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Abstract: Predicting future price movements has always been one of the major topics in
financial research, and there is no better method to predict the future prices of an asset than
using its derivatives. In this paper, we propose a model-free lattice model that describes
the complete price evolution of the underlying asset and simultaneously re-prices all of
its European options. Given that such a lattice is consistent with market option prices, it
must embed all necessary risk factors (e.g., random volatility, random interest rates, and
jumps) and market restrictions (e.g., mean-reversion and liquidity) that are priced into the
European options.

Keywords: lattice; copula; stochastic process; price evolution

1. Introduction
Predicting future price movements has always been one of the major topics in financial

research, and there is no better method to predict the future prices of an asset than using
its derivatives (e.g., option). This is because derivative prices embed projections of the
underlying asset (as they are various bets on the future performance of the underlying
asset), and they reflect a market view of the future price distribution of the underlying asset.
If the derivative contract is on a broad market index (such as an S&P index, an interest rate,
or a foreign exchange), then its projection is critically important for market participants
and even regulators.

In the literature, using derivative prices to back out information about their under-
lying asset has a long history, beginning with Banz and Miller (1978) and Breeden and
Litzenberger (1978). They contend that if one takes a partial derivative of an option price
with respect to its strike price, then one obtains the risk-neutral probability of the option
being in the money at the maturity date (after being discounted at the risk-free rate). If there
were a continuous spectrum of option prices, then one could derive the entire (risk-neutral)
probability distribution of the underlying asset at the maturity date. With multiple maturity
dates, one can project the evolution of the probability distributions of the underlying asset
over time.

There are, broadly speaking, two approaches to exploring Banz and Miller (1978) and
Breeden and Litzenberger (1978). One approach is to estimate a the pricing kernel (also
known as state price density) using derivative prices, which is pioneered by Aït-Sahalia and
Lo (1998),1 who derive a non-parametric-state price density using S&P 500 index options
(daily data of whole year of 1993).2 To improve the tractability, they apply smoothing and
dimension reduction to their pricing kernel. Hence, even though smoothing and dimension
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reduction do not rely on any distributional assumptions, their pricing kernel is not entirely
non-parametric (strictly speaking) in that there are still parameters (e.g., bandwidth) in
these techniques that remain to be estimated or arbitrarily specified. An undesirable side
effect of smoothing and dimension reduction is that options are then not completely re-
priced. While the literature on pricing kernels is voluminous, it is unrelated to our paper.
Interested readers can see Cuesdeanu and Jackwerth (2018) for an excellent review.

Our work is related to the other approach, which is to develop a lattice that is consistent
with the market derivative prices. The first such effort is the implied binomial model
by Rubinstein (1994), among others.3 As we are well aware, traditional lattice models
(pioneered by, among others, the binomial model of Cox et al. (1979)) are based upon
parametric models such as the Black–Scholes (log-normal, 1973) or the Cox (square root,
Cox, 1975) model.4 These parametric models are highly limited and mis-price badly, even
European options (let alone more complex derivatives). To remedy this shortcoming,
option-implied lattices have been developed. While Rubinstein (1994) tweaks the binomial
model to fit existing option prices, a similar and yet different approach that tries to discretize
a flexible process (known as the local volatility model) is discovered by Dupire (1994) and
Derman and Kani (1994).

Although both of the above approaches (pricing kernel and implied lattice) claim that
they can successfully use option prices to recover the entire risk-neutral density of the
underlying asset, they suffer from one common shortcoming—they only can recover one
density function of a given time in the future. There is no description of how the asset price
evolves over time. Britten-Jones and Neuberger (2000) fill this gap by providing a flexible
stochastic process for the underlying asset.

Britten-Jones and Neuberger (2000) claim that the stochastic process they derive is
consistent with most processes that accommodate stochastic volatility. Their model can be
viewed (as themselves admit) as an extension to Dupire (1994) and Derman and Kani (1994)
in that their model allows for random volatility, whereas the models by Dupire (1994) and
Derman and Kani (1994) do not. Although they claim that their model can re-price most
options (their Proposition 1), unfortunately, a restriction in their model (their Equation (18))
fails to support their claim.

Our contribution to the literature is to extend Britten-Jones and Neuberger (2000) in
the following two directions. Firstly, our lattice can be viewed as a direct extension of
the Britten-Jones–Neuberger model, just like the Cox–Ross–Rubinstein lattice being an
extension to the Black–Scholes model. Such an extension allows complex options (e.g.,
American options) to be consistently evaluated. In practice, an option pricing model is
calibrated to liquid simple options (e.g., swaptions), and then, the corresponding lattice is
used to price complex options (e.g., range accruals).

Secondly, our model is more flexible than the Britten-Jones–Neuberger model in that
our lattice can accurately re-price all European options across different strikes and over
different maturities. In other words, one can view our lattice as a model that allows for
all random factors that affect market option prices (such factors could be other interest
rate factors such as random interest rates and jumps, as well as market conditions such
as liquidity).

Finally, to derive a continuous-time stochastic process from our lattice, so that we
can visualize the evolution of the underlying asset as in Dupire (1994), Derman and Kani
(1994), and Britten-Jones and Neuberger (2000), we adopt the technology of a copula.
As is widely known, a copula specifies a joint distribution with any given number of
marginal distributions. As various risk-neutral densities are identified via traded European
options (each risk-neutral density function corresponds to a maturity), the use of a copula
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can “string” them into a stochastic process. As a result, our lattice can be viewed as a
well-specified stochastic process for the underlying asset.

For the remainder of the paper, we first describe a discrete risk-neutral density so
that all options can be exactly re-priced. Then we review how a flexible lattice can be
constructed. The section of model-free lattice is the main contribution of this paper. Finally
an example is given, and then, the paper concludes.

2. The Risk-Neutral Density (RND)
Given that derivative prices are bets (by market participants) on future prices of the

underlying asset, they are useful in retrieving the market perception of the future behaviors
of the underlying asset.

Option-implied risk-neutral density, pioneered by Banz and Miller (1978) and Breeden
and Litzenberger (1978), prove that the risk-neutral probability distribution function (i.e.,
cumulative density function) can be derived as follows:

F(K) =
∂C
∂K

= Pr[S > K] (1)

Taking another derivative, we obtain the risk-neutral density (RND) function:5

f (K) =
∂F(K)

∂K
=

∂2C
∂K2 (2)

Among others, show that in the case of a continuum collection of European option
prices (across both maturities and strikes), they can completely span the asset state space.
As a result, these European options can duplicate any exotic options on the same underlying
asset. Plainly speaking, with a continuum collection (i.e., infinite number) of option prices,
we can then identify a joint probability distribution over time based on the option prices
without a model (i.e., model-free).

However, in reality, the number of option contracts traded in the market is limited.
In fact, many stocks have very few options traded in the market. As a result, some
parametric structure (i.e., a functional form) of the density function must be assumed.
Hence, determining how to retrieve risk-neutral density (RND) functions from option
prices is a challenging exercise and has attracted a lot of attention. This is because, given
a finite number of options traded in the marketplace, the RND function is not uniquely
defined. Various methods are proposed to remedy the lack of enough option prices. The
literature has used four different methods:

1. Smoothing in the volatility space;
2. Smoothing in the price space;
3. Smoothing in the density space.

Volatility smoothing has been the most popular method used in identifying the RND.
Under this approach, due to the forced smoothness of the fitted volatility function, not all
options can be exactly re-priced. Nevertheless, by enforcing a smooth function through the
volatilities, a number of “fake options” are created in order to fulfill Equation (1). In contrast,
few researchers use price smoothing. Interested readers can find excellent references in
Orosi (2015). Finally, various attempts have been made to find the best functional form for
the density function. Lai (2014) provides an excellent review of the existing methods.6

While seeking a methodology that can best retrieve information from option prices is
an interesting research topic on its own right, it is not the main focus of our paper. Unlike
the literature, in this paper, we do not allow for pricing errors in the discrete setting (and
yet, at the same time, guarantee convergence in continuous time).
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In this paper, we use the piece-wise flat RND to calibrate to the option prices such
that the repricing of options is guaranteed (no pricing errors). The piece-wise flat RND
exactly matches the options traded in the marketplace. There are two advantages of using
the piece-wise flat RND. First, empirically, when compared to more complicated methods,
such RNDs are very stable over time. Second, the RND has a closed-form solution which is
easy and fast to solve. Third, the number of options can vary from one maturity to another
(a term structure of RNDs), and yet, through construction, all options are priced perfectly,
and as a result, the number is uniquely defined (same degrees of freedom as the number
of options).

As it turns out, the piece-wise flat RNDs maintain the most information from option
prices. Other higher-power polynomials (we also use piece-wise linear and cubic-spline as
a robust check) over-fit the density and result in losing useful information.

The piece-wise flat density function is demonstrated in Figure 1. Figure 1 provides a
simple demonstration of a three-option example. In Figure 1, three call options are given
and a risk-neutral density is provided so that the values calculated by Equations (3)–(6) can
perfectly match the market values of these options.
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This density function can exactly re-price all options for that maturity.

Ck =
∫ x

Kk
(S − Kk)ϕ(S)dS

=
1
2 ∑n

i=k ai(K2
i+1 − K2

i )− Kk ∑n
i=k ai(Ki+1 − Ki)

(3)

where K0 = 0, and the density function’s right-most value is

x = Kn +
1
an

[
1 − ∑n

i=1 ai−1(Ki − Ki−1)
]

(4)

Then, we can solve for the densities, ak (where k = 0, · · · , n), in closed form:

an =
2Cn

(x − Kn)
2 (5)
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and

ak =
2

(Kk+1 − Kk)
2

[
Ck −

1
2 ∑n

i=k+1 ai

[
(K2

i+1 − K2
i )− 2Kk(Ki+1 − Ki)

]]
(6)

with C0 = S0 and K0 = 0. By iterating x, we can solve for all the a s.
Our major objective is to connect the multiple RNDs implied by the options of various

maturity dates. In other words, we wish to derive an “implied stochastic process” for
the underlying asset that is consistent with the traded option prices with all strikes at all
maturities. Unfortunately, there is no unique way to construct such a stochastic process. In
this paper, we use a copula to connect two consecutive RNDs.

3. The Lattice
Imagine a trinomial lattice as a discrete approximation of a stochastic process in

continuous time (i.e., mimicking continuous time with a very small ∆t). An example is
given in Figure 2.
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This forward-expanding trinomial lattice is equivalent to the explicit finite difference
method (see Hull (2015)), which is a discretized backward partial differential equation (PDE)
in continuous time that a derivative price must satisfy. One can implement a backward-
expanding lattice, which is equivalent to the implicit finite difference method (see Hull
(2015)). The implicit finite difference method is a discretized forward partial differential
equation (PDE). Both lattices will converge to the continuous time limit efficiently. As a
result, we regard this trinomial lattice as the (approximated) continuous time process.

In the most general case (shown in the lower-left corner of Figure 2), the probabilities
of the branches can be both state-dependent and time-dependent. In other words, this
trinomial lattice can be made consistent with any given stochastic process. Each pi,j(x) is
different, where i is a time index and j is a state index where the three branches, j(x) = j(u),
j( f ), and j(d), represent up, flat, and down, respectively.
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For example, in Figure 2, a = p1,0(u), b = p1,0( f ), and c = p1,0(d). In the second period
(i = 2), the probabilities of up, flat, and down in the state j = 0 (i.e., a′ = p2,0(u), b′ = p1,0( f ),
and c′ = p1,0(d)) need not be the same as a = p1,0(u), b = p1,0( f ), and c = p1,0(d). Although
the states are the same in the second period as in the first period, the probabilities are not
the same. Similarly, in the third period, the probabilities of up, flat, and down in the state
j = −2 (i.e., a′′ = p2,−2(u), b′′ = p1,−2( f ), and c′′ = p1,−2(d)) need not be the same as a, b,
and c (or a′, b′, and c′).

In practice (the majority of the literature), these probabilities are either state-dependent
or time-dependent but rarely both. Hence, for the sake of easy exposition, we limit these
probabilities to be state- and time-independent. One can easily extend the result to allow
for state and time dependence. In our lattice, the transition probabilities (i.e., the three
probabilities from one period to the next) are constants and labeled pu, p f , and pd for up,
flat, and down, respectively, where 0 ≤ px ≤ 1 (and x = u, f , d) and pu + p f + pd = 1.7

By assuming the three transition probabilities to be both time- and state-independent,
we equivalently adopt the Black–Scholes assumption and assume a Gaussian process for
the log of the asset value. In other words, this lattice is an approximation of the continuous-
time stochastic process (as ∆t → dt is infinitesimally small): dS/S = rdt + σdW, where S
is the underlying asset price, r is the risk-free rate, σ is the volatility (of d ln S), and dW is
the Brownian differential under the risk-neutral measure.

While the lattice can be built in continuous time, the option market trades options with
discrete maturities (according to maturity cycles regulated by the exchange): T1, T2, · · · , TL

(or Tl , where l = 1, · · · , L). For simplicity, we exemplify with two periods. Following
Figure 2, which presents continuous time, a discrete set of maturity dates can be demon-
strated as in Figure 3.
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In Figure 3, as options of two maturities are traded, we go from one distribution
at time T1 to another distribution at time T2. To calculate all the probabilities from time
T1 to another distribution at time T2, as demonstrated in Figure 4, we multiply a set of
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transition/conditional probabilities, pu, p f , and pd, into marginal probabilities πi,j, as
demonstrated in Figure 4.
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Let πi,j be the probability of the state j (for convenience, we also let j be the current
state) in period i. For easy exposition, let the current state be 0. Then, for the first period,
through construction (i.e., three branches for the first period), π1,1 = pu, π1,0 = p f , and
π1,−1 = pd, as shown below:  π1,1

π1,0

π1,−1

 =

 pu

p f

pd

 (7)

Then, for the second period, from three nodes to five nodes, we can obtain the marginal
probabilities as follows:

π2,2

π2,1

π2,0

π2,−1

π2,−2

 =


pu 0 0
p f pu 0
pd p f pu

0 pd p f

0 0 pd


 π1,1

π1,0

π1,−1



=


pu 0 0
p f pu 0
pd p f pu

0 pd p f

0 0 pd


 pu

p f

pd


(8)
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As we can see, the three branch probabilities, pu, p f , and pd, are concatenated into
a 5 × 3 transition matrix. For the third period, the transition matrix can be constructed
similarly as a 7 × 5 matrix as follows:

π3,3

π3,2

π3,1

π3,0

π3,−1

π3,−2

π3,−3


=



pu

p f pu

pd p f pu

pd p f pu

pd p f pu

pd p f

pd




π2,2

π2,1

π2,0

π2,−1

π2,−2



=



pu

p f pu

pd p f pu

pd p f pu

pd p f pu

pd p f

pd




pu

p f pu

pd p f pu

pd p f

pd


 pu

p f

pd



(9)

Through deduction, we can then derive a general expression of any marginal distribu-
tion in period n as follows: 

πn,n
...

πn,1

πn,0

πn,−1
...

πn,−n


= ∏n

i=1 Pi (10)

where Pi is a (2i + 1)× (2i − 1) tri-diagonal matrix.
Using the above result, for any two adjacent option maturities, Tl and Tl+1, we can

compute the transition probability matrix from Tl (where Tl is in the period i = m) to Tl+1

(where Tl+1 is in the period i = n) as follows:

πn = ∏n
i=1 Pi

=
(
∏n

i=m+1 Pi
)
πm

(11)

where (underline represents a vector) πn is a 2n + 1 vector and πm is a 2m + 1 vector. Note
that πm and πn are each individually a normal distribution.

Hence, ∏n
i=m+1 Pi is the transition probability matrix, which contains a set of condi-

tional distributions for each asset value at i = m. The two marginal distributions are πn
and πm. Under the standard trinomial model, ∏n

i=m+1 Pi is Gaussian. In the next section, it
will be used to derive the copula.

Note that ∏n
i=m+1 Pi is the Chapman–Kolmogorov equation. In other words, the

Chapman–Kolmogorov equation gives an end distribution through the convolution of two
distributions:8

p(xt+1,i) = ∑n
j=1 p(xt+1,i|xt,j)p(xt,j) (12)

for any stochastic process X(t), where p(xt,j) is the probability of X(t) = xt,i and
p(xt+1,i

∣∣xt,j) is the probability of X(t + 1) = xt+1,i conditional on X(t) = xt,j. In other
words, ∏n

i=m+1 Pi is equivalent to p(xt+1,i
∣∣xt,j) and defines a stochastic process for the
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underlying asset. Alternatively speaking, by broadly allowing the transition probabilities
to be both time- and state-dependent, i.e., pi,j(x), where j(x) = j(u), j( f ), and j(d), we can
define any stochastic process desired.

Note that while we use the explicit finite difference method in this paper, it is equally
possible to adopt the implicit finite difference method (reverse lattice). Recall that (see
Hull (2015)) the implicit method is more efficient (i.e., converges more rapidly) and sub-
ject to fewer restrictions (i.e., probabilities must be simultaneously all positive in the
explicit method).

4. The Model-Free Lattice
This section is the main contribution of this paper. In this section, we combine the

two materials presented previously—option-implied risk-neutral density and the explicit
finite difference method (or trinomial lattice)—to construct a “model-free” lattice. In this
lattice, there is no assumed (parametrically defined, such as geometric Brownian motion as
in the Black–Scholes model, or the square-root stochastic volatility process as in the Heston
model) stochastic process.

On a given maturity date where European options of different strikes are traded (and
prices are observable), we can construct an RND for that date. In between any two adjacent
maturity dates—labeled Tl (which is in the period i = m) and Tl+1 (which is in the period
i = n) where l = 1, · · · , L as option maturity dates observable in the marketplace—we
build the forward lattice via a Gaussian copula. This forward lattice is a set of conditional
distributions (conditional on each given asset price in Tl) whose aggregations lead to the
marginal distributions in Tl (or period m) and Tl+1 (or period n).

Following the example given in Figure 1 (in Section 2), we overlay the RND on a
trinomial lattice as in Figure 5.
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In Figure 5, the RND is mapped on an n-period lattice. Using the simplified assumption
that branch probabilities are both state- and time-independent (pu, p f , and pd for up, flat,
and down, respectively), we can achieve a set of probabilities on the maturity date, as
described in Equation (9):

πn,j = ∏n
i=1 Pi (13)

where Pi is defined in Equation (9).
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These n + 1 probabilities are mapped to the RND, as Figure 5 shows. Since the
functional form of the RND adopted in this paper is piece-wise flat, under each rectangle,
the probability is simply

ai(Ki+1 − Ki) (14)

where i = 0, · · · , n, K0 = 0, and Kn+1 = x the upper limit of the piece-wise flat density
function is shown in Figure 1.

For each asset price, the cumulative probability for S < u where Ki < u < Ki+1 is

Pr[S < u] =
∫ Ki<u<Ki+1

0 f (S)dS
= ∑i

j=1 pj + ai(u − Ki)
(15)

where pj = aj(Kj+1 −Kj). From the cumulative probabilities Pr[S < Sn,j], we can obtain the
probability of each asset price in state j and in period n (which can be any maturity time, e.g.,
Tl , where l = 1, · · · , L) by taking the difference of the cumulative probabilities between
two adjacent states: Pr[S < Sn,j]− Pr[S < Sn,j−1]. In an explicit example provided in the
next section, the readers should be able to see the exact mechanics of such a transformation.

With multiple maturities, we obtain multiple such mappings, one for each maturity.
However, these mappings are not connected to each other. Separately they can evaluate
European options (i.e., we can retrieve RNDs from the European prices), but they cannot
be used to price, for example, American options. Alternatively speaking, we lack a lattice
to connect these RND functions.

In this paper, we propose using a copula to connect the two marginal distributions
(in particular, we use a Gaussian copula, which will be explained later). In other words,
for two adjacent maturity dates of European options, Tl (in period m) and Tl+1 (in period
n), the lattice can provide transition probabilities (which are also conditional probabilities).
From each asset price at Tl (say Sj(Tl) or Sm,j), we can derive the probability distribution of
the asset price at Tl+1 (i.e., Sj(Tl+1) or Sn,j), as described in Figure 3. This is a conditional
probability distribution at the asset price Sj(Tl), as shown in the following diagram:

Transition Matrix for the Trinomial Lattice
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2,1S                        
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2, 2S -                        

where in each cell, ξ5|2 represents the conditional probability from the asset price at i = 2
(on the left) to the asset price at i = 5 (on the top). These probabilities can be easily obtained
from the standard lattice (which is Gaussian):

ξ5|2 = Pr[S5,j′′
∣∣∣S2,j′ ]

=
(nu+n f +nd)!

nu!n f !nd! pnu
u p

n f
f pnd

d

(16)

where j′ represents the state at i = 2, j′′ represents the state at i = 5, nu is the number of
up steps from j′ to j′′ , nd is the number of down steps from j′ to j′′ , n f is the number of flat
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steps from j′ to j′′ , and finally, nu + n f + nd = 11 is the total number of states at i = 5 (and
pu + p f + pd = 1).

In this paper, we use the Gaussian copula for two main reasons. First, the Gaussian
copula is extremely easy to use and most familiar to a wider audience. Secondly, the
trinomial lattice degenerates to a binomial lattice (similar to the binomial model by Cox
et al. (1979)). Certainly, there are other copulas, such as Clayton, Gumbel, and Frank
copulas, that are good candidates. However, they cannot degenerate to the Cox–Ross–
Rubinstein binomial model, and the parameter in these copulas is not as easily understood
as the correlation matrix in a Gaussian copula.

The binomial model can approach the Black–Scholes model, which follows the Gaus-
sian distribution in continuous time. In other words, at the two adjacent maturity dates,
Tl (at period m) and Tl+1, (at period n), the (log) asset price distributions are both Gaus-
sian. Also, from the basic property of Brownian motion, the correlation between these

two distributions is
√

Tl−t
Tl+1−1 , where t is the current date. This is a conditional probability

distribution at the asset price Sj(Tl) (or Sm,j), as shown in the following diagram:
Transition Matrix for the Binomial Lattice
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from j ¢  to j ¢¢ , and finally, the probabilities up  and dp  are given in the Appendix B (
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where in each cell, ξ5|2 represents the conditional probability from the asset price at i = 2
(on the left) to the asset price at i = 5 (on the top). These probabilities can be easily obtained
from the binomial lattice (which is Gaussian):

ξ5|2 = Pr[S5,j′′
∣∣∣S2,j′)

= (nu+nd)!
nu!nd! pnu

u pnd
d

(17)

where nu is the number of up steps from j′ to j′′ , nd is the number of down steps from
j′ to j′′ , and finally, the probabilities pu and pd are given in the Appendix B (p f = 0 and
pu + pd = 1) as follows:

pu = 1
2

(
1 − 1

2 σ
√

∆t
)

pd = 1
2

(
1 + 1

2 σ
√

∆t
) (18)

For example, traveling from S2,0 to S5,1 involves two ups and one down, and there are
three paths through which such travel can be achieved. Hence, the probability is 3p2

u pd.
The conditional probabilities computed by Equation (17) are familiar probabilities

computed in the binomial lattice. Multiplying each conditional probability by the marginal
probabilities (row) at time T1 (i.e., i = 2), π2, we obtain the joint probabilities between the
distributions at T1 and T2 (i.e., i = 5). Then, applying the Gaussian copula, which is as
simple as replacing the normally distributed ln S with the RND-implied values, we connect
the two RNDs at T1 and T2 and obtain the transition probability matrix under the two
RNDs.

Extending this simple demonstration to any arbitrary number of maturities, we can
identify, at each maturity, for any Gaussian probability in the lattice (e.g., πm,m, · · · ,
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πm,0, · · · , πm,−m (i.e., Tl is located at i = m)), a matching probability in the RND and
retrieve the asset price ln SRND

m,j from the RND to replace the value of normally distributed
ln Sm,j. With these new asset values, we can then price Bermudan options (in discrete time,
there are no American options).

5. An Example
In this section, we provide an explicit example to demonstrate how to price a two-

period Bermudan option. We use EUR-USD foreign exchange (FX) options. The reason for
using FX options is because FX options have only a small number of strikes and cover a
wide range of moneyness. The popular stock options, on the other hand, have bad quotes
for deep in- and out-of-money options. The reason why FX options cover a wider range
of moneyness is that FX options are quoted by “deltas”, which correspond to moneyness
directly as opposed to fixed strikes. FX options are quoted at five moneyness levels
(-25-delta, -10 delta, ATM, 10-delta, and 25-delta) for a given maturity.9 As a result, FX
options at different maturities will center around forward FX levels. This is advantageous
over stock options that define at-the-money options using the current stock price.

We randomly choose an arbitrary date (8/31/2012) for our demonstration. We also
randomly choose two arbitrary maturity dates: 3 months and 12 months. As mentioned
earlier, there are five contracts for each maturity date. The spot price on 8/31/2012 is
1.2579 (i.e., EUR 1 for USD 1.2579). Given that FX options are quoted by “deltas”, we must
back out the strike prices from the corresponding option premiums. Such a conversion is
standard.10 The call premiums are as follows:

Call Prices C1 C2 C3 C4 C5

3M 0.09967 0.05601 0.02482 0.00889 0.00287
1Y 0.22291 0.12290 0.05419 0.01945 0.00636

The corresponding strike prices for the two maturity dates are as follows:

Strike Prices K1 K2 K3 K4 K5

3M 1.163347 1.214108 1.260902 1.302704 1.342671
1Y 1.049059 1.16682 1.272601 1.368343 1.467118

Using Equations (5) and (6), we can compute the density values (ai) as follows (see
also Figure 1):

Densities a0 a1 a2 a3 a4 a5

3M 0.00757 5.16047 2.68231 10.65532 0.37813 3.57798
1Y 0.02557 2.10479 1.43136 4.41011 0.38624 1.01370

In addition to the density values, we also compute the upper limits of the density
function (x) to be 1.382695 and 1.579103 for 3-month and 1-year maturities, respectively.
We plot the RND results in Figure 6.

To apply the Gaussian copula, we need the Gaussian distributions at 3-month and
1-year timepoints. These Gaussian distributions are generated by the binomial model. We
use 100 periods for the binomial lattice. Proportionally, the 3M option is priced by the
distribution at i = 25 and the 1Y options are priced by the distribution at i = 100. In the
lattice, we use the volatility of 19.78% for the first 3 months and 22.06% for the remaining
9 months. These volatility values are calibrated to the options to generate the minimal
pricing errors by the lattice. For simplicity (and without loss of generality), we use a 0%
interest rate. Figure 7 compares the two distributions.



J. Risk Financial Manag. 2025, 18, 30 13 of 19

J. Risk Financial Manag. 2025, 18, x FOR PEER REVIEW 13 of 20 
 

 

Using Equations (5) and (6), we can compute the density values ( ia ) as follows (see 
also Figure 1): 

Densities 0a  1a  2a  3a  4a  5a  

3M 0.00757 5.16047 2.68231 10.65532 0.37813 3.57798
1Y 0.02557 2.10479 1.43136 4.41011 0.38624 1.01370

In addition to the density values, we also compute the upper limits of the density 
function (x ) to be 1.382695 and 1.579103 for 3-month and 1-year maturities, respectively. 
We plot the RND results in Figure 6. 

 

Figure 6. A two-maturity RND demonstration. 

To apply the Gaussian copula, we need the Gaussian distributions at 3-month and 1-
year timepoints. These Gaussian distributions are generated by the binomial model. We 
use 100 periods for the binomial lattice. Proportionally, the 3M option is priced by the 
distribution at 25i =  and the 1Y options are priced by the distribution at 100i = . In 
the lattice, we use the volatility of 19.78% for the first 3 months and 22.06% for the remain-
ing 9 months. These volatility values are calibrated to the options to generate the minimal 
pricing errors by the lattice. For simplicity (and without loss of generality), we use a 0% 
interest rate. Figure 7 compares the two distributions. 

Figure 7 provides the mappings from the RND functions to the Gaussian distribu-
tions of the two maturities. The task now is to derive the joint distribution between the 
two RND functions. 

We assume 100 periods for the binomial model (derived in the Appendix). Hence, at 
a three-month timepoint ( 0.25T =  ), 25i =  , and at a one-year timepoint ( 1 1T + =  ), 

100i = . We know that at each timepoint, the (log) asset price distribution from the bino-
mial model is Gaussian. The binomial lattice computes all the conditional probabilities. 
Hence, multiplying these conditional probabilities by the marginal probabilities at 25i =
, i.e., 25p , we obtain the joint distribution between the two Gaussian distributions. This 
joint Gaussian distribution is then mapped to the RND functions to generate the joint dis-
tribution of the two RND functions. Following the steps described in Section IV, we can 
then plot the two joint distributions (for Gaussian and RND, respectively) in Figure 7. 

In Figure 8, the blue dots depict the joint bi-variate Gaussian distribution implied by 
the binomial model, and the orange dots depict the joint distribution implied by the two 
RND functions. 

Figure 6. A two-maturity RND demonstration.

J. Risk Financial Manag. 2025, 18, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 7. 3-month and 12-month cumulative density functions. 

 

Figure 8. Joint distribution of gaussian and RND. The blue dots are the Guassian distribution and 
the orange dots are RND (risk-neutral distribution). 

Lastly, we can convert this joint distribution back to the conditional distribution by 
dividing the joint probabilities by multiplying by the RND marginal probabilities at 

25i = .11 These RND conditional probabilities can then be used to compute the expected 
payoffs of the option. 

Figure 7. 3-month and 12-month cumulative density functions.

Figure 7 provides the mappings from the RND functions to the Gaussian distributions
of the two maturities. The task now is to derive the joint distribution between the two
RND functions.
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We assume 100 periods for the binomial model (derived in the Appendix A). Hence,
at a three-month timepoint (Tl = 0.25), i = 25, and at a one-year timepoint (Tl+1 = 1),
i = 100. We know that at each timepoint, the (log) asset price distribution from the binomial
model is Gaussian. The binomial lattice computes all the conditional probabilities. Hence,
multiplying these conditional probabilities by the marginal probabilities at i = 25, i.e., π25,
we obtain the joint distribution between the two Gaussian distributions. This joint Gaussian
distribution is then mapped to the RND functions to generate the joint distribution of the
two RND functions. Following the steps described in Section 4, we can then plot the two
joint distributions (for Gaussian and RND, respectively) in Figure 7.

In Figure 8, the blue dots depict the joint bi-variate Gaussian distribution implied by
the binomial model, and the orange dots depict the joint distribution implied by the two
RND functions.
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Lastly, we can convert this joint distribution back to the conditional distribution
by dividing the joint probabilities by multiplying by the RND marginal probabilities at
i = 25.11 These RND conditional probabilities can then be used to compute the expected
payoffs of the option.

Now, we can compare the expected option payoffs (i.e., continuation values) against
the exercise value and compute the Bermudan option price. We use put options as an
example because for call options, the Bermudan value and European value are equal.

Take the 1Y ATM option as an example, the strike is 1.27260. The European put price
is 0.05982. The Bermudan option is 0.06186. As a comparison, the binomial model has a
European put price of 0.08049 and an American price of 0.08206.

Strike 1.049059 1.166820 1.272601 1.368343 1.467118

1Y Put Option

RND Bermudan 0.012794 0.028410 0.061856 0.119404 0.205468
RND European 0.011143 0.026472 0.059823 0.117351 0.200594

BS Bermudan 0.014456 0.040229 0.082065 0.137326 0.211435
BS European 0.014452 0.040029 0.080494 0.131574 0.197970

In the above example, the Bermudan put options can be exercised only twice—once
at maturity (one year) and once at the three-month timepoint. This is because European
options are available only at these maturities (and hence, RNDs are available only on these
dates). As a result, the Bermudan prices are uniquely defined. If the Bermudan options can
also be exercised at 6M and 9M, then their prices cannot be uniquely defined by the two
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RNDs (or equivalently defined by the two sets of European options). A certain interpolation
algorithm must be taken (i.e., fake option prices at 6M and 9M must be generated), and the
Bermudan prices will vary with the chosen interpolation algorithm.

6. Conclusions and Future Research
In this paper, we propose a model-free lattice which is based upon the market prices

of European options. European option prices of the same maturity (different strikes) can
provide a risk-neutral density (RND) function on the maturity date. To build a lattice
model that is consistent with multiple RND functions on various maturity dates, we use a
Gaussian copula, which can be easily degenerated to a standard binomial model.

Our result makes a significant contribution to the literature in that the model-free lattice
we derive in this paper is a description of a complete price evolution of the underlying
asset. Similar to the Cox et al. (1979) binomial lattice, which is a description of the log-
normal stock price process, our model-free lattice describes the whole evolution of the
underlying asset and can accurately re-price all existing European options (across strikes
and maturities) in the marketplace. In other words, our model-free lattice is a natural
extension of Britten-Jones and Neuberger (2000), who restrict themselves to a random
volatility process.

Given that our model-free lattice is consistent with all market option prices, it must em-
bed all necessary risk factors (e.g., random volatility, random interest rates, and jumps) and
market restrictions (e.g., mean-reversion and liquidity) that are priced into the European
options. Our model-free lattice is a substantial improvement over the random volatility
process by Britten-Jones and Neuberger (2000).

To see an easy implementation of our model-free lattice, we provide an example
of a two-period FX option where European options are taken from 3-month and 1-year
maturities. The European options provide RND functions which are mapped to each slice
in the lattice. To finally complete the evolution (i.e., those transition probabilities in the
lattice), a Gaussian copula is used.

Our model-free lattice is completely flexible and, hence, can be used for any asset
class since it can adapt to any stochastic processes. The major output of our model is all of
the transition probabilities. These transition probabilities could present a certain behavior
(e.g., random volatility) that is not easily seen because the stochastic process the model-free
lattice represents may not exist in a parametric form. Nevertheless, one can perform a
series of statistical tests to study the properties (e.g., random volatility or mean-reversion)
of the process. These properties could have important trading implications that can help
investors predict market conditions and make investment decisions accordingly. We will
leave this for future research.
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Appendix A. Copula
A copula defines a joint distribution given two marginal distributions, as described

below:

C(u1, · · · , un) = P(U1 < u1, · · · , Un < un)

= P(X1 < x1, · · · , Xn < xn)
(A1)

where C(u1, · · · , un) is a multi-variate copula; u1, · · · , un are a set of constants be-
tween 0 and 1, and U1, · · · , Un are a set of uniform random variables; and finally,
P(U1 < u1, · · · , Un < un) = P(X1 < x1, · · · , Xn < xn) is the (corner) probability of
X1 < x1, · · · , Xn < xn. The multi-variate joint density function is defined as f (X1, · · · , Xn)

and the marginal distribution is fi(Xi), and as a result,

P(Ui < ui) = P(Xi < xi)

=
∫ xi
−∞ fi(Xi)dXi

= F(xi)

(A2)

In short, a copula is a function that computes the corner (cum) probability of a
multi-variate distribution from a set of cum marginal probabilities. Hence, we re-write
Equation (A2) as

C(F1(x1), · · · , Fn(xn)) = P(X1 < x1, · · · , Xn < xn) (A3)

A Gaussian copula defines the right-hand side of the equation as a multi-variate
Gaussian distribution. In other words, there is mapping from each of a set of marginal
distributions to a uni-variate Gaussian distribution, and these uni-variate Gaussian distri-
butions are correlated via a correlation matrix, as described below:12

C(u1, · · · , un) = N(N−1(u1), · · · , N−1(un)) (A4)

Appendix B. PDE
The Black–Scholes (Gaussian) model:

1
2

σ2S2CSS + rSCS + Ct = rC (A5)

Change in variable to log price; X = ln S (or S = eX):

CX = ∂C
∂S

∂S
∂X = CSS

CXX = ∂CX
∂X = ∂CX

∂S
∂S
∂X =

(
∂CS
∂S S + CS

)
S = CSSS2 + CSS = CSSS2 + CX

(A6)

Substitute this back to the PDE:

1
2 σ2(CXX − CX) + rCX + Ct = rC
1
2 σ2CXX +

(
r − 1

2 σ2
)

CX + Ct = rC
(A7)

Take the difference:
CX =

Ci+1,j+1−Ci+1,j−1
2∆X

CXX =
Ci+1,j+1+Ci+1,j−1−2Ci+1,j

(∆X)2

Ct =
Ci+1,j−Ci,j

∆t

(A8)
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Substitute in PDE:

1
2 σ2 Ci+1,j+1+Ci+1,j−1−2Ci+1,j

(∆X)2 +
(

r − 1
2 σ2

)Ci+1,j+1−Ci+1,j−1
2∆X +

Ci+1,j−Ci,j
∆t = rCi,j

1
2 σ2∆t

Ci+1,j+1+Ci+1,j−1−2Ci+1,j

(∆X)2 +
(

r∆t − 1
2 σ2∆t

)Ci+1,j+1−Ci+1,j−1
2∆X + Ci+1,j = (1 + r∆t)Ci,j

Ci+1,j+1

(
1
2 +

(
r∆t − 1

2 σ2∆t
)

1
2∆X

)
+ Ci+1,j−1

(
1
2 −

(
r∆t − 1

2 σ2∆t
)

1
2∆X

)
= (1 + r∆t)Ci,j

(A9)

If we set ∆X = σ
√

∆t, then it becomes a binomial model:

Ci+1,j+1

(
1
2
+

(
r∆t − 1

2
σ2∆t

)
1

2∆X

)
+ Ci+1,j−1

(
1
2
−

(
r∆t − 1

2
σ2∆t

)
1

2∆X

)
= (1 + r∆t)Ci,j (A10)

If we set the risk-free rate to 0, then

1
2

(
1 − 1

2
σ
√

∆t
)

Ci+1,j+1 +
1
2

(
1 +

1
2

σ
√

∆t
)

Ci+1,j−1 = Ci,j (A11)

Now, apply the explicit finite difference:

pu = 1
2

(
1 − 1

2 σ
√

∆t
)

p f = 0

pd = 1
2

(
1 + 1

2 σ
√

∆t
) (A12)

which is state-independent. For no arbitrage, all probabilities must be between 0 and 1. It
is clear that pu satisfies

0 < pu < 1

0 < 1
2

(
1 − 1

2 σ
√

∆t
)
< 1

0 < 1 − 1
2 σ

√
∆t < 2

−1 < − 1
2 σ

√
∆t < 1

1 > 1
2 σ

√
∆t > −1

2 > σ
√

∆t > −2
2

σ2 > ∆t > −2
σ2

(A13)

The right condition is redundant since ∆t is, by construction, positive. The left condi-
tion limits ∆t from being too big. For a normal asset where the volatility is substantially
less than 1, this condition is easily satisfied. For pd,

0 < pd < 1

0 < 1
2

(
1 + 1

2 σ
√

∆t
)
< 1

0 < 1 + 1
2 σ

√
∆t < 2

−1 < 1
2 σ

√
∆t < 1

−2 < σ
√

∆t < 2
−2
σ2 < ∆t < 2

σ2

(A14)

which is the same condition as pu.

Notes
1 In a subsequent study, Aït-Sahalia et al. (2001) compare the option-implied distribution with the traditionally estimated

distribution using stock prices to infer risk aversion.
2 The literature along this line of research includes “shape restriction” (see, for example, Aït-Sahalia and Duarte (2003)) and other

smoothing and dimension reduction methods (see, for example, the GARCH method by Rosenberg and Engle (2002)). Because
this line of research is unrelated to our work, it is not reviwed in this paper.

3 Prior to Rubinstein (1994), researchers used option prices to infer volatilities (see Canina and Figlewski (1993) for their seminal
work on the information contents of option prices). While this line of research has received widespread attention, it is limited to
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volatility only and not related the entire probability distribution of the underlying asset. As a result, this line of research is also
unrelated to our work.

4 Other more complex lattices have been developed to follow Heston’s (1993) stochastic volatility and Scott’s (1997) stochastic
volatility, interest rates, and jumps. Yet, these models, while more flexible, are still restrictive and cannot satisfactorily re-price
European options.

5 Note that Equation (2) is a butterfly which consists of buying options at two ends and selling twice as many shares of the
middle-strike option:

∂2C
∂K2 ∼ C(K1)− 2C(K2) + C(K3)

(K2 − K1)(K3 − K2)

where K1 < K2 < K3.
6 Santos and Guerra (2015) implement various methods and find confluent hypergeometrics and a mixture of lognormal to be

more superior to other methods.
7 In the Black–Scholes case, these probabilities are as follows (see Hull (2015)):

pu =
σ2 j2

2 ∆t − rj
2 ∆t

p f = 1 − σ2 j2∆t

pd =
σ2 j2

2 ∆t + rj
2 ∆t

where j is the number of steps between Sj and 0 (in other words, Sj = j∆S).
8 In continuous time, it is an integral:

f (x) =
∫

f (x, y)dy
=

∫
f (x|y) f (y)dy

9 FX options are liquid for the following eight maturities: 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 9 months, and
1 year.

10 The data we obtained have already been converted by the vending bank (KGI bank). We thank KGI Bank for providing the
results.

11 Note that there are 26 marginal probabilities at i = 25.
12 if xis are independent, then

C(u1, · · · , un) =
n

∏
i=1

ui

and if they are perfectly correlated, then
C(u1, · · · , un) = min

i
[ui]
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