
Academic Editors: Svetlozar (Zari)

Rachev and Shuangzhe Liu

Received: 20 December 2024

Revised: 17 January 2025

Accepted: 24 January 2025

Published: 29 January 2025

Citation: Galea, M., Molina, A., &

Beaudry, I. S. (2025). Diagnostic for

Volatility and Local Influence Analysis

for the Vasicek Model. Journal of Risk

and Financial Management, 18(2), 63.

https://doi.org/10.3390/

jrfm18020063

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Diagnostic for Volatility and Local Influence Analysis
for the Vasicek Model
Manuel Galea 1,* , Alonso Molina 1 and Isabelle S. Beaudry 2

1 Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
aomolina@uc.cl

2 Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA 01075, USA;
ibeaudry@mtholyoke.edu

* Correspondence: manuel.galea@uc.cl; Tel.: +56-9-5504-5973

Abstract: The Ornstein–Uhlenbeck process is widely used in modeling biological sys-
tems and, in financial engineering, is commonly employed to describe the dynamics of
interest rates, currency exchange rates, and asset price volatilities. As in any stochastic
model, influential observations, such as outliers, can significantly influence the accuracy
of statistical analysis and the conclusions we draw from it. Identifying atypical data is,
therefore, an essential step in any statistical analysis. In this work, we explore a set of
methods called local influence, which helps us understand how small changes in the data
or model can affect an analysis. We focus on deriving local influence methods for models
that predict interest or currency exchange rates, specifically the stochastic model called the
Vasicek model. We develop and implement local influence diagnostic techniques based on
likelihood displacement, assessing the impact of the perturbation of the variance and the
response. We also introduce a novel and simple way to test whether the model’s variability
stays constant over time based on the Gradient test. The purpose of these methods is to
identify potential risks of reaching incorrect conclusions from the model, such as the inac-
curate prediction of future interest rates. Finally, we illustrate the methodology using the
monthly exchange rate between the US dollar and the Swiss franc over a period exceeding
20 years and assess the performance through a simulation study.

Keywords: influence diagnostics; Ornstein–Uhlenbeck processes; likelihood inference;
stochastic interest rate models; gradient test

1. Introduction
Understanding and predicting interest rate movements plays a significant role in

investment decisions and financial risk management. The main objective of this paper is
to diagnose certain assumption violations in classical stochastic interest rate models. In
particular, we derive closed-form expressions of the local influence methodology for the
one-factor models, a popular class of interest rate models mainly used in pricing interest
rate derivatives. These models are represented by the following stochastic differential
equation (Black & Scholes, 1973; Hassler, 2016; Rémillard, 2013):

dr(t) = m(t, r(t))dt + v(t, r(t))dW(t), (1)

where m is the drift function, v is the volatility function, r(t) denotes the interest rate at
time t ≥ 0, and W denotes a Brownian motion or Wiener process. Various models for the
interest rates {r(t); t ≥ 0} have been proposed in the literature. Overviews may be found in
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the books by Brigo and Mercurio (2006), Filipović (2009), McDonald (2013), and Rémillard
(2013), and in the papers by Merton (1973), Vasicek (1977), and Cox et al. (1985), among
others. Equation (2) presents a common class of drift and volatility functions (Chan et al.,
1992; Nowman, 1997):

m(t, r(t)) = α(β − r(t)) v(t, r(t)) = σrτ(t), (2)

where α is the mean reversion parameter and β is the long-term mean rate of the process,
σ is the volatility of the short-term rate and τ is the proportional volatility exponent (the
symbols appearing in the interest rate models are summarized in Appendix A). A class of
well-known interest rate processes is obtained by imposing restrictions on the parameters
of the stochastic model (2). For more details on this family of models, see, for example,
Chan et al. (1992) and Nowman (1997, 1998).

Remark 1. The drift function in Equation (2) may also be written as m(t, r(t)) = a + br(t)
(Chan et al., 1992). However, this paper follows the parametrization presented in Rémillard (2013)
and Mazzoni (2018). The advantage of Equation (2) is that the parameters have straightforward
economic interpretations.

Estimating the parameters in the process (2) has been vastly discussed in the literature.
Lo (1986), Duan (1994), Valdivieso et al. (2009), Rémillard (2013) and Fergusson and Platen
(2015), among others, present maximum likelihood estimation in processes of the Ornstein–
Uhlenbeck type. Chan et al. (1992) estimate the parameters of several continuous-time
models for short-term rates using the generalized method of moments. In this work, we
derive the maximum likelihood (ML) estimators for the Vasicek model, which corresponds
to the special case when τ = 0. Subsequently, we develop the local influence methods for
stochastic models defined in (2). To our knowledge, the local influence methodology has
not been applied to this type of stochastic models.

As mentioned in Galea and Giménez (2019), influence analysis is a group of techniques
designed to evaluate the sensitivity of some statistics to perturbations in the data or model
assumptions. Detecting atypical (outliers) and influential observations is an essential step
in any financial model’s econometric analysis. Also, this is important to evaluate the
sensitivity (robustness) of the results obtained using the available data set, since atypical
interest rates can distort predictions and statistics of interest, leading to, in some cases,
wrong decisions. In this direction, van der Hart et al. (2003) showed that outliers are one of
the important factors in the selection of stocks in emerging markets. In addition, decisions
based on distorted inferences may be incorrect or suboptimal. Several approaches exist to
assess the influence of data and model perturbations on parameter estimates. Overviews
may be found in the books by Cook and Weisberg (1982) and Chatterjee and Hadi (1988)
and the papers by Cook (1986), Escobar and Meeker (1992) and Zhu et al. (2007). Case
deletion is a popular way to assess the impact of individual cases on the estimation process.
This approach, referred to as global influence analysis, consists of quantifying the effect of
a given observation by completely removing it. However, this approach is impractical for
data collected at regular time intervals, as eliminating certain observations would disrupt
the consistency of those intervals.

Local influence is an alternative approach based on differential geometry rather than
complete deletion. This method employs a differential comparison of parameter estimates
before and after a given perturbation to the data or model assumptions. Recently, Galea
and Giménez (2019) applied the local influence approach to the capital asset pricing model
under the multivariate normal distribution for modeling asset returns. However, the
application of this methodology to the Vasicek model has not been considered in the
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literature. The main contribution of this paper is to apply the local influence methodology
under various perturbation schemes to identify influential outliers among the observations
or assumption violations of the Vasicek model. We consider a parametrization of the model
that substantially simplifies the development of the influence measures.

We apply the methodology to the monthly exchange rates of the US dollar and the
Swiss franc from January 2001 to November 2024. This application is particularly relevant,
as both currencies are regarded as “safe-haven” assets. Understanding the relationship
between these two currencies is of significant interest to financial market stakeholders,
including investors seeking stability during periods of economic uncertainty. Moreover,
the Swiss National Bank implemented a notable shift in its monetary policies during the
analyzed period, which likely influenced the volatility of the Swiss franc. By utilizing the
methods developed in this paper, we aim to uncover meaningful patterns in the volatility of
this exchange rate over time. We also assess the performance of the proposed methodology
through a simulation study.

The paper is structured as follows. In Section 2, we describe the Vasicek model for
the modeling of interest rates. In Section 3, we present the ML estimators for the classical
Ornstein–Uhlenbeck process used in the Vasicek model. In that section, we also propose a
statistic to test the hypothesis of constant volatility based on the Gradient test. The local
influence methodology and explicit calculations of the influence measures are then derived
in Section 4. Section 5 presents a simulation study and an application based on the monthly
exchange rate between the US dollar and the Swiss franc after 31 December 2000. Finally,
we discuss some concluding remarks in Section 6.

2. The Vasicek Model
Interest rate modeling finds most of its applications in investment and financial

decisions, portfolio management, and insurance. The Vasicek model (Vasicek, 1977) is a
stochastic model describing the evolution of interest rates and is based on an arithmetic
Brownian motion with mean reversion. The Vasicek model was developed assuming an
efficient market economy, that is, based on the assumptions that (1) complete information
is available to all the economic agents acting in the markets, and (2) privileged information
providing any advantage does not exist. Furthermore, the Vasicek model assumes that
interest rates have a regressive behavior towards a fixed value representing the long-term
value of the interest rate. This model is known as the mean regression model and is based
on the Wiener and Ornstein–Uhlenbeck processes, which we define below. The Wiener
process, also referred to as a Brownian motion, is a continuous-time stochastic process with
independent increments. In finance, the Wiener process is used to describe changes in stock
prices or interest rates.

Definition 1. A stochastic process W = {W(t); t ≥ 0} is a standard Wiener process or
standard Brownian motion if (i) W(0) = 0, (ii) W has independent increments, that is,
W(t2) − W(t1), W(t3) − W(t2), . . . , W(tn) − W(tn−1) are independent random variables for
t1 ≤ t2 ≤ . . . ≤ tn, (iii) for each time interval (ti, ti−1), W(ti)− W(ti−1) ∼ N(0, ti − ti−1),
and (iv) the realizations of W are continuous; that is, t → W(t) is a continuous function of t ≥ 0.

Also, we know that the Wiener process is a Gaussian process, and its covariance
function is given by Cov{W(s), W(t)}=min(s, t), for s, t ≥ 0.



J. Risk Financial Manag. 2025, 18, 63 4 of 20

Definition 2. Let {r(t); t ≥ 0} be a stochastic process. The process defined by dr(t) = α(β −
r(t))dt + σdW(t) is called an Ornstein–Uhlenbeck process, where W is Brownian motion and
σ > 0. The solution of this equation is:

r(t) = β + e−αt(r0 − β) + σ
∫ t

0
e−α(t−u)dW(u), t ≥ 0, (3)

with known r(t0) = r0, and where α, β, and σ are parameters of the process. The Ornstein–
Uhlenbeck process is a Gaussian and Markovian process. For properties of stochastic integrals of the
form

∫ t
0 f (u)dW(u), see Appendix B.

Definition 3. If the interest rate follows an Ornstein–Uhlenbeck mean-reverting process, defined
by (3), where α is the mean speed of reversion, β is the mean interest rate level, σ is the instantaneous
volatility, and W is a standard Brownian motion, then the resulting process is referred to as the
Vasicek model.

From the properties of the integral of a deterministic function relative to a Brownian
motion, see Appendix B, it follows that the interest rate r(t), conditional on Fs, the infor-
mation set at time s, for s ≤ t, is normally distributed with mean and variance functions
given by:

E{r(t)|Fs} = r(s)e−α(t−s) + β{1 − e−α(t−s)}, (4)

Var{r(t)|Fs} =
σ2

2α
{1 − e−2α(t−s)},

respectively. Hence P(r(t) < 0) > 0, which is inappropriate when r(t) represents the
rate of interest at time t. However, this probability is typically negligible. On the other
hand, the long-term distribution of the Ornstein–Uhlenbeck process is stationary and is
Gaussian with mean β and variance σ2/2α, which we denote as r∞ ∼ N(β, σ2/2α). So, in
the long-term equilibrium, the probability of negative values of r∞ is given by:

P(r∞ < 0) = Φ
(
− β

√
2α/σ2

)
, (5)

where Φ(x) denotes the cumulative distribution function of a standard normal distribution.

Note that if observations are collected at regular intervals of length h > 0, we
can write:

r(t + h) = β + e−αh(r(t)− β) + σ
∫ t+h

t
e−α(t+h−u)dW(u). (6)

Remark 2. To simulate n observations from a Vasicek model, we can use the following equation:

r(k + h) = β + e−αh(r(k)− β) + σ

√
1 − exp{−2αh}

2α
Zk, (7)

where, Zk, k = 0, 1, ..., n are random variables independent and identically distributed N(0, 1).

Remark 3. Another important application of the Ornstein–Uhlenbeck process, and in particular
of the Vasicek model, is the modeling of exchange rates. The exchange rate is a very important
macroeconomic variable that plays a crucial role in international trade. See, for example, Mostafa
and Mohammed (2016), Sikora et al. (2019) and Serafin et al. (2020).

Let θ = (α, β, σ2)T . To simplify the statistical analysis of the Vasicek model given in
Definition 3, we consider the following parametrization (Brigo & Mercurio, 2006; Rémillard,
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2013). Let γ = (γ0, γ1, γ2)
T , where γ0 = β(1 − γ1), γ1 = exp{−αh}, and γ2 = σ2(1 −

γ2
1)/2α. We also assume n observations of r(t) at times {t1, t2, ..., tn}, where 0 < t1 <

t2 < ... < tn. Let r = (r1, ..., rn)T , where ri = r(ti) for i = 1, ..., n and r(t0) = r0 is known.
Usually, interest rates are observed at equally spaced time points {h, 2h, ...., nh} over a
given time interval [0, T], where T = nh. Therefore, we may rewrite Equation (7) with the
above parametrization, such that:

ri = γ0 + γ1ri−1 + ϵi, (8)

where ϵi ∼ N(0, γ2), for i = 1, ..., n.
Let p(r|γ, r0) denote the density function of r given r0. As described in Lo (1986), the

density p may be written as the product of conditional densities:

p(r|γ, r0) = p1(r1|γ, r0)p2(r2|γ, r1, r0)....pn(rn|γ, rn−1, ..., r0). (9)

However, because the interest rate r(t) follows a Markovian process, Equation (9)
reduces to:

p(r|γ, r0) = p1(r1|γ, r0)p2(r2|γ, r1)....pn(rn|γ, rn−1),

and since the increments of the Wiener process are normally distributed, we have that:

p(ri|γ, ri−1) =
1√

2πγ2
exp

{
− (ri − γ1ri−1 − γ0)

2

2γ2

}
,

which corresponds to the probability density function of a normal distribution with mean
γ1ri−1 + γ0 and variance γ2, for i = 1, ..., n. Finally, the joint density function of the sample
r = (r1, ..., rn)T takes the following form:

p(r|γ, r0) =
n

∏
i=1

1√
2πγ2

exp
{
− (ri − γ1ri−1 − γ0)

2

2γ2

}
, (10)

that is, r|r0 ∼ Nn(Xγ∗, γ2 In), with XT =

 1 . . . 1

r0 . . . rn−1

 and γ∗ = (γ0, γ1)
T , a

simple linear regression model.

3. Likelihood Inference
In this section, we briefly discuss the likelihood inference for the model parameters

and their associated standard errors, as well as hypothesis testing for constant volatility.

3.1. Maximum Likelihood Estimation

Maximum likelihood estimation in processes of theOrnstein–Uhlenbeck type has been
discussed in the literature, for instance, see Lo (1986), Duan (1994), Brigo and Mercurio
(2006), Valdivieso et al. (2009), Rémillard (2013) and Fergusson and Platen (2015). Chan
et al. (1992) estimate the parameters of several continuous-time models for the short-term
interest rates using the Generalized Method of Moments. In this section, we present some
results for the ML estimation following Rémillard (2013) and Fergusson and Platen (2015),
using the parametrization of the Vasicek model discussed in the previous section.

From Equation (10), it follows that the log-likelihood function for γ takes the
following form:

L(γ) =
n

∑
i=1

Li(γ), (11)
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where Li(γ) = −1
2

ln 2π − 1
2

ln γ2 −
1

2γ2
(ri − γ1ri−1 − γ0)

2, for i = 1, ..., n. The score

functions for γ then follow, which are given by:

∂L(γ)
∂γ0

=
1

γ2

n

∑
i=1

(ri − γ1ri−1 − γ0), (12)

∂L(γ)
∂γ1

=
1

γ2

n

∑
i=1

(ri − γ1ri−1 − γ0)ri−1,

∂L(γ)
∂γ2

=
n

∑
i=1

{
− 1

2γ2
+

1
2γ2

2
(ri − γ1ri−1 − γ0)

2
}

.

From Equation (12), we obtain the following ML estimators for γ0, γ1 and γ2:

γ̂0 =
1
n

n

∑
i=1

(ri − γ̂1ri−1), (13)

γ̂1 =
n ∑n

i=1 riri−1 − ∑n
i=1 ri ∑n

i=1 ri−1

n ∑n
i=1 r2

i−1 − {∑n
i=1 ri−1}2

,

γ̂2 =
1
n

n

∑
i=1

(ri − γ̂1ri−1 − γ̂0)
2.

As described in Appendix C, we may also derive an estimator of the covariance matrix
for γ̂, which leads to the following result:

D(γ̂) =

 γ̂2(XTX)−1 0

0 2γ̂2
2/n

.

Due to the invariance property of the ML estimators, we also obtain the ML estimators
for α, β and σ2:

α̂ = −1
h

ln γ̂1, (14)

β̂ = γ̂0/(1 − γ̂1),

σ̂2 = −2γ̂2 ln γ̂1/h(1 − γ̂2
1),

and an estimator of the covariance matrix of θ̂ = (α̂, β̂, σ̂2)T is given by D(θ̂) = L−1
θ (θ̂), as

shown in Appendix C.

3.2. Diagnostic for Constant Volatility

An important feature of the class of stochastic models defined in Equation (2) is the
evolution of the volatility, v(t, r(t)) = σrτ(t). The dynamics of volatility can be modeled
using the parameter τ. For example, if τ = 0, the volatility is constant and Equation (2)
corresponds to the Vasicek model (Vasicek, 1977), while τ = 1/2 corresponds to the CIR
model (Cox et al., 1985). In the latter case, the volatility is not constant. In this section,
we propose a statistic for testing the hypothesis of constant volatility. The hypothesis that
τ = 1/2 may be tested similarly.

To test the null hypothesis H0 : τ = 0, we use the Gradient test (Lemonte, 2016; Terrell,
2002), defined as:

Ga = UT(γ̃)(γ̂ − γ̃), (15)

where γ̂ and γ̃ are the ML estimators of γ = (γ0, γ1, γ2, τ)T based on the full and re-
duced (τ = 0) models, respectively, and U (γ) is the score function for a sample of the
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process shown in Equation (2). Under the null hypothesis, Ga asymptotically follows a
χ2−distribution with p = 1 degree of freedom.

Following Nowman (1997), the discrete model we use for estimation is given by:

ri = γ0 + γ1ri−1 + ϵi, (16)

where ϵi ∼ N(0, γ2r2τ
i−1), for i = 1, ..., n, γ0 = β(1 − exp(−α)), γ1 = exp(−α) and γ2 =

σ2

2α
(1 − exp(−2α)).

Remark 4. Using the approximation that exp(−2α) ≈ 1 − 2α, we have that γ2 ≈ σ2, and, in this
case, the models proposed by Chan et al. (1992) and Nowman (1997, 1998) coincide.

From Equation (16), it follows that the log-likelihood function for γ under the full
model takes the form:

L(γ) =
n

∑
i=1

Li(γ), (17)

where Li(γ) = −1
2

ln 2π − 1
2

ln γ2 − τ ln ri−1 −
1

2γ2r2τ
i−1

(ri − γ1ri−1 − γ0)
2, for i = 1, ..., n.

The associated score functions for γ are given by:

∂L(γ)
∂γ0

=
n

∑
i=1

( 1
γ2r2τ

i−1

)
(ri − γ1ri−1 − γ0), (18)

∂L(γ)
∂γ1

=
n

∑
i=1

( 1
γ2r2τ

i−1

)
(ri − γ1ri−1 − γ0)ri−1,

∂L(γ)
∂γ2

=
n

∑
i=1

{
− 1

2γ2
+

1
2γ2

2r2τ
i−1

(ri − γ1ri−1 − γ0)
2
}

,

∂L(γ)
∂τ

=
n

∑
i=1

{
− ln ri−1 +

ln ri−1

γ2r2τ
i−1

(ri − γ1ri−1 − γ0)
2
}

.

Let ci = ci(τ) = 1/r2τ
i−1, for i = 1, ..., n. If we set U (γ) = 04, then it follows that:

γ̂0 =
n

∑
i=1

ci(ri − γ̂1ri−1)/
n

∑
i=1

ci, (19)

γ̂1 =
∑n

i=1 ciriri−1 − (∑n
i=1 ciri)(∑n

i=1 ciri−1)/ ∑n
i=1 ci

∑n
i=1 cir2

i−1 − (∑n
i=1 ciri−1)2/ ∑n

i=1 ci
,

γ̂2 =
1
n

n

∑
i=1

ci(ri − γ̂1ri−1 − γ̂0)
2,

g(τ) = 0, (20)

where g(τ) = γ̂2 ∑n
i=1 ln ri−1 − ∑n

i=1 ln ri−1
[
ci(ri − γ̂1ri−1 − γ̂0)

2]. The parameter vector
γ = (γ0, γ1, γ2, τ)T may be estimated through the following iterative process:

Step 0: Set an initial value for γ̂(0) and k = 0.
Step 1: Calculate the weights ci(τ̂

(k)), for i = 1, ..., n.
Step 2: Using Equation (19), calculate the estimates γ̂0

(k+1), γ̂1
(k+1), and γ̂2

(k+1).
Step 3: Solve Equation (20) to obtain τ̂(k+1). The Newton-type algorithm provides a

recursive expression for τ̂(k+1) given by:

τ̂(k+1) = τ̂(k) − g(τ̂(k))/g′(τ̂(k)),

where g′(τ̂(k)) = 2 ∑n
i=1 ci(τ̂

(k))(ln ri−1)
2(ri − γ̂

(k+1)
1 ri−1 − γ̂

(k+1)
0 )2, for k = 0, 1, ...
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Step 4: If ∥γ̂(k+1) − γ̂(k)∥ < ε, then stop and set γ̂ = γ̂(k+1). Otherwise, set k = k + 1
and return to Step 1. Typical values for the constant ε are 10−4 or 10−6.

Cook and Weisberg (1983) also proposed an alternative diagnostic test for heteroskedas-
ticity based on the score statistic as well as a graphical procedure to complement the score
test. The authors suggest visually inspecting the plots of the squared studentized residuals
e2

i /s2(1 − hii) against −2(1 − hii) ln ri−1, where ei = ri − γ̂0 − γ̂1ri−1, s2 = ∑n
i=1 e2

i /(n − p),
and hii are the diagonal elements of the hat matrix H = X(XTX)−1XT , for i = 1, ..., n.

Finally, to assess the dynamic specification of the model, we may also compute the

Box Pierce portmanteau statistic (Nowman, 1997). Let r∗i = ei/
√

γ2r2τ
i−1, for i = 1, ..., n. If

the model is well-specified, these residuals are independent, and their variance is equal to
one. The statistic is given by:

S =
1

n − k

k

∑
i=1

S2
i , (21)

where Si = ∑n
t=k+1 r∗t r∗t−i, i = 1, ..., k. Under the null hypothesis of white noise, S follows

approximately a χ2−distribution with k degrees of freedom. In practice, a k = 12 is used to
calculate the S−statistic (Nowman, 1997).

4. Influence Diagnostics for Parameter Estimates
Detecting outliers and influential observations is an important step in the analysis of

data sets. Several approaches exist to assess the influence of data and model perturbations
on parameter estimates. Overviews may be found in the books by Cook and Weisberg
(1982) and Chatterjee and Hadi (1988), and the papers by Cook (1986) and Zhu et al. (2007).

Case deletion is a popular way to assess the impact of individual cases on the esti-
mation process. This approach is referred to as global influence analysis and consists of
quantifying the effect of a given observation by completely removing it. Local influence is
an alternative approach that is based on differential geometry rather than complete deletion.
This method employs a differential comparison of parameter estimates before and after a
given perturbation to the data or model assumptions. In this section, we derive closed-form
expressions of the local influence methods for the Vasicek model.

4.1. Description of the Local Influence Method

The local influence method was proposed by Cook (1986) as a general tool for assessing
the influence of local departures from the assumptions underlying the statistical models.
A perturbation scheme is introduced into the postulated model {p(r|γ, r0) : γ ∈ Γ}
through a perturbation vector ω = (ω1, . . . , ωn)T , thus generating the perturbed model
M = {p(r|γ, ω, r0) : ω ∈ Ω}, where p(r|γ, ω, r0) is the pdf of r given in Equation (10)
when perturbed by ω, and L(γ|ω) = log p(r|γ, ω, r0) is the corresponding log-likelihood
function. We assume that p(r|γ, ω0, r0) = p(r|γ, r0) for all γ ∈ Γ, where ω0 represents
the vector without any perturbation. To assess the influence of the perturbations on the
ML estimate of γ, we consider the likelihood displacement LD(ω) = 2{L(γ̂)−L(γ̂ω)},
where γ̂ is the ML estimator of γ in the postulated model, and γ̂ω is the ML estimator of γ

in the perturbed model M. Cook (1986) proposed to study the local behavior of LD(ω)

around ω0 and showed that the normal curvature Cd of LD(ω) at ω0 in the direction of
some unit vector d is given by Cd = Cd(γ) = 2|dT∆T L−1

γ (γ)∆d|, with ||d|| = 1, where
Lγ(γ) is the observed information matrix, given in Appendix C, evaluated at γ = γ̂, and
∆ = ∂2L(γ|ω)/∂γ∂ωT is evaluated at (γ, ω) = (γ̂, ω0).

Let dmax be the direction of maximum normal curvature, the perturbation that pro-
duces the greatest local change in γ̂. The most influential elements of the data may be
identified by their large component of the dmax vector. Furthermore, dmax corresponds to
the eigenvector associated with the largest eigenvalue of F = ∆T L−1

γ (γ)∆. The plot of the



J. Risk Financial Manag. 2025, 18, 63 9 of 20

elements |dmax| versus i (order of the data) can reveal the type of perturbations that has
the most influence on LD(ω) in the neighborhood of ω0 (Cook, 1986). The index plot of Ci

may also be used to detect the presence of influential observations, where Ci = 2| fii|, and
fii are the elements on the main diagonal of the matrix F = ∆T L−1

γ (γ)∆.
Recently, Zhu et al. (2007) proposed a method for selecting appropriate perturbation

schemes for a model M. The method is based on the expected value of the Fisher informa-
tion matrix for M with respect to the perturbation vector ω, assuming that the vector γ is
fixed. The resulting matrix is G(ω) = (gij(ω)), such that:

gij(ω) = Eω

[ ∂

∂ωi
L(γ|ω)

∂

∂ωj
L(γ|ω)

]
, i, j = 1, . . . , n,

where Eω denotes the expectation taken with respect to the density of the perturbed model
p(r|γ, ω, r0). The elements gii(ω) of G(ω) are the variances in scores with respect to the
components of ω, and indicate the amount of perturbation introduced by the ith component
of ω. The off-diagonal elements of G(ω) are the covariances of scores with respect to the
components of ω and, hence, represent the linear association between the components of
ω. Note that if G(ω) is a diagonal matrix, the components of ω are orthogonal in the sense
of Cox and Reid (1987). Consequently, a perturbation scheme is deemed appropriate if
it satisfies the condition G(ω0) = cIn, where c > 0. This condition ensures that there are
no redundancies in the components of ω and allows us to determine the orthogonality
between the components of ω so we can identify the cause of a large effect. For more details,
see Zhu et al. (2007). For an application of local influence diagnostics to test mean-variance
efficiency and systematic risks in the capital asset pricing model, CAPM, see Galea and
Giménez (2019).

Since Cd is not invariant under a uniform change of scale, Poon and Poon (1999) pro-
posed the conformal normal curvature Bd = Cd/tr(2F) (Zhu & Lee, 2005). An interesting
property of the conformal curvature is that for any direction unit d, 0 ≤ Bd ≤ 1. We denote
by Bi = 2| fii|/tr(2F) the conformal curvature in the unit direction with the ith entry equal
to one and all other entries equal to zero.

According to Zhu and Lee (2005), the ith observation is potentially influential if
Bi > B̄ + 2sd(B), where B̄ = ∑n

i=1 Bi/n and sd(B) is the standard deviation of B1, . . . , Bn.
An important property of Cd and Bd is that they are invariant with respect to any

parametrization of θ. Thus, the results obtained using Cd or Bd do not depends on
the parametrization of the statistical model. Moreover, Bd, is invariant to conformal
parametrizations of ω (Zhu & Lee, 2005). Consequently, we use the parametrization
γ = a(θ), discussed in the previous sections, for the local influence analysis on the Vasicek
model, see Appendix D.

4.2. Calculation of the Influence Measures

In this section, we discuss two perturbation schemes: the perturbation of the variance
and the perturbation of the response. For both schemes, we present the matrices needed to
implement the diagnostic measures.

4.2.1. Perturbation of the Variance

The postulated model in Equation (10) is assumed to be homoscedastic, that is, the
variance is assumed to be constant and is equal to γ2. If we consider the perturbation of
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the variance given by ω−1
i γ2, for i = 1, . . . , n, the density function of the perturbed model

is given by:

p(r|γ, ω, r0) =
n

∏
i=1

1√
2πγ2ω−1

i

exp
{
− (ri − γ1ri−1 − γ0)

2

2γ2ω−1
i

}
, (22)

and the corresponding perturbed log-likelihood function is given by:

L(γ|ω) =
n

∑
i=1

Li(γ|ωi),

where Li(γ|ωi) = −1
2

ln 2π − 1
2

ln γ2 +
1
2

ln ωi −
ωi

2γ2
{ri − γ1ri−1 − γ0}2, for i = 1, ..., n.

In this case, the elements gij(ω) = (1/2ω2
i )δij for i, j = 1, ..., n, where δij is the Kro-

necker delta, see Appendix E for more details. Therefore, the metric matrix G(ω0) =

(1/2)In, with ω0 = (1, ..., 1)T . Thus, the perturbation scheme of the variance is appropri-
ate and allows us to assess the effect of the heteroskedasticity on the ML estimators.
The ∆ matrix for this perturbation scheme takes the form of ∆ = (∆1, ..., ∆n) where
∆i = (1/γ̂2)(ei, eiri−1, e2

i /2γ̂2)
T , where ei = ri − γ̂1ri−1 − γ̂0, for i = 1, ..., n.

4.2.2. Perturbation of the Interest Rate

In this section, we discuss the perturbation of the response. Specifically, we consider an
additive perturbation scheme riω = ri + ωi, i = 1, ..., n. In this case, ω = (ω1, ..., ωn)T and
ω0 = 0n, where 0n represents an n × 1 vector of zeros. After some algebraic manipulations,
we obtain that the metric matrix is G(ω) = (1/γ2)In. Thus, the additive perturbation of
the response is appropriate too. With this perturbation scheme, we can assess the effect
of outliers on the ML estimators. The ∆ matrix is given by ∆T = (1/γ̂2)(X, e/γ̂2), where
e = (e1, ..., en)T is the vector of residuals (Schwarzmann, 1991). In this case, the influence
matrix F = ∆T L−1

γ (γ)∆ = (1/γ̂2){H + 2hhT}, where the hat matrix H = X(XTX)−1XT

and the normalized residual vector h = e/∥e∥, with Hh = 0n. The direction of the
maximum curvature is proportional to the residual vector, dmax = h. For more details,
see Schwarzmann (1991). Finally, since tr(F) = 4/γ̂2 and fii = (hii + 2h2

i )/γ̂2, we have
Bi = (hii + 2h2

i )/4, for i = 1, ..., n. Note that fii = 4Bi/γ̂2 and therefore, both diagnostic
measures highlight the same potentially influential observations, if any.

5. Applications and Simulation Study
5.1. Historical USD to CHF Exchange Rate

This section describes the results we obtained when applying the methods discussed
in this paper to the monthly exchange rate between the US dollar (USD) and the Swiss
franc (CHF). The data cover the period from January 2001 to November 2024 and therefore
include 287 monthly observations. Table 1 presents a descriptive summary of the series.
We see that in the period considered, the exchange rate fluctuates between a minimum of
0.779 and a maximum of 1.784, with an average of 1.080. We also observe that the exchange
rate is right-skewed (skewness = 1.448) and the observed kurtosis (4.479) is greater than
what would be expected under the normal distribution.

Table 1. Summary statistics for monthly USD to CHF exchange rate over the period from January
2001 to November 2024.

n Min Median Mean Max SD Skewness Kurtosis

287 0.779 0.989 1.080 1.784 0.214 1.448 4.479
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Figure 1a shows the fluctuation in the exchange rates in the covered period and the
fitted Vasicek model in red. In addition to the overall downward trend in the exchange
rate over that period, we note the close fit of the model to the data. Figure 1b displays
the exchange rates in the current period against the value in the previous one, (ri−1, ri),
i = 1, ..., n. From this figure, we observe a linear relationship between the exchange rates of
consecutive months. Consequently, both plots suggest that the Vasicek model appears to
be reasonable for modeling these exchange rates.

Figure 1. (a) Monthly exchange rate between the US dollar and the Swiss franc from January 2001 to
November 2024 and the fitted Vasicek model in red. and (b) Dispersion plot of the exchange rates of
the current period (ri) against those of the previous one (ri−1).

The maximum likelihood (ML) estimates and their standard errors are shown in
Table 2, and the resulting estimated Vasicek model is as follows:

r̂i = 0.92120 + e−0.1983(ri−1 − 0.92120), for i = 1, ..., n. (23)

Using the Wald test, we determined that the coefficients α and β and the volatility σ2 are
all statistically significant at a significance level of 0.05. Furthermore, from Equation (5),
the estimated probability (in the long-term equilibrium) of a negative exchange rate is
P̂(r∞ < 0) = 2.19 × 10−12. These results do not provide us with evidence against the
adequacy of the Vasicek model.

Table 2. ML estimates of the Vasicek model and their respective standard errors.

Parameter ML Estimate Standard Error

α 0.19833 (0.08095)
β 0.92120 (0.10793)
σ2 0.00702 (0.00059)

Panel (a) of Figure 2 shows a Q−Q plot of the studentized residuals r∗1 , . . . , r∗n and
panel (b), a plot of the studentized residuals against the fitted values of the USD to CHF
exchange rate. Figure 2a shows a moderate departure from the normality assumption.
Figure 2b does not display any distinctive patterns indicating violations of the model
assumptions. Again, both plots indicate that the model assumptions are reasonably met.
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Figure 2. (a) Q−Q plots of the studentized residuals and (b) of the studentized residuals against the
fitted values of the USD to CHF exchange rate.

Figure 3 displays diagnostic plots for the constant volatility assumption. Figure 3a
presents the index plot of the Bi statistics of the local influence method for the perturbation
of the variance scheme. The dashed line represents the threshold of B̄ + 2sd(B), signaling
that the observation is potentially influential. As we may observe, several observations
fall above the threshold, but the observations 2011–09 and 2001–08 are the most significant
influential observations for this perturbation scheme. Figure 3b shows the Cook–Weisberg
plots (Cook & Weisberg, 1983) to assess the constant volatility assumption in regression
models. Interestingly, this plot also identifies observation 2011–09 as the most potentially
influential under the constant volatility assumption. It is interesting to note that this
influential observation happened shortly after the National Swiss Bank adopted a minimum
exchange rate at CHF 1.20 per euro in an attempt to limit the overvaluation of the Swiss
franc (Swiss National Bank, 2011) and that both methods detect its influence. Also, none of
the influential observations occurred after 2012. This may indicate that the monetary policy
reduced the volatility between the two currencies and that using the Vasicek model for the
entire period from 2001 to 2024 is inappropriate. Finally, both graphs suggest that τ ̸= 0.

The Gradient statistics test that H0 : τ = 0 is Ga = 23.687 with a p−value of 1.13× 10−6

so we reject the hypothesis that H0 : τ = 0 at a 5% significance level. Finally, we also
calculated the Box Pierce portmanteau statistic (Nowman, 1997) to assess the dynamic
specification of the model. We obtained an S statistic equal to 18.944, corresponding to
a p-value of 0.0899. Thus, we have moderate evidence against the null hypothesis of
white noise. To some extent, both tests indicate that the variance is not constant across
the full duration of the data. Since the perturbation of the variance also suggests that
using the Vasicek model may not be appropriate over the entire period, we broke the data
into two segments: before 2012 and after 2011, and repeated the Gradient and Box Pierce
Portmanteau tests. After splitting the data, both tests failed to reject the null hypothesis of
constant variance within each segment, contradicting the initial conclusion of the tests. This
outcome could be attributed to the reduced statistical power from using fewer observations
to fit the model, or it may indicate that separately modeling the two time periods is more
appropriate.
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Figure 3. (a) Index plot of the Bi statistics of the local influence method for the perturbation of the
variance scheme. (b) Cook−Weisberg plot. The detected influential observations are shown in red,
and their dates of occurrence are indicated next to them in both plots.

Finally, Figure 4 displays the diagnostic plot for the additive perturbation of the
exchange rates. Figure 4a presents the index plot of the Bi statistics of the local influ-
ence method for that perturbation scheme. The dashed line represents the threshold of
B̄ + 2sd(B), indicating that the observation is potentially influential. Again, the most
influential observations correspond to 2011–09 and 2001–08. This result suggests that the
Swiss National Bank monetary policy adopted in September 2011 might have significantly
impacted that year’s exchange rate. Figure 4b shows the monthly exchange rate between
the US dollar and the Swiss franc from January 2001 to November 2024 and the fitted
Vasicek model in red. The blue points represent the detected influential observations. We
again note that none of the influential observations occur after 2011. The Vasicek model
may be more appropriate for the USD-CHF exchange rates after the introduction of the
monetary policy.

Figure 3. (a) Index plot of the Bi statistics of the local influence method for the perturbation of the
variance scheme. (b) Cook−Weisberg plot. The detected influential observations are shown in red,
and their dates of occurrence are indicated next to them in both plots.

Finally, Figure 4 displays the diagnostic plot for the additive perturbation of the exchange
rates. Figure 4a presents the index plot of the Bi statistics of the local influence method for that
perturbation scheme. The dashed line represents the threshold of B̄ + 2sd(B), indicating that
the observation is potentially influential. Again, the most influential observations correspond
to 2011–09 and 2001–08. This result suggests that the Swiss National Bank monetary policy
adopted in September 2011 might have significantly impacted that year’s exchange rate.
Figure 4b shows the monthly exchange rate between the US dollar and the Swiss franc from
January 2001 to November 2024 and the fitted Vasicek model in red. The blue points represent
the detected influential observations. We again note that none of the influential observations
occur after 2011. The Vasicek model may be more appropriate for the USD-CHF exchange
rates after the introduction of the monetary policy.
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Figure 4. (a) Index plot of the Bi statistics for the perturbation of the exchange rate. The detected
influential observations are shown in red, and their dates of occurrence are indicated next to them.
(b) Monthly exchange rate between the US dollar and the Swiss franc from January 2001 to Novem-
ber 2024 and the fitted Vasicek model in red. The blue points represent the detected influential
observations.

5.2. Simulation Study

To evaluate the Gradient test’s performance in finite samples, we conducted a simula-
tion study to assess the empirical level and the power of the test at a nominal significance
level of 5% when testing the hypothesis H0 that τ = 0. We simulated 5000 series of returns
from the stochastic model (2), with α = 0.10, β = 0.20, σ2 = 0.001, τ = 0, τ = 1/2, h = 1/12
and r0 = 0.50.

Table 3 summarizes some of the results of the simulations. Rejection rates from the
Gradient test are close to 5%, independently of the sample size. As expected, when τ ̸= 0,
the rejection rates tend to 1.00 as the sample size increases. These results suggest that the
Gradient test detects with a high probability non-constant interest rate when it is indeed
non-constant, as long as the sample size is sufficiently large. Therefore, investors may
reconsider their exposure to a financial product if the Gradient test identifies non-constant
variability, particularly if maintaining stability in variability is among their investment
objectives. However, while doing so, they must recall that, by design, the Gradient test has
a probability, 5% in this case, of incorrectly detecting a non-constant variance when the
variance is, in fact, constant, irrespective of the sample size.

Table 3. Rejection rates of the Gradient test for the hypothesis of constant volatility at a 5% significance
level.

n τ = 0 (Vasicek Model) τ = 0.5 (CIR Model)

50 0.0554 0.0692
120 0.0488 0.2170
200 0.0480 0.5210
300 0.0514 0.8074
1000 0.0542 0.9988

Figure 5 shows the empirical histograms of the Gradient test values for the simulated
data under different scenarios, where we see clear evidence of the agreement between the
empirical and theoretical distributions under the null hypothesis.

Figure 4. (a) Index plot of the Bi statistics for the perturbation of the exchange rate. The detected
influential observations are shown in red, and their dates of occurrence are indicated next to them.
(b) Monthly exchange rate between the US dollar and the Swiss franc from January 2001 to November
2024 and the fitted Vasicek model in red. The blue points represent the detected influential observations.
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5.2. Simulation Study

To evaluate the Gradient test’s performance in finite samples, we conducted a simula-
tion study to assess the empirical level and the power of the test at a nominal significance
level of 5% when testing the hypothesis H0 that τ = 0. We simulated 5000 series of returns
from the stochastic model (2), with α = 0.10, β = 0.20, σ2 = 0.001, τ = 0, τ = 1/2, h = 1/12
and r0 = 0.50.

Table 3 summarizes some of the results of the simulations. Rejection rates from the
Gradient test are close to 5%, independently of the sample size. As expected, when τ ̸= 0,
the rejection rates tend to 1.00 as the sample size increases. These results suggest that the
Gradient test detects with a high probability non-constant interest rate when it is indeed
non-constant, as long as the sample size is sufficiently large. Therefore, investors may
reconsider their exposure to a financial product if the Gradient test identifies non-constant
variability, particularly if maintaining stability in variability is among their investment
objectives. However, while doing so, they must recall that, by design, the Gradient test has
a probability, 5% in this case, of incorrectly detecting a non-constant variance when the
variance is, in fact, constant, irrespective of the sample size.

Table 3. Rejection rates of the Gradient test for the hypothesis of constant volatility at a 5% signifi-
cance level.

n τ = 0 (Vasicek Model) τ = 0.5 (CIR Model)

50 0.0554 0.0692
120 0.0488 0.2170
200 0.0480 0.5210
300 0.0514 0.8074
1000 0.0542 0.9988

Figure 5 shows the empirical histograms of the Gradient test values for the simulated
data under different scenarios, where we see clear evidence of the agreement between the
empirical and theoretical distributions under the null hypothesis.

In response to reviewers’ feedback, we conducted additional simulations using two al-
ternative models to assess their impact on the Gradient test’s ability to detect heteroskedas-
ticity. We chose the parameters of the alternative models to ensure that the long-term
expected value of the interest rate and their volatility were similar to those of the Vasicek
and CIR models. The results showed that the proposed Gradient test has higher power
for the alternative models than the CIR model for the selected sample sizes. This can be
attributed to the fact that, while the average volatility is comparable across models, the
alternative models exhibit greater variability in volatility across samples. It thus suggests
that the data are noisier, making it easier for the Gradient test to detect the non-constant
variance. In addition, these simulations revealed that the Gradient test performs better for
the four models we considered when the initial interest rate, r0, is higher than the long-term
equilibrium rate.

We further investigated the proposed influence measures’ empirical performance,
based on one simulated data set, with two added outliers; the observation 100, r100 was
changed to 1.10r100 and r200 was changed to 1.15r200. Figure 6 presents the index plots
of Bi and the Cook–Weisberg plot for this simulated data set. We see that both influence
measures can effectively detect the two perturbed observations.
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Figure 5. Empirical histograms of the Gradient test for the simulated data.



J. Risk Financial Manag. 2025, 18, 63 16 of 20

(a)

Time

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
i

100

200

0 5 10 15 20 25 30

1.0

1.5

2.0

2.5

3.0

3.5

(b)

ei
2 s2(1 − hii)

19

60

100119

200

270

−
2(

1
−

h i
i)ln

r i−
1

Figure 6. (a) Index plots of Bi. (b) Cook–Weisberg plot for a simulated data set.

6. Conclusions
Understanding interest rates’ fluctuations play an essential role in investment decisions

and financial markets’ risk management. One approach to understanding the behavior of
interest rates is through stochastic modelling. However, inferences for stochastic models
may be sensitive to the presence of atypical rates. Since outliers may significantly distort
estimators and statistical tests, potentially leading to incorrect or suboptimal decision mak-
ing, assessing the results’ sensitivity to such observations is an essential step to stochastic
model inference. The local influence methodology is an approach to identify outliers that
may significantly affect the value of statistics of interest in a given model. This work’s
main contribution is to apply the local influence methodology in stochastic interest rate
models. In particular, the proposed local influence measures we present in this work aim at
detecting atypical rates for the Vasicek model.

After describing the parametrization of the Vasicek model, we discussed the likelihood
inference for the model parameters. We also presented methods for the diagnostic of
constant volatility, which, in some instances, we adapted for the Vasicek model. Then,
we explained how the local influence approach could also be applied to this stochastic
model. To do so, we derived closed-form expressions for the delta matrices under the
perturbation of the variance. Subsequently, we illustrated the methods in an application
using the monthly exchange rate between the US dollar and the Swiss franc from January
2001 to November 2024. We found similarities in the detection of influential observations
among the methodologies.

We also developed the local influence diagnostic for the perturbation in the interest
rates and the associated delta matrices. We evaluated the performance of the method
through a simulation study in which we artificially added outliers. Empirical results show
that the proposed influence measures are able to detect outliers’ rates.

This paper’s proposed diagnostic measures may be extended to other stochastic
models (Brigo & Mercurio, 2006; Chan et al., 1992; Nowman, 1997; Rémillard, 2013). For
example, they may be applied to (i) more complex Ornstein–Uhlenbeck Process, (ii) the
Black-Scholes Model, (iii) Stochastic Volatility Models, and (iv) stochastic models for
selecting investment portfolios. However, the normality assumption is key for these
types of stochastic models, and we know that this assumption is not reasonable in many
cases. Therefore, another interesting area of research is the development of statistical
methodology using alternative distributions, such as elliptical and/or elliptical skew
distributions (Cambanis et al., 1981; Galea et al., 2008; Kelker, 1970) which offer a more
flexible framework for modeling interest and exchange rates.
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Appendix A. Interest Rate Model Symbols and Their Interpretation

Table A1. Interpretation of the symbols appearing in the interest rate models.

Symbol Interpretation

ri Response variable (e.g., interest) at time i
α Mean speed of the interest rate reversion
β Mean interest rate level
σ Volatility of the short-term rate
τ Proportional volatility exponent
γ0 Intercept of the relation between ri and ri−1

γ1 Slope of the relation between ri and ri−1

γ2 Variance of the error term of the relation between ri and ri−1

Appendix B. The Stochastic Integral
If f is a deterministic square integrable function, and W(t) is a Wiener process, then

the stochastic integral

M(t) =
∫ t

0
f (u)dW(u),

has a normal distribution with mean 0 and variance
∫ t

0 f 2(u)du. For instance, if f (u) =

σexp{−α(t − u)}, then
∫ t

0 f 2(u)du =
∫ t

0 σ2exp{−2α(t − u)}du =
σ2

2α
{1 − exp(−2αt)}, for

t > 0. Also, the covariance function of {M(t), t ≥ 0} is given by:

Cov{M(t), M(s)} = Cov
{ ∫ t

0
f1(u)dW(u),

∫ s

0
f2(u)dW(u)

}
=

∫ t∧s

0
f1(u) f2(u)du,

where t ∧ s = min{t, s}.

https://www.bcentral.cl/inicio
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Appendix C. The Observed Information Matrix
The second derivatives of the log-likelihood function are given by:

∂2L(γ)
∂γ2

0
= − n

γ2
,

∂2L(γ)
∂γ0∂γ1

= − 1
γ2

n

∑
i=1

ri−1,

∂2L(γ)
∂γ0∂γ2

= − 1
γ2

2

n

∑
i=1

(ri − γ1ri−1 − γ0),

∂2L(γ)
∂γ2

1
= − 1

γ2

n

∑
i=1

r2
i−1,

∂2L(γ)
∂γ1∂γ2

= − 1
γ2

2

n

∑
i=1

(ri − γ1ri−1 − γ0)ri−1,

∂2L(γ)
∂γ2

2
=

n

∑
i=1

{ 1
2γ2

2
− 1

γ3
2
(ri − γ1ri−1 − γ0)

2
}

.

This leads to the following observed information matrix for γ:

Lγ(γ) =
1

γ2

 XTX 0

0 n/2γ2

,

and the following estimator of the covariance matrix of γ̂:

D(γ̂) =

 γ̂2(XTX)−1 0

0 2γ̂2
2/n

.

The Fisher information depends on the parametrization of the statistical model. If
γ = a(θ) is a continuously differentiable function of θ, then Lθ(θ) = JT Lγ(θ)J, where the
(i, j)th element of the 3 × 3 Jacobian matrix J is defined by Jij = ∂ai(θ)/∂θj, for i, j = 1, 2, 3.
In our case:

J =


hβγ1 1 − γ1 0

−hγ1 0 0

σ2(2αhγ2
1 + γ2

1 − 1)/2α2 0 (1 − γ2
1)/2α

,

with γ1 = exp{−αh}.

Appendix D. Invariant of Cd and Bd

The conformal normal curvature has two important properties. For details and appli-
cations see Poon and Poon (1999) and Zhu and Lee (2005).

(i) The normal curvatures Cd and Bd do not depend on the parametrization. Then, Cd

and Bd are invariant with respect to any parametrization γ = a(θ) where a is a differen-
tiable function of θ. (ii) The conformal normal curvature Bd in any direction unit d at ω0 is
invariant with respect to the conformal parametrization ω∗ = ω∗(ω).
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Appendix E. Determination of gij(ω) for the Variance Perturbation
Scheme

As described in Section 4.1, gij(ω) is defined as:

gij(ω) = Eω

[ ∂

∂ωi
L(γ|ω)

∂

∂ωj
L(γ|ω)

]
, for i, j = 1, . . . , n.

For the perturbation of the variance, we have that:

gii(ω) = Eω

[( ∂

∂ωi
L(γ|ω)

)2]
= Eω

[( 1
2ωi

− (ri − γ1ri−1 − γ0)
2

2γ2

)2]
= Eω

[ 1
4ω2

i
− 1

2ω2
i

( ri − γ1ri−1 − γ0

(γ2ω−1
i )0.5

)2
+

1
4ω2

i

( ri − γ1ri−1 − γ0

(γ2ω−1
i )0.5

)4]
=

1
4ω2

i
Eω

[
1 − 2Z2

i + Z4
i

]
(where Zi ∼ N(0, 1))

=
1

2ω2
i

,

for i = 1, 2, ..., n. Also, for i ̸= j ∈ {1, 2, ..., n}, we have that:

gij(ω) = Eω

[ ∂

∂ωi
L(γ|ω)

∂

∂ωj
L(γ|ω)

]
= Eω

[( 1
2ωi

− (ri − γ1ri−1 − γ0)
2

2γ2

)( 1
2ωj

− (rj − γ1rj−1 − γ0)
2

2γ2

)]
=

1
4ωiωj

Eω

[
1 −

( ri − γ1ri−1 − γ0

(γ2ω−1
i )0.5

)2
−

( rj − γ1rj−1 − γ0

(γ2ω−1
j )0.5

)2

+
( (ri − γ1ri−1 − γ0)(rj − γ1rj−1 − γ0)

(γ2ω−1
i γ2ω−1

j )0.5

)2]
=

1
4ωiωj

Eω

[
1 − Z2

i − Z2
j + Z2

i Z2
j

]
(where Zi and Zj are i.i.d. N(0, 1))

= 0.

Therefore, we have that: gij(ω) = (1/2ω2
i )δij for i, j = 1, ..., n, where δij is the Kronecker

delta.
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