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Abstract: Using data from 2000 through 2022, we analyze the predictive capability of the annual
numbers of new home constructions and four available environmental, social, and governance
(ESG) factors on the average annual price of homes sold in eight major U.S. cities. We contrast
the predictive capability of a P-spline generalized additive model (GAM) against a strictly linear
version of the commonly used generalized linear model (GLM). As the data for the annual price and
predictor variables constitute non-stationary time series, we transform each time series appropriately
to produce stationary series for use in the GAMs and GLMs in order to avoid spurious correlations
in the analysis. While arithmetic returns or first differences are adequate transformations for the
predictor variables, we utilize the series of innovations obtained from AR(q)-ARCH(1) fits for the
average price response variable. Based on the GAM results, we find that the influence of ESG factors
varies markedly by city and reflects geographic diversity. Notably, the presence of air conditioning
emerges as a strong factor. Despite limitations on the length of available time series, this study
represents a pivotal step toward integrating ESG considerations into predictive time series models
for real estates.

Keywords: real estate prices; generalized additive models; generalized linear models; stationarity in
regression models; environmental, social, and governance factors

1. Introduction

Hedonic models are employed to analyze and predict average real estate prices via
intrinsic and extrinsic factors. The average home price in a city plays an important role
in the calculations made by potential homebuyers, particularly for low- and fixed-income
buyers. Undoubtedly, the impacts of climate change and extreme weather will also affect
the decisions made by potential homebuyers (as well as current homeowners) as the century
progresses. Much work has been carried out in quantifying and modeling residence-based
(e.g., lot area and number of bedrooms) and neighborhood-based (e.g., school zoning and
homeowners’ association fees) factors. The impact of recent developments in environmental,
social, and governance (ESG) policies and factors on real estate prices have not been as
well-analyzed. This paper contributes to that analysis.

We begin by briefly describing work that has been carried out to assess the impact
of ESG factors on homebuilding and consumer decision-making. The environmental,
social, and governance components of ESG represent the sustainability factors of a property.
Resiliency to global warming, the risk of a natural disaster, and the installation of renewable
energy systems are examples of environmental factors. Noise pollution, construction
worker labor standards, and homeowner satisfaction are examples of social factors. Legal
issues related to property owner practices, regulatory compliance with standards set at all
governmental levels, and overall transparency are examples of governance factors.
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Ma et al. (2019) analyzed the impact of governmental policymaking processes on
residential green energy additions and constructions. Even with a consumer base open
to adopting environmentally friendly technologies, the cost bases, measured relative to
non-green energy prices, play a large role in the adoption of such technologies. In particular,
governmental policies on residential green energy subsidies that are too stringent can have
an adverse effect on household installations.

Lauper et al. (2013) analyzed the green home acquisition and installation process from
the point of view of a homebuilder. Social factors (e.g., behavioral control and social norms)
have meaningful impacts on the energy-relevant decisions made in homebuilding. Social
policies and norms, such as low energy consumption building certificates and awareness of
available green technologies, have been shown to heighten consumer interest and spending
on environmentally friendly appliances.

In addition to qualitative analyses based on consumer behavior, quantitative indices
have been developed to provide guidance to consumers in assessing home prices. Environ-
mental factors (e.g., average maximum temperatures and flood risk) can be expected to play
a role in homebuyer decisions (and, therefore, real estate pricing). Mahanama et al. (2021)
developed a natural disasters index to assess the level of future systemic risk caused by nat-
ural disasters. Their index used decades of property losses from the NOAA Storm Data to
assess the main contributors to property losses. Although a homeowner’s thought process
can be very subjective, a quantification of the risk of extreme weather events represents an
important step in translating subjective thought processes into quantitative factors for use
in modeling. The results of a survey of research at the intersection of climate risks, housing,
and mortgage markets revealed that natural disasters are expected to continue to weigh
heavily on home prices (Contat et al. 2023). Specifically, the risks of flooding and wildfires
were shown to correlate inversely with home prices, as higher risks of floods and wildfires
result in discounts on said prices.

Intrinsic and extrinsic factors, including some ESG factors, have been used to describe
the variance in (the logarithm of) the expected sales price of homes (Bailey et al. 2022). When
ESG factors (accessibility for the elderly and disabled, presence of central air conditioning,
“green home” rating, and waterfront location) commonly available on real estate vendor
websites were included, minor improvements were observed in the model adjusted R?
values. Although the model results were city dependent, the potential impact that such
ESG factors had in assessing home prices was established.

Such factors have also been shown to have different impacts on home valuations
depending on a home’s value in the context of the local housing price distribution. For
example, an analysis of 1366 home sales in Orem and Provo, Utah, from mid-1999 to
mid-2000 found that segmenting houses by quantile was important in identifying the
effects of several input factors (Zeitz et al. 2007). The number of bedrooms was found to be
more significant in lower-priced homes than higher-priced homes, whereas the number
of bathrooms was more significant in higher-priced homes than lower-priced homes. As
another example, an analysis of 136,000 single-family home sales in Jacksonville, Florida,
from 1990 to 2006 found that square footage and lot size were found to be more significant
at the upper level of home prices, whereas home age was more significant at lower home
prices (Zeitz et al. 2008). The analysis also assessed the impact of home location relative to
a body of water, such as whether or not the property was an oceanfront one or bordered
the St. John’s River.

Furthermore, an analysis in a similar vein conducted in Changsha, China, found that
homes near the lowest and highest quantiles of the price distribution were more affected by
the prices of nearby properties than those in the middle (Liao and Wang 2012). Similarly
to the Jacksonville analysis, square footage was found to weigh more heavily as the home
price increased. With regard to green areas, the study found that lower-priced units were
positively impacted by the presence of green spaces, whereas the opposite was true for
higher-priced units. Another study in China focused on the capital financing patterns of
A-listed Chinese companies as commercial enterprises also found the significance of ESG
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factors, particularly for creditworthiness (Zahid et al. 2023). The relationship between the
combined ESG score and market-based financial leverage was found to be negative and
significant, which indicates that stronger ESG disclosures may have resulted in higher
investor confidence in those companies. In a similar vein, they also found that a positive
correlation existed between a company’s ESG performance and the managerial skills of its
chief executive officer (Zahid et al. 2024). Furthermore, companies experiencing financial
difficulties prioritized ESG performance more significantly than companies not experi-
encing financial difficulties. Thus, these analyses reveal that ESG factors are important
considerations in non-Western countries, too.

Other ESG factors not currently featured on real estate vendor sites, such as the impacts
of air pollution, have been explored. For example, an analysis of the closure of a toxic site
leading to changes in atmospheric pollution levels found that the corresponding drop in
SO; levels correlated with an average house price increase of 6% (Lavaine 2019). However,
the average price of flats decreased by 9%, suggesting that the impacts of refinery closures
and changes in air pollution levels have heterogeneous effects on the subsamples.

The usual application of a hedonic home-pricing model is “cross-sectional”, consisting
of a data set of response (price) and predictor (e.g., number of bedrooms, bathrooms, home
size, etc.) variables for a sample of homes. Implicit in the cross-sectional analysis is the
assumption that the data set represents independent and identically distributed random
samples reflective of the pricing structure in a particular geographic area. By contrast, the
application in this paper is to time series data. For a geographic area (specifically a city),
the data set consists of the average annual home price, the number of homes sold per year,
and yearly values for each of four available ESG factors. As we show (Appendix B), each
time series is non-stationary and exhibits strong year-by-year trends, which can produce
spurious correlations in fits by hedonic models.

This paper pursues three goals. The first is the determination of an appropriate
transformation into a stationary form for each time series of annual data. The second is to
evaluate the effectiveness and accuracy of the application, to these transformed series, of a
P-spline-based generalized additive model (GAM) compared to a generalized linear model
(GLM). The analysis used data from eight cities, and the cities are shown on the map in
Figure 1 below.

W \ﬁ.ﬁ
= b -"z
(o) (W)
x\ ; v \'\.
W

Figure 1. The eight selected cities plotted on a map of the continental United States.

These cities were chosen to represent variations in geography, primary economic
activity, and population size and density. For example, the cities of Portland and Seattle
represent the Pacific Coast, whereas the cities of Columbus and Oklahoma City represent
the interior of the country. Furthermore, Austin has a strong economic base in the tech
sector, whereas Nashville is a major center of the music industry. Finally, Atlanta has a high
population density of over 1420 people per square kilometer, whereas Jacksonville has a
much lower population density of about 490 people per square kilometer.
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Each transformed time series is “de-trended”, as it represents values from a fixed-
mean and fixed-variance random variable. Using principal component analysis, the third
objective is to investigate the residual error time series (aggregated across cities) from each
of the GAM and GLM fits to determine the presence of further latent random variables.
As the model is deliberately parsimonious in terms of the number of predictor factors, we
hypothesize the presence of additional latent variables.

2. Materials and Methods
2.1. Price and Factor Data

Price and factor data were acquired from Zillow". The data set is composed of
completed sale transactions of homes” each year for the years 2000 through 2022 for eight
cities®. For each year and city, the data set consists of the average home sale price (Av
Price), the total number of homes constructed (New Homes), and four ESG factors: the
number of homes with central air conditioning (Central AC), the number of green-rated
homes (Green), the number of homes considered accessible to the elderly and disabled
(Accessible), and the number of homes along a waterfront (Waterfront)*. The eight cities
studied were Atlanta, GA (ATL), Austin, TX (AUS), Columbus, OH (COL), Jacksonville, FL
(JAX), Nashville, TN (NAS), Oklahoma City, OK (OKC), Portland, OR (POR), and Seattle,
WA (SEA). As an example, Table A2 in Appendix B summarizes the full data set for ATL.

1

2.2. Generalized Additive and Linear Models

A GAM relates a univariate response variable Y; to a set of predictor variables (factors)
Xep k=1, ..., m. (Here, the subscriptt =1, ..., T indicates the observed set of values of
the response and predictor variables. In this application, t indicates yearly time values.)
Specifically, the GAM relates the expected value y; = E[Y;] to the predictor values via

g(ut) = Bo+ filxre) + falxoe) +- -+ fu(xme), t=1,...,7. (1)

The model assumes Y; ~ EF(y;,0), where EF(j, 0) denotes the exponential family of
distributions having mean y; and scale parameter 6. The choice of the link function g( - )
relates expected values of the average i to the factors via

ne =8 "(Bo+ filxre) + falxos) + -+ fun(xme)) + &, )

where ¢; denotes the residual error that is not captured by the model. The identity function
was used for g( - ), and P-splines (Eilers and Marx 1996) were used for the functions f;( - ).
Such P-splines minimize the penalized sum of squares

T

m 2 m
£ (v Bt )+ Eaf s o o
=1 j=1

i=1
where the tuning parameters A; > 0 determine the weight assigned to the smoothness of
each function. The values x;; are referred to as the knots for the function f;( - ).
The results acquired from this GAM were compared to those from a standard GLM of
the form
8(Ey(Y[X)) = Bo+ Prx1 + - -+ + Pk +§ = XB+E. 4)

In (4), matrix notation is used to represent the response and predictor values:
Y = [Yq, ..., Y¢]" is the column vector of response values, B = [Bo, B1, --., Pm]" is
the column vector of unknown parameters, ¢ = [gg, €1, ..., ST]T is the column vector of
residuals, and X is a T X (m + 1) matrix. The first column of X is a vector of ones, while
columnj, j =2, ..., m+1,is the vector xj = [lel, cery xj,T] T of values for factor Xj. Asin
the GAM, we used the identity function for g( - ), which reduced (4) to a pure linear model.

In the GAM (1), the use of a non-linear function f;( - ) provides non-linear dependence
on the time-dependent value of its argument x;;. In the GLM (4), the corresponding
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coefficient B is constant, which results in linear dependence on the time-dependent value
of xj;. Thus, a non-linear form for the f;( - ) enables a greater fitting accuracy for the
GAM compared to the GLM. On the other hand, the GLM provides a superior model
for prediction. The form of the function f;( - ) depends on the known values of its knots.
Accurate prediction by GAM requires knowledge of future knot values to a much greater
degree than the GLM® does.

2.3. Transformation to Stationary Time Series

We wish to compare the accuracy of models (1) and (4) in predicting the time series
of the expected value y; = E[Y;] of average annual home price Y; in terms of the time
series of the five factors Xjts j=1, ..., 5described earlier for each city. Each time series
consists of 23 years of values. It is necessary that the time series for the response variable
and each factor be stationary in order to avoid spurious correlations in the factor analyses.
Stationarity of each time series was investigated via the augmented Dickey—Fuller (ADF)
test applied to the random walk model®

q
Ayt = ay;1+ Y 6iAy—i + €. ()
i=1

The statistic DF, = &/SE(&)” is used to test the hypotheses Hy : & = 0 (the existence
of a unit root) against Hy : a < 0. The rejection of the null hypothesis through a sufficiently
small p-value suggests that no unit root is present and that stationarity can be assumed.

As illustrated in Figure A1l (Appendix B) for ATL and as verified by the ADF test,
stationarity could not be inferred at any reasonable level of statistical significance for any
factor or price time series for any of the eight cities. As discussed in Appendix B and
illustrated for ATL in Figure A2, the use of the arithmetic return series for each predictor
factor produced transformed time series that were acceptable. There were five exceptions
for which the arithmetic return time series had to be replaced by simple first differences
in order to avoid division by zero: the Accessible factor for Seattle, the Green factor for
Columbus, and the Waterfront factor for three cities. As the first-difference time series for
the Waterfront factor for all eight cities had very acceptable p-values (below 1.5%), we used
the first-difference time series for the Waterfront factor for all cities for consistency. Thus, the
predictor variables used in (1) and (4) represent transformed series (with the transformation
being either arithmetic returns or first differences). The specific transformation used for
each factor is summarized in Table A4 in Appendix B.

Table 1 provides the p-values for the ADF tests computed on each of the transformed
predictive factor series. The transformed time series for each factor is assumed stationary
at a 5% significance level with four exceptions: New Homes and Central AC for ATL
and Accessible for JAX and OKC. Only one (Accessible for JAX) is not significant at the
10% level.

Table 1. ADF test p-values for each transformed time series by city.

Factor ATL AUS COL JAX NAS OKC POR SEA

New Homes 0.074 ** 0.017 0.034 o 0.021 ** 0.014
Central AC 0.069 0.015 0.013 0.032  0.012 0.036 ** **
Green - - - - . - - -
Accessible 0.012 ** ** 0.244 o 0.076 ** **
Waterfront 0.015 ** o o o ** ** **

InﬁZ\}?tif:ns 0.020 ** 0.036 0.053 0.095 0.055 0.020  0.097

** Indicates a p-value < 0.01.
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Neither arithmetic returns nor first (nor second) differences were sufficient to achieve
stationarity for the average price time series. To obtain stationarity, we resorted® to fitting
an AR(g)-ARCH(1)-Student’s-t model

9
Tt —pr = 2 @i(ri—i — pr) t €t
i=1
(6)
€t = 01z, 2zt ~ ty,
(th =w+ ocletz_l
to the arithmetic return series r; = (Y; — Y;_1)/Y;_; of the yearly average price. In (6),
t, denotes Student’s-t distribution with v degrees of freedom. A fit was judged satisfactory
if the innovation series z; was determined to be stationary (as verified by the ADF test). For
each city, we chose the smallest value of g that produced a stationary innovation series. As
detailed in Table A4 in Appendix B, the value g = 1 was sulfficient for four cities, whereas
q = 2 was required for the remaining four. The p-values obtained for the price innovation
time series are also listed in Table 1. Four are significant at the 5% level, and the remaining
four are significant at the 10% level. The resulting innovation time series z; served as the
response-variable time series in the GAM and GLM fits.

2.4. Principal Component Analysis for Additional Systematic Factors

As noted in the previous section, the GAMs and GLMs were applied to response
variables consisting of “average-price innovation” time series and either arithmetic return
or first-differenced transformed predictor variable time series. As a result of the transforma-
tions, each time series is reduced to 22 (rather than 23) years of observations (2001 through
2022). For each city, the difference between the AR(g)-ARCH(1)-derived innovation and
the regression model fit results in twenty-two residual error values (one per year). These
residuals can be assembled in a matrix R = {e;;}, t =1,..., 22,k =1,..., 8 (kis the
city index”). We performed a principal component analysis by computing the eigenvalues
and eigenvectors of the variance—covariance matrix R’ R in order to determine whether
systemic factors remained in the residuals (Rachev et al. 2007). The eigenvectors correspond
to the principal components (ordered in descending order). We refer to extreme value
theory (de Haan and Ferreira 2006) to analyze the type of decay exhibited by the explained
variances'” associated with the principal components. Consider the decaying discrete
exponential distribution

1 x— 1 n(l—
fl(x):B(l_lB)( l):meXI (1 ﬁ), x:0, 1, ceey ﬁG(O, 1) (7)
and the decaying power-law zeta distribution
[
fz(x):mx , o ox=1,2,..., b>1, (8)

where (D) is the Riemann zeta function and x is the index of the principal component. The
relative changes with respect to x in these two distributions are

_hG+D) - A0) Chl+D)—fH) (x \'
R1<x) - fl(x) - ﬁf RZ(X) - fz(x) - (1 +x> 1. (9)

As the magnitude of Ry (x) is independent of x, each component of the exponential
fit has the same relative drop in importance. On the other hand, the magnitude of Ry (x)
decreases as higher components are added for any b > 1; thus, additional components
add less value to the model. Power decay suggests that noise dominates the residuals,
whereas exponential decay suggests that systemic factors continue to be unaccounted for
(de Haan and Ferreira 2006). If f(x) represents the observed distribution of proportion of
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variance, plots of Inf(x) vs. x compared with Inf(x) vs. In(x) will distinguish between
exponential and power-law tail behavior.

3. Results
3.1. GLM and GAM Results

GLM and GAM fits were obtained, respectively, using the R I (linear model) function
and the gam package (Hastie 2023). Table 2 displays the p-values associated with the
various factors for each city as fit by the GLM and GAM. Note that the p-values for ATL are
identical under both the GAM and the GLM. For this city, the GAM P-splines simplified to
linear terms and became identical to the GLM.

Table 2. Significance (p-value) of the factors in the GLM and GAM fits.

Factor ATL AUS COL JAX NAS OKC POR SEA
GLM
New Homes 0.747 0.189 0.184 0103 0.025 0515 0176  0.632
Accessible 0.467 0.994 0.169 0315 0.585 ** 0.353  0.320
Central AC 0.594 0.234 0169 0117 0.024 0700 0.550  0.879
Green 0.500 0.100 0249 0.633 0247 0.116 0.191 0.457
Waterfront 0.629 0.975 0.838  0.807  0.041 0929  0.855  0.242
Adj. R? -0.167  —0.061 0144 0.159 0218 0504 —0.525 0.226
GAM
New Homes 0.747 0.151 0.100  0.017  0.091 0.152  0.017  0.555
Accessible 0.467 0.945 0.031 0.021 0.677 * 0.720  0.169
Central AC 0.594 0.240 0.063  0.027 0.08  0.015 0.032 0.997
Green 0.500 0.019 0356  0.188  0.102 ** 0.073  0.363
Waterfront 0.629 0.646 0.069  0.085 o 0984 0123 0462
Adj. R? —0.167 0.388 0518 0560 0.703  0.855 0.468  0.349

** indicates p-value < 0.01.

Because there is only a small set of factors, we evaluate the significance of each factor
with a level of significance of 10%. Table 3 summarizes the number of significant factors for
each city as well as the number of cities for which each factor was found to be significant.
In either marginal view (i.e., by city or by factor), the number of significant quantities under
the GAM equaled or exceeded that under the GLM. Notable differences in the number
of significant factors occurred for COL, JAX, OKC, and POR. Increases in the significant
number occurred for all five factors and particularly for New Homes and Central AC.

Table 3. Summary of marginal significances in Table 2 using a p-value threshold of 10%.

Number of significant factors
Model ATL AUS COL JAX NAS OKC POR SEA

GLM 0 1 0 0 3 1 0 0
GAM 0 1 4 4 3 3 3 0
Number of cities for which a factor is significant
New . Central Water-
Model Homes Accessible AC Green front
GLM 1 1 1 1 1
GAM 4 3 5 3 3

Table 2 also presents the adjusted R? values obtained from the model fits. These
values are reflective of the marginal significance numbers summarized in Table 3. Figure 2
presents a box-and-whisker summary of the spread of the adjusted R? values for each
model. The non-linear GAM produced consistently better values. The fact that some values
are negative, particularly for the GLM, indicates model inappropriateness. Given the small
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number of predictor variables, the large adjusted R? values for the GAM were unexpected
and indicate a direction for future investigation.

1 GLM GAM
0.8 —|—
0.6
0.4
0.2

0
0.2

X

-0.4

-0.6
Figure 2. Box-and-whisker summary of the adjusted R? values of Table 2 for the GLM and GAM fits.

The results illustrate the potential for using ESG return (or first-difference) factors in
modeling average home price innovation time series for cities. The GAM results indicate
that such relationships are nonlinear. The nonlinear nature of a GAM is able to distin-
guish the predictive capability of the ESG factors (particularly the influence of central air
conditioning) on average home prices. The results show conformity with the geographic
locations and demographic profiles of the cities. As an example, consider the Waterfront
factor. Water-body percentage (the percentage of the city area that is of a body of water) is
a proxy (though not always an accurate one'') for waterfront acreage. The percentage of
each city’s area comprised of bodies of water is provided in Table 4.

Table 4. Percentage of water area and percentage of seniors living alone, by city.

ATL AUS COL JAX NAS OKC POR SEA
Water Area @ 0.7 2.0 2.6 14.5 4.2 23 79 40.9
Seniors P 3.8 4.6 72 79 8.2 13.4 9.0 41

2 source: US Census Gazetteer (2023) ® source: US Census (2010).

Consider the scatterplot of the Waterfront GAM p-values versus water-body percent-
age shown in Figure 3. As the proxy is approximate, we look for a fuzzy relationship by
dividing the plot into four quadrants. Significant occupancy in the (low, high) and (high,
low) quadrants indicates a fuzzy inverse relationship between the water-body percentage
and Waterfront p-value. Three cities (ATL, AUS, and OKC) occupy the (low, high) quadrant
with three (COL, JAX, and NAS) occupying the (high, low) quadrant. Two cities (POR and
SEA) occupy the (high, high) quadrant with POR lying very close to the (high, low) quad-
rant. SEA’s water-body percentage is a poor proxy for waterfront area since a large fraction
of the water-body area (Puget Sound and Lake Washington) is distant from the shoreline.

Similarly, we consider the percentage of seniors living alone as a proxy for the Ac-
cessible factor. Table 4 also shows the 2010 census results on the percentage of seniors
living alone in each of the eight cities, and Figure 3 shows the relevant scatter plot and
quadrants. Again, three cities (ATL, AUS, and SEA) occupy the (low, high) quadrant with
three (COL, JAX, and OKC) occupying the (high, low) quadrant. This indicates a fuzzy
inverse relationship as established by six of the eight cities.

For comparison purposes, Figure 4 presents these quadrant plots for the GLM fits.
Maintaining a p-value threshold of 0.01 leads to no meaningful inverse relationship be-
tween the Waterfront p-value and water-body percentage. One might argue that there is a
fuzzy inverse relationship between the percentage of seniors living alone and the Acces-
sible p-value in the GLM results, but this would be based upon the (high, low) quadrant
occupancy of a single city (OKC).



J. Risk Financial Manag. 2024, 17, 375 90f17

1 o 1
09 0.9 L4
0.8 0.8
307 So7 o
g @ g
%06 ® 206
E 0.5 Py % 0.5 °
£ 04 2 04
] 4]
K 03 gos
0.2
0.2 °
0.1 —? -] [ ) 0.1
0 [ ] 0 [ X Y
0 5 10 15 20 25 30 35 40 45 0 ) 4 6 3 10 12 14 16
water-body (%) seniors living alone (%)

Figure 3. (Left) Waterfront p-value versus water-body percentage. (Right) Accessible p-value versus
percentage of seniors living alone for the GAM fits.

1 ‘ 1.2
0.9
o © 1 °
__ 08 °
[} o
207 =038
206 @ g
== 2
£05 06 °
0
£ 04 2 °
£ 03 g 04 ~
= 0% Y < [ ] [
' 0.2 °
0.1
0 L 0 [ ]
0 5 10 15 20 25 30 35 40 45 0 2 4 6 3 10 12 14 16
water-body (%) seniors living alone (%)

Figure 4. (Left) Waterfront p-value versus water-body percentage. (Right) Accessible p-value versus
percentage of seniors living alone for the GLM fits.

3.2. Principal Component Analysis and Residuals Results

Tables A5 and A6 in Appendix C provide the residual matrices R for each model.
Table 5 displays the proportion of variance obtained for each of the identified components
for each model. The fits of the exponential and power-law decays (7) and (8) to the
proportions of variance data in Table 5 are presented in Figure 5 along with the R? and
mean squared error (MSE) results for each.

Table 5. Proportion of explained variance by principal component (PC).

Model PC1 PC2 PC3 PC4 PC5 PCeo PC7 PC8
GLM 0.453 0.205 0.111 0.087 0.061 0.041 0.028 0.014
GAM 0.319 0.209 0.144 0.138 0.075 0.050 0.039 0.028

Visually and through the quantitative R? and MSE values, it is clear that the exponen-
tial fit does a better job of describing the data. Thus, we conclude that systemic factors
not included in the models exist in the residuals. This was fully anticipated, as there was
no expectation that a model for average annual home prices based only on new home
constructions and four ESG factors would encompass all significant factors. Moreover, a
comparison of the R? and MSE for the GAM and GLM exponential fits further supports
our findings from the adjusted R? numbers and p-values that the GAM provides a model
superior to the GLM.
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Figure 5. (Left) Exponential and (right) power-law fits to the proportions of variance obtained for
eight components arising from the principal component analysis for the GLM and GAM fits to all
eight cities.

4. Discussion

Our results demonstrate that P-spline GAMs possess strong predictive capabilities for
the expected value of the average annualized home sale price in major U.S. cities with ESG
factors. The results stand in stark contrast to the GLMs. Although each factor in the GAM
was significant for multiple cities, some factors (particularly central air conditioning) were
especially prevalent. Overall, the results of the eight surveyed cities strongly suggest that
the significance of ESG factors is very city-dependent.

As climate change continues to warm the planet, cities at more northerly latitudes
which would otherwise not experience hotter temperatures will see higher rates of central
air conditioning. Therefore, we expect that the significance of available central air condi-
tioning will increase as the century progresses for both average annualized real estate prices
and individual home prices. The cities of Columbus, Jacksonville, Nashville, Oklahoma
City, and Portland each had significant p-values for the air conditioning factor. Four of
these cities have annual temperature ranges in excess of forty degrees Fahrenheit and no
more than two months out of the year with daily highs in excess of ninety degrees Fahren-
heit. Because global temperatures have increased over the past few decades, residents in
these cities will experience more days with excessive heat; thus, air conditioning units will
continue to increase in demand.

Such a situation and its policy ramifications occurred in Portland and Seattle during
the 2021 Western North America heat wave during late June and early July. Temperature
anomalies well in excess of twenty degrees Fahrenheit above the historical average were
present in these two cities. According to the U.S. Census Bureau, only 44% of homes in
Seattle had air conditioning in 2019; that number increased to over 53% just two years
later. Since the heat wave, the City of Seattle has enhanced its rebates and credits for
air conditioning units, and these rebates and credits are particularly focused on energy-
efficient and green energy implementations'?. Combined with the green energy credits of
the Inflation Reduction Act passed at the federal level in 2022, it is clear that governmental
financial incentives for consumers to install air conditioning units and green energy sources
have encouraged many homeowners to do so.

One weakness of the current data set is the length of each time series. Yearly data
points over 23 years result in first-difference, return, and innovation time series of length
22, which reduces the effective sample size needed for fits by the ARFIMA-GARCH-based
model, GAM, and GLM. It would be better to have access to monthly data over the
same 23-year time period. Unfortunately, we had no access to such data for this study.
Additionally, the four selected ESG factors were the ones readily accessible from Zillow,
and the incorporation of more ESG factors would have enhanced the analysis.
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Appendix A. Filter Values

Table A1l. Filter values used for Zillow data.

Filter Input Filter Input
Status Sold

Price Range MIN: USD 50k, MAX: USD 10M

Bedrooms 1+

Bathrooms 1+

Home Type Houses, Townhomes,

Multi-Family, and
Condos/Co-ops

More Filters
Max HOA Any Must have A/C ESGP
Parking Spots Any Must have pool NS
Square Feet MIN: 500, MAX: NS 2 Waterfront ESG P
Lot Size MIN: NS, MAX: NS City NS
Year Built MIN: 2000, MAX: 2022 Mountain NS
Has basement NS Park NS
Single-story only ACC*© Water NS
Hide 55+ communities NS Sold in Last 36 months
Keywords
Green, ESG “Accessible” ACC

“Green Home”

2 NS = not specified ® “Yes” when filtering for those houses and “NS” otherwise. ¢ Single-story only and/or
classified as “Accessible”.

Appendix B. Analysis of Stationarity

Table A2 provides the price and factor data for the city of Atlanta. Figure A1l plots
these 22-year time series. Visual inspection shows clear and non-stationary trends in
each time series. The p-values obtained from the ADF test run on each of these times
series are provided in Table A2. All p-values are strongly indicative of non-stationary
time series. A common method used to transform a non-stationary time series x; into
a stationary one is through first differences Ax; = x; — x;_1 or, equivalently, arithmetic
returns 7y = Ax;/x;_1'°. The use of arithmetic returns is preferred, for its use on different
time series produces transformed series of comparable magnitudes. Figure A2 plots the time
series for Figure Al in terms of their arithmetic return. Visually, the trends are eliminated
or vastly reduced. Figure A3 plots the return series for the price and factor series, and
Table A2 presents the resultant p-values from the ADF test. All are vastly improved, which
indicates stationarity (at a threshold significance of 7.5%) with the exception of the price
series. Fits of an AR(7)-ARCH(1)-Student’s t model to the price series for ATL produced
the best results for g4 = 2. The resultant innovation time series is shown in Figure A3, and
the p-value from the ADF test for the innovation time series is provided in Table A3.
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Table A2. Price and factor data for ATL.
Av New . Central Water-
Year Price Homes Accessible AC Green front
2000 174,500 456 43 454 20 31
2001 187,800 718 85 716 38 38
2002 196,400 919 112 873 46 79
2003 203,400 649 38 615 26 43
2004 211,700 1267 139 1235 40 107
2005 222,000 1842 140 1815 55 142
2006 229,200 1775 171 1718 37 139
2007 233,800 1451 124 1386 36 99
2008 225,500 916 145 902 19 52
2009 212,000 427 41 401 30 74
2010 195,600 330 46 305 47 31
2011 180,500 89 2 88 7 5
2012 172,900 105 1 114 6 14
2013 183,400 168 2 174 7 11
2014 200,900 167 3 182 13 8
2015 216,600 283 5 277 16 14
2016 232,400 319 5 305 11 23
2017 249,100 404 6 394 12 26
2018 269,600 451 2 432 25 28
2019 286,400 629 11 823 31 26
2020 303,200 1225 31 968 32 75
2021 351,300 1091 54 1019 55 88
2022 430,000 740 29 760 51 67
Table A3. Significance (p-value) of the time series for ATL.

Factor HNofnvZes Accessible Ce:éral Green ‘;Vritz- Price
raw data 0.729 0.368 0.757 0.544 0.632  >0.990
(Figure A1)
arithmetic return 0.074 0.012 0.069 x* xk 0.943
AR(Z)_ARCH(D na? na na na na 0.020
innovation

** indicates a p-value < 0.01. ® Not applicable.

450
400 Av_Price

Thousands

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Figure A1l. Cont.

2022
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Figure Al. Time series for year-averaged home sale price (Av Price) and the factors New Homes,
Accessible, Central AC, Green, and Waterfront for the city of Atlanta for the years 2000 through 2022.

(Source: Zillow).
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Figure A2. Arithmetic return series for the times series displayed in Figure A1.
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Figure A3. Price innovation time series for ATL.
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Table A4 summarizes the transformations that were used on each time series, and
Table 1 summarizes the p-values obtained from the ADF tests.

Table A4. Type of transformed series used in the GAM and GLM fits.

ATL AUS COL JAX NAS OKC POR SEA
rtn 2 rtn rtn rtn rtn rtn rtn rtn
rtn rtn rtn rtn rtn rtn rtn rtn
rtn rtn fd b rtn rtn rtn rtn rtn
rtn rtn rtn rtn rtn rtn rtn fd
fd fd fd fd fd fd fd fd
qg=2°¢ q:ld g=1 qg=2 g=1 g=1 g=2 g=2
a rin: arithmetic return P fd: first difference ¢ AR(2)-ARCH(1) 4 AR(1)-ARCH(1).
Appendix C. GLM and GAM Residuals
Table A5. Residual values (USD) for the GLM fit on each city by year.
Year ATL AUS COL JAX NAS OKC POR SEA
2001 0.068 —-0.229  —0.082 0.050 —0.101 0.001 0.218 —0.025
2002 —-0.793  —0282  —0.086 0.292 —-0.540 —-0.207 —0.591 —0.655
2003 0.246 —0.608 0.394 0.244 —0.332 0.253 —0.100 0.773
2004 —0.191 0.057 —0.079 0.341 —0.088  —0.043 0.826 0.755
2005 —0411  —-0.034  —0.004 0.005 0.828 0.322 1.577 0.700
2006 —-0433 —-0.047 0352 —-0.271 0.112 0.206 —0.020 —0.815
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Table A5. Cont.

Year ATL AUS COL JAX NAS OKC POR SEA
2007 —0.053 0.251 —0.089 —0.198 —0.481 -0.577  —0.196 —0.780
2008 —0.887  —0.151 0.016 —0.056 —0.761 —0.089 0.259 -1.170
2009 —0.416 —0.354  —0.188 0.289 —0.243 —0.485 0.294 —0.067
2010 —-0.292  —-0.145 —-0.239 —0.161 0.234 —0.253 —0.150 —0.036
2011 0.319 —0.039 —0.341 —-0.171 0.319 —0.024 —0.699 —0.275
2012 0.348 0.452 0.192 —0.099 0.085 0.202 —0.054 0.710
2013 1.857 0.326 0.333 —0.018 0.137 —0.407 0.180 0.150
2014 —0.630 0.149 0.391 —0.119 0.246 0.675 —0.488 —1.296
2015 —0.948 0.072 —0.092 —0.300 0.616 —0.312 —-0.718 0.347
2016 0.027 -0.077  —0.087 0.142 —0.003 0.036 0.214 —0.013
2017 —0.151 0.228 0.219 —0.158 0.406 0.070 —0.116 0.921
2018 —0.295 —0.158 —0.221 0.094 —0.031 0.117 —-0.268  —0.511
2019 —-0.387  —0.026 —0.156 —0.006 —0.498 0.273 —0.561 0.225
2020 0.340 —0.115 —0.086 —0.053 —0.164 —0.038 —0.022 0.131
2021 2.152 0.657 0.259 0.189 0.148 0.144 0.717 1.027
2022 0.530 0.073 0.298 —0.038 0.111 0.134 —-0.302 —0.096

Table A6. Residual values (USD) for the GAM fit on each city by year.

Year ATL AUS COL JAX NAS OKC POR SEA
2001 0.068 —0.147 0.037 —0.048 —0.296 0.159 —0.006 0.184
2002 —0.793 —0.530 —0.232 0.119 —0.463 —0.369 —0.052 —0.686
2003 0.246 —0.321 0.141 0.116 —0.559 —0.220 —0.295 0.935
2004 -0.191 0.195 —0.126 0.601 —0.304 0.000 1.535 0.945
2005 —0.411 0.195 —0.186 —0.203 0.857 0.530 1.807 0.884
2006 —0.433 —0.019 —0.591 —-0.293 0.045 —0.481 —-0.784  —0.704
2007 —0.053 0.057 —0.454 —-0.867 —0.606 -0317  —0.926 —1.442
2008 —0.887  —0.190 —-0.397  —0.025 —-0967 —-0.607 —0.414 —-1.151
2009 —0.416  —0.442 —0.035 0.345 —0.951 —0.430 —-0378  —0.255
2010 -0292 —-0404 —-0.195 —0.034 —0.164 —0.536 0.167 -0.122
2011 0.319 —0.103 —0.149 0.145 0.026 —0.513 —-1.677  —0.200
2012 0.348 0.443 0.392 0.015 —0.324 0.654 0.363 0.707
2013 1.857 0.081 0.461 0.092 0.032 —0.606 0.299 0.463
2014 —0.630 0.172 0.516 —0.078 0.688 0.971 —0.090 —1.100
2015 —0.948 —0.063 0.094 —0.279 0.670 —0.017 0.061 0.452
2016 0.027 —0.220 —-0.370 0.329 —-0.141 —0.481 0.483 —0.051
2017 —0.151 —0.066 0.200 —0.200 0.331 —0.061 —-0.271 0.853
2018 —0.295 —0.450 —0.053 0.009 —0.348 —0.383 —0.289  —0.469
2019 —0.387 0.130 —-0.015 -0.127  —-0.073 0.898 —0.006 0.475
2020 0.340 0.036 —0.113 —0.051 —0.308 0.032 —0.385 —0.006
2021 2.152 1.406 0.558 0.509 1.370 0.217 1.952 0.949

2022 0.530 0.240 0.517 —0.044 1.483 1.560 -1.092 —0.660
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Notes

! Data from https:/ /www.zillow.com/homes/ were collected by specifying the city in the search field and then the entries for all

filters as provided in Table A1 in Appendix A.
Home types considered are specified in the appropriate filter in Table Al.

Note that the data apply only to homes constructed within the city boundaries and not to homes within the associated Metropolitan
Statistical Area.

4 Specifically, three of the factors are environmental and one (accessibility) is social, although all four are often influenced by
local policies.

5 Restated in the context of the P-splined-based GAM and the GLM used here, extrapolation using polynomials is much less
accurate than extrapolation using a linear least-squares fit.

6 In (5), we use a generic notation y; to denote the time series being tested.

7

SE(-) denotes standard error.

8 We tested a variety of ARFIMA-GARCH models before settling on AR(7)-ARCH(1) with g = {1, 2}. We desired an ARFIMA-
GARCH model that was as parsimonious as possible in the number of coefficients to be fit.

We index the cities in alphabetical order.

The explained variance associated with each principal component is the ratio of its eigenvalue to the sum of all eigenvalues.

1 If two cities border a body of water in the United States, then the common city boundary often divides the body of water along

a line medial to the city shorelines. Thus, two or more cities bordering a large and contained body of water can have large
water-body percentages but relatively short shorelines.
12 Rebates and credits can be viewed at https:/ /seattle.gov/city-light/residential-services /home-energy-solutions /heating-and-

cooling-your-home#smartthermostatrebates (accessed on 5 August 2024).

13 Higher-order differences may be required if the time series is integrated of an order higher than one.
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