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Abstract: Expected Shortfall (ES) is a risk measure that is acquiring an increasingly relevant
role in financial risk management. In contrast to Value-at-Risk (VaR), ES considers the
severity of the potential losses and reflects the benefits of diversification. ES is often
calculated using Historical Simulation (HS), i.e., using observed data without further
processing into the formula for its calculation. This has advantages like being parameter-
free and has been favored by some regulators. However, the usage of HS for calculating
ES presents a potentially serious drawback: It strongly depends on the size of the sample
of historical data, being typically reasonable sizes similar to the number of trading days
in one year. Moreover, this relationship leads to systematic underestimation: the lower
the sample size, the lower the ES tends to be. In this letter, we present examples of this
phenomenon for representative stocks and bonds, illustrating how the values of the ES and
their averages are affected by the number of chosen data points. In addition, we present
a method to mitigate the errors in the ES due to a low sample size, which is suitable for
both liquid and illiquid financial products. Our analysis is expected to provide financial
practitioners with useful insights about the errors made using Historical Simulation in the
calculation of the Expected Shortfall. This, together with the method that we propose to
reduce the errors due to finite sample size, is expected to help avoid miscalculations of the
actual risk of portfolios.

Keywords: expected shortfall; historical simulation; fat-tailed probability density functions;
bonds; stocks; illiquidity

1. Introduction
Value-at-Risk (VaR; (Choudhry, 2013)) and Expected Shortfall (ES; also called Condi-

tional Value at Risk—CVaR—and Conditional Tail—CTE—if the returns follow continuous
distributions; (Acerbi & Tasche, 2002; McNeil et al., 2005)) have gradually become quan-
tities of the utmost importance in the area of risk management. VaR does not consider
the severity of the losses beyond a given threshold, while ES gives more weight to more
severe losses. In addition, VaR is not subadditive, hence, it does not properly reflect the
reduction of risk through diversification (McNeil et al., 2005). In contrast, using ES as the
baseline risk measure guarantees that the risk of a portfolio will never be higher than the
sum of the risks of the sub-portfolios that form it (Acerbi & Tasche, 2002). It is interesting
to note that the most commonly used quantity to measure risk, i.e., the volatility of returns
(which is the denominator of the ubiquitous Sharpe ratio to provide risk-adjusted returns),
is by definition a standard deviation, and hence it is subadditive; however, VaR, a widely
used alternative for risk measurement, is amazingly not required to be coherent with the
benefits of diversification. Even though the ES also presents some disadvantages (like
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being strictly speaking non-elicitable (Carrillo Menéndez & Hassani, 2021)), the aforemen-
tioned properties make it a reliable risk measure whose usage is increasing among Finance
practitioners.

In this short article, we discuss methods to calculate the ES accurately. We compare
them to the method of Historical Simulation (HS), defined as using a discrete set of observed
returns, without fitting them to any probability density function (pdf). Our analysis focuses
on the amount of data employed to evaluate the ES. This article is structured as follows. In
Section 2 (Literature), we make a concise overview of articles on estimators of the Expected
Shortfall. In Section 3 (Data), we mention the financial products that we use for our analysis.
The bulk of our research is presented in Section 4 (Methods and results, which we present
together for the sake of clarity). This section is divided into three subsections. In the first
one, we describe how discrete datasets are fitted to probability density functions. In the
second one, we display How the Expected Shortfall from Historical Simulation depends on the
size of the dataset. In the third one, we propose a method for accurate ES calculations. Finally,
in Section 5 (Conclusions), we make a summary of the whole research. More extensive
results are presented in the Supplementary Information.

2. Literature
There exist numerous non-parametric, parametric, and semi-parametric estimators for

the Expected Shortfall; a detailed list can be found in the review written by Nadarajah et al.
(2014). Different versions of the—non-parametric—Historical Simulation method (e.g., Per-
acchi and Tanase (2008)’s) are probably the most widely used. Parametric estimators can be
defined assuming a given probability distribution, e.g., a fat-tailed distribution (Chen &
Chen, 2012; Hellmich & Kassberger, 2011) which suits well to the observed returns (Chen
et al., 2008).

Brazauskas et al. (2008) provide formulas for the errors of historical estimators, i.e., for
the difference between the ES of a continuous random variable and its estimator based on
discrete datasets (see further remarks in the first section of the Supplementary Information)
as well as equations for the differences between the referred theoretical ES and the ES
calculated assuming given distributions (exponential, Pareto and log-normal). Specifically,
several authors have researched the impact of the number of points of the sample (sample
size) on different properties of the ES. Liu and Staum (2010) evaluated the relative root
mean squared error of the Expected Shortfall using distinct methods as a function of the
number of simulated payoffs in the context of nested Monte Carlo simulation of portfolios;
Wong (2008) analyzed the outliers of a normality test based on the ES as a function of the
sample size; Maio et al. (2017) also calculated the ES using HS and other methods, yet only
for two different sample sizes (1 k and 100 k points).

The analysis presented in this article differs from the analysis presented in the referred
ones. Our goal is to provide the community of financial Mathematics and risk management
with insights on the features of the Expected Shortfall by providing a clear and intuitive
presentation of them based on real market data, as well as to suggest methods for the
accurate calculation of ES through fat-tailed distributions which are not very commonly
taken into account. For the sake of simplicity and intuitiveness, we analyze single financial
products rather than portfolios and focus on heuristics.

3. Data
We have analyzed the time series of two bonds and two stocks whose principal details

are presented in Table 1. We have chosen bonds and stocks because they are among the
most traded financial products (other financial products are commonly considered alterna-
tive). Moreover, the chosen products correspond to diverse sectors (chemistry, technology,



J. Risk Financial Manag. 2025, 18, 34 3 of 12

finance, and energy) and different developed regions (North America and Europe). In 2023,
Apple stock was the third most traded of the components of the SP500 index, accounting
for approximately 4% of its total traded volume in USD; that year, SHEL stock was the
most traded among the components of the FTSE100 index, accounting for approximately
8% of its total traded volume in GBP. The time series of the bonds were downloaded
from finanzen.net; the time series of the stocks were downloaded from Yahoo Finance
(finance.yahoo.com). All the employed time series have daily periodicity. Our theses
are a consequence of generic mathematical properties, not of specific features of financial
products. Therefore, we deem it unnecessary to tackle a higher number of time series.

Table 1. List of financial products whose time series were used in this research.

ISIN Kind of Product Company Sector Region (Currency) Time Range

XS1017833242 bond BASF, SE Chemistry Europe (e) 20 March 2014∼10 June 2023
US808513AL92 bond Charles Schwab Finance North America ($) 29 May 2017∼26 June 2023

GB00BP6MXD84 stocks Shell p.l.c. Energy Europe (e) 22 June 2018∼22 June 2023
US0378331005 stocks Apple Inc. Technology North America ($) 22 June 2018∼22 June 2023

We have calculated absolute returns for bonds and logarithmic returns for stocks. In
the latter case, we considered reinvestment of dividends. Further explanations on the
procedure to calculate the returns for stocks are presented in Ref. (García-Risueño et al.,
2023). We did not consider reinvestment of the coupon payments of the analyzed bonds
because, due to the fact that the accrued interest must be paid to the bond seller, the bond
price does not abruptly change due to coupon payments. We define the logarithmic return
of the price pA of a stock A as the difference of the logarithms of the prices (Hafez & Lautizi,
2019), this is:

RA(ti) := Ri := log
[

pA(ti)

pA(ti−1)

]
= log

[
pA(ti)

]
− log

[
pA(ti−1)

]
. (1)

where t and log represent the time and natural logarithm (ln), respectively; (t − 1) indicates
the time of the time series immediately previous to t (in our analysis, t and (t − 1) differ in
one trading day). Note that we call Ri to the random variable and ri to its outcomes.

4. Methods and Results
In this section, we present the manner in which we performed our calculations and

their outcomes in an attempt to reveal the effect of the sample size on the ES and how
eventual inaccuracies might be mitigated.

4.1. Fitting to Probability Distributions

We have considered four different probability distributions, including three fat-tailed
ones, to fit the time series of returns. These are the well-known normal distribution (Gaus-
sian probability density function), the non-centered (and potentially skewed) t-student
distribution, the generalized hyperbolic distribution, and the Lévy stable distribution. Some
authors have already applied parametric estimators based on these fat-tailed distributions
to the calculation of the Expected Shortfall (Chen & Chen, 2012; Hellmich & Kassberger,
2011). This set of distributions was chosen just for illustrating purposes, i.e., to present the
properties and usefulness of the method, which consists of fitting the returns to fat-tailed
distributions. The finance practitioner can also include other distributions and select them
for the calculation of the ES if the observed data fits them better.

For the normal distribution, the location (loc) and scale parameters are simply the
average and standard deviation of the returns. Concerning the fat-tailed distributions, we

finance.yahoo.com
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fitted them using the maximum likelihood method, minimizing a loss function defined
as follows:

loss(pd) := − 1
Nr

Nr

∑
i=1

ln[pdf(Ri; pd) ] (2)

where Nr stands for the number of datapoints (returns) and pdf is the tested probability
density function. Therefore, the lower the loss function, the more accurate the fitting of
the probability density function to the dataset. We call pd the set of two, four, or five
parameters of the distribution. The minimization of the loss function was carried out using
the gradient descent method with step size à la Barzilai–Borwein (Barzilai & Borwein, 1988),
including some randomness in the calculations (to reach different local minima of the loss
function) and using different initial values of the parameters of the distributions. Further
explanations of the fitting to distributions can be viewed in (García-Risueño et al., 2023;
Johnson et al., 1995) or in the shared source code used in our calculations.

In Figure 1, we present an example of the fitting of the analyzed probability density
functions to one of the chosen datasets (returns of the BASF bond, in this case; similar
plots for the other analyzed products are presented in the Supplementary Information.
In Figure 1, the dark blue bars represent the histogram of the absolute returns of the bond
price, and the continuous lines represent the probability density functions. In this case,
the loss function is minimal for the generalized hyperbolic function. This happens in 3
out of the 4 analyzed products. The non-centered t-student has minimal loss function in
the remaining case. The parameters from our fitting, as well as their corresponding loss
functions, are presented in Tables 2–5. Our results indicate that fat-tailed distributions fit
much better to the histogram of data than normal (Gaussian) distributions, which agrees
with results from previous research works (Chen & Chen, 2012). In the Supplementary
Information we present example Q-Q plots for the analyzed probability distributions for
all the analyzed financial products.

We will use the fitted distributions to generate synthetic data, which will be used for
inferring properties of the ES of the returns of financial products. The usage of synthetic
data has been encouraged by prestigious authors (López de Prado, 2018). In order to avoid
too extreme values, we establish truncation values for the synthetic data. If the generated
random numbers—which correspond to absolute returns of bonds—are above +30 or below
−30 (note that the prices of bonds are usually measured so that they are about 100 currency
units), then the generated synthetic datum is discarded, and another random number is
generated. We deem these round values reasonable for bonds; for example, the bond with
ISIN US33616CAB63 (First Republic Bank) fell over 23 in a single day in spring 2023. For the
stocks of Shell, we set maximum and minimum truncation limits of log(1.4) and log(0.6),
which are consistent with historical extreme values of oil companies (+36% of BP on 1969
June 4 and −47% of Marathon Oil Corporation on 2020 March 3). For the stock of Apple
Inc we establish limits of log(0.48) and log(1.33), consistent with its historical extrema.
These truncation limits (rmin) will also be used when we perform numerical integration to
calculate the Expected Shortfall of probability density functions (this is using Equation (3)
below with integration limit rmin instead of −∞).
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Figure 1. Fitting of observed absolute returns of the price of a bond (ISIN XS1017833242)—represented
in the histogram—to different probability density functions. Top, left: Normal; Top, right: Non-
centered t-student; Bottom, left: Generalized hyperbolic; Bottom, right: Lévy stable.

Table 2. Parameters of the fitting of the returns to normal probability distributions.

Product normal normal normal
Name loc scale loss

BASF bond −8.07 × 10−4 0.26052 0.0738852
Charles Schwab bond −2.68 × 10−3 0.66412 1.00963

Apple stocks 1.15 × 10−3 0.020996 −2.44450
Shell stocks 1.61 × 10−4 0.022109 −2.39282

Table 3. Parameters of the fitting of the returns to non-centered t-student (nct) probability distribu-
tions. Bold font indicates the best fitting among all four analyzed distributions.

Product nct nct nct nct nct
Name loc scale sk. param df loss

BASF bond −9.87 × 10−5 0.083185 0.017518 1.3453 −0.249730
Charles Schwab bond −9.17 × 10−3 0.15375 0.024772 1.5668 0.244798

Apple stocks 4.85 × 10−3 0.014627 −0.20063 3.7456 −2.52257
Shell stocks 2.18 × 10−3 0.012391 −0.10882 2.6623 −2.56965

Table 4. Parameters of the fitting of the returns to generalized hyperbolic (g. hyp.) probability
distributions. Bold font indicates the best fitting among all four analyzed distributions.

Product g. hyp. g. hyp. g. hyp. g. hyp. g. hyp. g. hyp.
Name loc scale b param a param p param loss

BASF bond 1.21 × 10−3 0.096572 −0.0035894 0.30363 −0.25482 −0.250811
Charles Schwab bond −4.03 × 10−3 0.18701 0.00052347 0.017011 −0.75500 0.244552

Apple stocks 2.11 × 10−3 0.024513 −0.054002 0.52974 −1.3768 −2.52252
Shell stocks 7.90 × 10−4 0.017955 −0.023476 0.24081 −1.0703 −2.57009
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Table 5. Parameters of the fitting of the returns to Levy stable probability distributions.

Product stable stable stable stable stable
Name loc scale β α loss

BASF bond 1.55 × 10−5 0.074546 0.0069359 1.3196 −0.223600
Charles Schwab bond 9.06 × 10−3 0.13826 −0.012709 1.2849 0.248157

Apple stocks 1.41 × 10−3 0.011747 −0.070499 1.6800 −2.51750
Shell stocks 2.45 × 10−4 0.010717 −0.110393 1.6795 −2.55916

4.2. How the Expected Shortfall from Historical Simulation Depends on the Size of the Dataset

The Expected Shortfall is a risk measure equal to the conditional expectation of a
return r (financial loss) given that r is below a specified quantile (Brazauskas et al., 2008).
If the return r is considered to be a continuous random variable, then the Expected Shortfall
can be defined as follows:

ES =
−1
α

∫ r0

−∞
r pdf(r) dr , (3)

where pdf(r) is the probability density function of the return; r0 is the value of the return
such that

∫ r0
−∞ pdf(r) dr = α, being the confidence level α < 1 the number which represents

the total probability of the most adverse returns to be considered in the calculation of
the ES. The (−1/α) multiplicative factor is sometimes omitted from the definition of the
ES; see, for instance, equation (8.52) of (McNeil et al., 2005). Other equivalent definitions
exist, e.g., ES = E[ R | R ≤ −VaR ] where E indicates expected value, and ES, VaR is the
Expected Shortfall and Value-at-Risk for confidence level α of the analyzed return. To sum
up, the Expected Shortfall provides the average expected loss for the worst-case scenarios
(Acerbi & Tasche, 2002), with those scenarios depending on a predetermined threshold (for
example, the 5% worst possible losses).

Despite definition (3), the Expected Shortfall is frequently calculated by considering
just observed values of a given return Ri. For example, the European Banking Authority
(European Banking Authority, 2020) specifies the formula that follows for its calculation:

ES =
−1

α Np

  ⌊α Np⌋

∑
i=1

ri

 +
(

α Np − ⌊α Np⌋
)

r⌊α Np⌋+1

 , (4)

(this formula was found in Peracchi and Tanase (2008)) where the ⌊x⌋ signs indicate the
integer part (floor) of x and the indices (i) of ri are ordered so that ri are monotonically
increasing; we set α = 0.025 (2.5%). This way of proceeding ignores altogether other
non-observed values of the returns. Such values were possible but did not take part in
the calculation; hence, potentially important information is discarded. On the one hand,
Equation (4) has the advantage that it does not require any assumption on the actual
distribution of the returns (i.e., if it is normal, generalized hyperbolic, etc.). On the other
hand, the cost of making this assumption may be to distort the calculated Expected Shortfall
strongly. The arbitrariness of the choice of the underlying probability distribution can be
partly mitigated by analyzing different ones, as we do in this research work.

To quantify whether the usage of Historical Simulation (Equation (4)) severely distorts
the calculation of the ES, we proceed as follows. We fit the collection of returns of a given
financial product for a given time range (see Table 1) to four different probability density
functions. Among them, we choose the one whose loss function (Equation (2)) is minimal,
i.e., which has the maximum likelihood (see numbers in bold in Tables 3 and 4). We then
generate synthetic datasets using the parameters of the chosen distribution. Each synthetic
dataset consists of Nsize points. For each value of Nsize, we generate half a million synthetic
datasets; for each of them, we calculate the ES using Equation (4). We then calculate
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the mean, median, standard deviation, and 95% confidence interval of this collection of
500 k ESs for each Nsize. For the returns of the analyzed BASF bond, these quantities are
presented in Figure 2-top. The solid lines of the upper subplots clearly indicate that the
average Expected Shortfall tends to increase in a monotonical manner with the sample size.
It converges to steady values (plateau) for high values of Nsize but requires relatively high
numbers of returns to approach it. For example, the mean and median of the ES of the
synthetic data are far from their converged values for Nsize < 100.
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Figure 2. Top: Relationship between the ES calculated using the historical method (HS) and the
number of data points of the sample size. Left: Standard deviation (red) and average plus/minus
twice the standard deviation (blue); Right: Median and 95% confidence interval. Center: Histograms
of the expected shortfalls obtained with synthetic data of the absolute returns of a bond (ISIN
XS1017833242) as a function of the number s of the generated random values for each ES calculation.
Left: s = 50; Center: s = 100; Right: s = 300. Bottom: Relationship between the average of the
synthetic data (identical to those of the top figures) and the number of data points of the sample
size. Left: Standard deviation (red) and average plus/minus twice the standard deviation (blue);
Right: Median and 95% confidence interval. The synthetic data was generated using a generalized
hyperbolic distribution.

Such a monotonical increase is a consequence of the highly nonlinear definition of the
Expected Shortfall. For example, if we calculate the average of the synthetic data instead
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of the ES, we will notice that there is no trend with the size of the dataset. This can be
viewed in Figure 2-bottom, which presents the mean, median, standard deviation, and
confidence interval of the average of each synthetic dataset that was used in the calculations
for Figure 2-top. Here, the solid lines are horizontal; the sizes of the differences of the
mean of the averages for different values of Nsize are far lower than the standard deviation
(orange curve in Figure 2-top, left).

In the Supplementary Information, we present graphs similar to Figure 2, which
correspond to the other financial products listed in Table 1. They all confirm that the
average ES monotonically increases with the sample size until it reaches a plateau.

4.3. Expected Shortfall from Fitting to Small Datasets

The results presented in the previous section indicate that the usage of Historical
Simulation (i.e., using observed values only) in the calculation of the ES is potentially
inaccurate and prone to systematic errors (underestimation of the ES). This drawback can be
mitigated by increasing the sample size. However, such a solution may not always be either
feasible or accurate. Simply increasing the number of returns used in the HS calculation
would probably require using older data, which may be stale. The economic conditions, as
well as the inner operation of a company, tend to change over time; hence, the obsolescence
of data may lead to inaccurate results. Moreover, there exist illiquid products, like many
corporate bonds, for which the returns are unknown for many dates. In those cases, one
is forced to perform calculations with few returns (datasets of small size), thus leading to
potentially severe inaccuracies, as indicated by Figure 2 (which corresponds to absolute
returns of a bond price) and by figures presented in the Supplementary Information.
Can this inconvenience be overcome? In this section, we present a method to mitigate
the problem.

Since the inaccuracies in the Expected Shortfall calculation are a consequence of not
considering non-observed, though possible, extreme values, the impact of their neglect
can be eased by finding an approximation to them. We can infer the probability density
function from the analyzed dataset, as indicated above. Even if this dataset consists of a
few points, the fitting will provide probabilities for extreme values, which can be used in
the calculation of the Expected Shortfall.

We exemplify this way to proceed with the results displayed in Figure 3. In the plots
on top, which correspond to the BASF bond, the dash-dotted lines correspond to the mean
and median of the 2000 values of the ES of different sets of synthetic data using HS (from
Equation (4)). The dashed lines represent the mean and median of the ES obtained by fitting
each dataset to a generalized hyperbolic probability density function and then using such
continuous functions to calculate the ES. Since the continuous probability density functions
are less prone to underestimate the extreme values (tails) than Historical Simulation, the
values of the dashed line are always above the values of the dash-dotted line. These results
indicate that if we take the ES of the fitting to the large (whole) observed dataset (gray
horizontal line in Figure 3-top) as our baseline, then fitting to probability distributions
provides more accurate results than HS. The effect is especially strong for low values of the
sample size.

The analyzed bonds (BASF and Charles Schwab, which are liquid) can be considered
proxies of other corporate bonds, which can be illiquid. We prefer to use such liquid bonds
(proxies) in our analysis to account for illiquid bonds to avoid distortions in the price due
to low supply and demand. Such distortions, often noticeable as large values of the bid-ask
spreads of illiquid bonds, would increase the complexity of the products and thus opaque
the ES-vs-sample size analysis, whose clear presentation is among the main goals of this
paper. For illiquid bonds, just a few returns are known, and hence, taking values of a
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proxy (e.g., BASF’s) bond is expected to reasonably give an account of the modeled product
(illiquid bond). However, this is not the case for stocks (shares of companies traded in stock
exchanges). Though there exist many small companies whose stocks have very low trading
volume (and may not be purchased even once a day), the vast majority of the volume of
traded stocks corresponds to very liquid products, which are traded numerous times a day.
Therefore, the fitting of observed data for calculating accurate ES may, in principle, not
look necessary for stocks because their daily prices are known. Conversely, we think that
the fitting procedure is also worthwhile for stocks. This is because the number of days to
be used for calculating the ES (Nr in Equation (4)) is arbitrary. If one wants to calculate
risks with a given horizon (e.g., 126 days, the usual number of trading days in a semester),
the market conditions may have changed during that time, making the oldest data stale.
In that case, it may be more appropriate to choose, e.g., 63 days instead. However, from our
previous analysis (Figure 2-top), we know that such a small number of data would distort
ES if calculated through historical simulation, leading to a non-converged value (below the
plateau). Therefore, a wiser way to proceed would be to use recent data, to fit them to a
fat-tailed distribution, and finally to calculate the ES of that distribution.
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Figure 3. Comparison of the mean (left) and median (right) of the Expected Shortfall of datasets
of different sizes (Nsample). The dash-dotted curves (Historical Simulation) correspond to the ES
of collections of observed returns calculated with Equation (4); the dashed curves correspond to
ES calculated from fitting those collections of observed returns to fat-tailed distributions. Gray
horizontal lines correspond to the ES from the fitted distribution of the whole dataset. The plots
on top correspond to a BASF bond (fitted to generalized hyperbolic distributions); the plots on the
bottom correspond to the AAPL stock (fitted to non-centered t-student distributions).

In Figure 3-bottom, we present data analogous to those of Figure 3-top, yet with the
corresponding calculations performed differently. For every sample, with size Nsample

(x-axis of the figures), we no longer randomly generated Nsample returns of the price of
the analyzed product. In contrast, we took the last Nsample returns of the stock price.
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This was carried out for every single trading date of the analyzed time interval (see Table 1).
Therefore, each point displayed in Figure 3-bottom is not the average of 2000 trials, but
the average of a number of trials equal to the total number of returns of the time interval
(5 years) minus (Nsample − 1).

In Figure 3-bottom, we also present a horizontal gray line that indicates the ES from
the distribution fitted to the whole dataset. Note that this is just a reference; it does not
need to be equal to the calculated values (blue lines). This is because the ES may abruptly
change for sudden strong price drops. For example, if Nsample ≃ 262, the ES may be 0.05 the
first year, 0.01 the second year, 0.03 the third year, etc., and the average of these numbers
would not need to be the ES of the whole (5-year) dataset, which may closer to 0.05 if the
strongest price dips concentrated in that period.

Fitting a dataset to probability density functions is more computationally demanding
than a simple calculation of the ES using Historical Simulation. However, due to the
capabilities of present-day computing facilities (García-Risueño & Ibáñez, 2012), such cal-
culations are affordable. The calculations whose results are presented in this article were
performed on a personal laptop (MacBook Pro 13-inch M1 2020, i.e., not on a cluster or
other supercomputing facility) and were carried out within a few weeks. The code was run
in Python 3.11, using recent versions of numpy and scipy.stats modules (Harris et al.,
2020; Virtanen et al., 2020).

5. Conclusions
In this article, we have shown a presentation about how the method of Historical Simu-

lation tends to systematically underestimate the Expected Shortfall of random variables like
the returns of financial products. This phenomenon is due to the fact that observed sample
datasets are forcedly finite and, hence, cannot cover the virtually infinite possible values
that correspond to continuous probability distributions. This limitation has a low impact
when calculating some quantities, like the sample average. However, it has a dramatic
impact on the calculation of the ES, which strongly depends on the minimum values of
the sample, which in turn tend to be lower for higher numbers of points in the sample.
Our results indicate that potentially severe errors made using Historical Simulation may
be frequent if the number of considered datapoints is not close to the number of trading
days of a year; nevertheless, taking so much data may lead to staleness of the data (due to
changes in the economic situation). This strongly advises against the usage of Historical
Simulation for calculating the Expected Shortfall; we encourage Regulators to seriously
consider the potential impact of such practice. We have indicated two methods to mitigate
the inaccuracies in the ES: increasing the sample size and—most recommended—fitting
the sample dataset to a continuous, fat-tailed probability density function (preferably the
generalized hyperbolic density function) to be used for calculating the Expected Shortfall.
This can be made using the code used for the calculations of this article, which is freely
distributed. We expect that our research work provides insights on important statistical
properties to Finance practitioners, and that it helps in their risk management activities.

Possible future research lines include considering other fat-tailed distributions, like
Johnson’s SU , as well as more sophisticated fittings of the observed returns, e.g., based on
autoregressive schemes or neural networks. A more comprehensive comparison of the
parametric methods proposed in this paper with other parametric and non-parametric
approaches using real market data for different kinds of financial products is also in scope.
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