp

(
2µ2

σ2
2

n2a2

)


N

 ln
(

S2(0)ex3

S2(0)ex2

)
− 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1


−N

 ln
(

H4

S2(0)ex2

)
− 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1




(122)

−
∞
∑

n2=−∞
exp

(
2µ2

σ2
2

(
ln
(

H4

S2(0)ex2

)
− n2a2

))


N

 ln
(

S2(0)ex3

S2(0)ex2

)
− 2 ln

(
H4

S2(0)ex2

)
+ 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1


−N

− ln
(

H4

S2(0)ex2

)
+ 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1





(123)

for any given (x2, x3) ∈ R2 and H3 > S2(0)ex3 .
Equations (122) and (123) can be rewritten as follows:

P

(
sup

t1≤t≤t2

X2(t) < h3, inf
t1≤t≤t2

X2(t) > h4, X2(t2) ≤ x3|X2(t1) ∈ dx2

)

=
∞

∑
n2=−∞

exp

(
2µ2

σ2
2

n2a2

)
N
[

x3 − x2 − 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1

]
−N

[
h4 − x2 − 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1

]
 (124)

−
∞

∑
n2=−∞

exp

(
2µ2

σ2
2
((h4 − x2)− n2a2)

)
N
[

x3 − x2 − 2(h4 − x2) + 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1

]
−N

[
−(h4 − x2) + 2n2a2 − µ2(t2 − t1)

σ2
√

t2 − t1

]
 (125)

Therefore, by differentiating (124) and (125) w.r.t. x3, we obtain:

φ14(x2, x3) =
∞

∑
n2=−∞

e
(
2µ2

σ2
2

n2a2) e
−

1
2σ2

2 (t2 − t1)
(x3−x2−2n2a2−µ2(t2−t1))

2

σ2
√

2π(t2 − t1)
(126)
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−
∞

∑
n2=−∞

e

2µ2

σ2
2

(h4−x2−n2a2) e
−

1
2σ2

2 (t2 − t1)
(x3+x2−2h4+2n2a2−µ2(t2−t1))

2

σ2
√

2π(t2 − t1)
(127)

This second formulation leads to a formula identical to Proposition 5 except for the
fact that the N3 functions are replaced by Φ3 functions defined as follows:

Φ3[b1, b2, b3; x] =
b2∫

x=−∞

exp
(
−x2/2

)
√

2π
N

 b1 − c1x√
1 − c2

1

 N

 b3 − c2x√
1 − c2

2

dx (128)

where (b1, b2, b3) ∈ R3 and x is a vector with two real coordinates c1, c2 ∈ ]−1, 1[.
The vectors of correlation coefficients x1 and x2 become:

x1 =

{
ρ1.2,

√
t1

t2

}
, x2 =

{
ρ1.2,−

√
t1

t2

}
(129)

The origin of the function Φ3, which is a special form of trivariate normal cumulative
distribution, lies in the FDD (finite dimensional distribution) of the triple [S1(t1), S2(t1), S2(t2)].
Indeed, a little algebra shows that, ∀D1, D2, D3 ∈ R+, we have:

P(S1(t1) ≤ D1, S2(t1) ≤ D2, S2(t2) ≤ D3)

= Φ3

 ln
(

D1
S1(0)

)
− µ1t1

σ1
√

t1
,

ln
(

D2
S2(0)

)
− µ2t1

σ2
√

t1
,

ln
(

D3
S2(0)

)
− µ2t2

σ2
√

t2
; ρ1.2,

√
t1

t2

 (130)

Notice that the two-colour probability distributions of Sections 2.1 and 2.2 can also be
written as linear combinations of functions Φ3. □

4. Conclusions

This article has shown how to value in closed form an important kind of multi-asset
step barrier option known as a rainbow step barrier option, under the condition that the
number of “colours” is restricted to two, along with widespread variants such as a two-
colour outside step barrier and a two-colour step double barrier. It may be feasible, albeit
tedious, to find an analytical solution to an extended valuation problem with three or four
colours, but the expected benefits, compared with a conditional Monte Carlo approximation
method, would greatly depend on the degree of the quadrature required to numerically
evaluate the resulting multidimensional integrals. It should be emphasised that, even if
more sophisticated models (allowing, e.g., for stochastic volatility) or a greater number
of underlying assets are needed, closed form solutions obtained in a low-dimensional
Black–Scholes framework remain useful as fast and accurate benchmarks that can: (i) serve
as control variates in a simulation; (ii) speed up the calibration process; (iii) facilitate the
analysis and the understanding of the interactions between the variables, as well as of
the sensitivities of the option value w.r.t. its main parameters, which is instrumental in
devising appropriate hedging techniques or trading strategies.
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