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Abstract: It is known that the harmonic mean estimator is a consistent estimator of the
marginal likelihood and is easy to implement, but it has severe biases and does not change
as much as the prior distribution changes. In this study, we investigate the use of the
harmonic mean estimator to select the hypothetical income distribution from grouped data
through Monte Carlo simulations and apply it to real data in Japan. From the results, we
confirm that there are significant biases, but it can be reliably used to select an appropriate
model only when the sample size is large enough under appropriate prior settings.

Keywords: harmonic mean estimator; hypothetical income distribution; Metropolis–
Hastings algorithm; marginal likelihood; Markov chain Monte Carlo (MCMC) method

1. Introduction
Non-negative statistical distributions and their applications are studied and used in

areas such as finance (Higbee & McDonald, 2024), among others. One such example is
the work of Professor Chris Heyde; see, for example, Heyde (1964, 1986). Among them,
income distribution is widely considered to be one of the most important research areas
involving non-negative-valued random variables, and such distributions are relevant to
societal outcomes in general. In estimating an income distribution, the choice of the initial
hypothetical income distribution is a crucial consideration. However, we face a trade-
off between fitting a precise hypothetical income distribution and the interpretability of
the parameters. Therefore, in empirical studies, we often start with distributions such
as the lognormal (LN) distribution, the Dagum (DA) distribution introduced by Dagum
(1977), the Singh–Maddala (SM) distribution proposed by Singh and Maddala (1976), and
others. These distributions are preferred for better interpretability of the parameters. In
addition, the estimation of the more flexible generalized beta distribution of the second
kind (hereinafter referred to as GB2 distribution), introduced by McDonald (1984), is also
examined within a Bayesian framework by Kakamu and Nishino (2019).

Several Bayesian model selection criteria exist for choosing the most appropriate
hypothetical income distribution from a set of candidate distributions (see, for example,
Ando (2010) for Bayesian model selection). Among these criteria, the marginal likelihood is
a common choice for selecting the hypothetical income distribution, and various estima-
tors have been proposed for its accurate estimation. Accurate estimation of the marginal
likelihood is critical when dealing with Bayesian model averaging (BMA) or Bayes factor
estimation. Inaccurate estimates can lead to inappropriate inference. Therefore, the preci-
sion of marginal likelihood estimators is extensively studied in the literature, with works
such as Friel and Wyse (2012); Kass and Raftery (1995) providing valuable insights. On
the other hand, the harmonic mean estimator introduced by Newton and Raftery (1994)
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is a consistent estimator of the marginal likelihood and is easy to implement. However,
it has been criticized for its significant biases and limited responsiveness to changes in
prior information. Consequently, its use in BMA or Bayes factor estimation is controversial.
However, if the sole objective is to select an appropriate hypothetical income distribution,
it remains unclear whether the harmonic mean estimator can effectively serve this purpose.

This study explores the application of the harmonic mean estimator in selecting a
hypothetical income distribution from grouped data using Monte Carlo simulations. We
also apply this estimator to real data from a Japanese case study. Our results confirm
the presence of significant biases in the harmonic mean estimator. Nevertheless, it can
prove valuable in selecting an appropriate model, but its effectiveness is significantly more
pronounced when the sample size is sufficiently large under appropriate prior settings.

The remainder of this paper is organized as follows. In Section 2, we explain the
method for selecting the hypothetical income distribution using marginal likelihoods from
grouped data. In Section 3 we implement the Monte Carlo simulations. Section 4 examines
the real data in Japan. Finally, brief conclusions are given in Section 5.

2. Selecting the Hypothetical Income Distribution
Income data are published as grouped data in many countries. In grouped data,

suppose that the income units are grouped into K income classes, viz., (x[0], x[1]), (x[1], x[2]),
. . ., (x[K−1], x[K]), with x[0] = 0 and x[K] ≤ ∞: Let n be the total number of units and nk be

the number of units in the interval x[k−1] and x[k] for k = 1, 2, . . . , K and therefore n =
K

∑
k=1

nk.

There are two types of grouped data (see Eckernkemper & Gribisch, 2021) and we assume
the type of quantile form in this study (see Nishino & Kakamu, 2011). From the grouped
data, we assume the hypothetical distribution and estimate its parameters.

Let θ be a d × 1 vector of parameters for the assumed hypothetical income distribution.
Let f (x|θ) and F(x|θ) be the probability density function (PDF) and cumulative distribution
function (CDF) of the hypothetical income distribution, respectively. Given the grouped
data, x[K] = (x[1], x[2], . . . , x[K−1])

′ and n = (n1, n2, . . . , nK)
′, the likelihood function based

on the selected order statistics by Nishino and Kakamu (2011) is given as follows:

L(x[K]|θ, n) = n!
F(x[1]|θ)n1−1

(n1 − 1)!
f (x[1]|θ)

×


K−1

∏
k=2

(
F(x[k]|θ)− F(x[k−1]|θ)

)nk−1

(nk − 1)!
f (x[k]|θ)


(

1 − F(x[K−1]|θ)
)nK

nK ! . (1)

To proceed with the Bayesian analysis, we need to assume the prior distribution as
π(θ). Given the likelihood function (1) and prior distribution π(θ), the posterior distribu-
tion is expressed as

π(θ|x[K], n) =
π(θ)L(x[K]|θ, n)

m(x[K]|n)
∝ π(θ)L(x[K]|θ, n),

where m(x[K]|n) is called the marginal likelihood and used as a criterion to select the
hypothetical income distribution. Using the posterior distribution, posterior inference
via the Markov chain Monte Carlo (MCMC) method is implemented. This procedure
is explained in Appendix A. In this study, the LN, DA, and SM distributions, which
are denoted by LN (µ, σ2), DA(a, b, p), and SM(a, b, q), respectively, are assumed as
hypothetical income distributions.1
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In this study, we focus on the estimation of the marginal likelihood, which is estimated
from the MCMC draws {θ(r)}R

r=1. As is shown by Gelfand and Dey (1994), for any proper
PDF g(θ),

1
m(x[K]|n)

=
1

m(x[K]|n)

∫
Θ

g(θ)dθ

=
∫

Θ

g(θ)
π(θ)L(x[K]|θ, n)

π(θ)L(x[K]|θ, n)
m(x[K]|n)

dθ

=
∫

Θ

g(θ)
π(θ)L(x[K]|θ, n)

π(θ|x[K], n)dθ

for any hypothetical income distribution. Therefore, using the MCMC draws, we can obtain
the estimator of the marginal likelihood as follows:

m̂GD(x[K]|n) =
[

1
R

R

∑
r=1

g(θ(r))

π(θ(r))L(x[K]|θ(r), n)

]−1

. (2)

In Equation (2), the choice of g(θ) is important and we need to specify it. Two major
approaches are the harmonic mean estimator by Newton and Raftery (1994) and modified
harmonic mean estimator by Geweke (1999). If we set g(θ) = π(θ), then it becomes the
harmonic mean estimator by Newton and Raftery (1994) as follows:

m̂NR(x[K]|n) =
[

1
R

R

∑
r=1

1

L(x[K]|θ(r), n)

]−1

. (3)

It is a consistent estimator of the marginal likelihood and easy to implement. However, it is
also known that its variance can go to infinity, since it contains the inverse of the likelihood
function, and that the harmonic mean estimator will not change much as the prior changes,
even though the marginal likelihood is very sensitive to changes in the prior distribution.

To overcome the severe downside to this estimator, Geweke (1999) proposed the
modified harmonic mean estimator. It is calculated as follows:

m̂G(x[K]|n) =
[

1
R

R

∑
r=1

h(θ(r))

π(θ(r))L(x[K]|θ(r), n)

]−1

, (4)

where h(θ(r)) is a truncated normal distribution as follows:

h(θ(r)) = P−1(2π)−d/2|Σ̂|−1/2 exp

{
− (θ(r) − θ̂)′Σ̂−1(θ(r) − θ̂)

2

}

where θ̂ and Σ̂ are the sample mean and covariance matrix from {θ(r)}R
r=1 and P is the

normalizing constant, which satisfies (θ(r) − θ̂)′Σ̂−1(θ(r) − θ̂) ≤ χ2
α(d) and χ2

α(d) is the α

quantile of the χ2 distribution with degrees of freedom d. This approach is popular and is
used in the analyses of income distribution, for example, by Griffiths et al. (2005) for the
purpose of the BMA.

Another approach is proposed by Chib (1995) and Chib and Jeliazkov (2001) for the
Gibbs sampler and Metropolis–Hastings (MH) algorithm, respectively. Their idea is based
on the basic marginal likelihood identity as follows:

m(x[K]|n) =
π(θ)L(x[K]|θ, n)

π(θ|x[K], n)
.
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At any point θ̄, which is, for example, the posterior mean, in the case of the MH algorithm,
Chib and Jeliazkov (2001) showed that π(θ̄|x[K], n) can be estimated as follows:

π̂(θ̄|x[K], n) =
R−1 ∑R

r=1 α(θ(r), θ̄)q(θ(r), θ̄)

R−1 ∑R
r=1 α(θ̄, θ(r))

,

where q(θ(r), θ̄) is the PDF of the proposal distribution.
Using the quantity, the marginal likelihood can be calculated as follows:

m̂CJ(x[K]|n) =
π(θ̄)L(x[K]|θ̄, n)

π̂(θ̄|x[K], n)
. (5)

From the number of citations which these articles have gained, it is clear that their approach
is popular among practitioners.

As a final note to this section, we briefly discuss the properties of marginal likelihood
estimators. All estimators are consistent but biased. The difference lies in the size of the
biases and the computational procedures. From the point of view of biases, the harmonic
mean estimator is highly sensitive to the values of the likelihood in low-probability regions,
a few extreme samples can dominate the estimate, and outliers in the parameter space can
significantly affect the estimation result, making the method less robust. The modified
harmonic mean estimator is proposed to overcome the problem of the harmonic mean
estimator, but it is known that the estimators have biases when estimating high-dimensional
parameter models such as latent variable models (see Chan & Grant, 2015). Finally, for the
estimator of Chib and Jeliazkov (2001), difficulties can arise when this method is applied to
mixture models, hidden Markov models, and other models that give rise to label switching
and parameter non-identifiability, and the bias in these estimates is reported in Chan and
Eisenstat (2015). From a computational point of view, the harmonic mean estimator is the
easiest method to implement. On the other hand, the method by Chib and Jeliazkov (2001)
increases in computational complexity as the dimension of parameters increases. Moreover,
implementation is more involved, especially for computing numerical standard errors of
marginal likelihood estimates. For a more comprehensive review of marginal likelihood
estimation, see Chan and Eisenstat (2015); Friel and Wyse (2012); Han and Carlin (2001).

Using these three estimators of the marginal likelihood, we examine the selection of the
hypothetical income distribution through Monte Carlo simulations and apply it to real data
in Japan. All the results reported here were generated using Ox 9.10 (macOS_64/Parallel)
(see Doornik, 2013).

3. Simulation Studies
We now explain the setup for the Monte Carlo simulations. First, we set the number

of observations as n = 1000, 10,000, and 100,000 to evaluate the effect of the number of
observations. In addition, we assume the number of groups as decile (K = 10).2 Given n
and K = 10, we consider two scenarios in which the true data generating processes (DGPs)
follow the LN distribution and GB2 distribution3, denoted by GB2(a, b, p, q), and L samples
of x[k] for k = 1, 2, . . . , K − 1 are generated. That is, we perform L simulation runs for these
two distributions; in this section, L = 1000.

The simulation procedure is as follows:

(i) Given the true DGP, we generate random numbers xis, i = 1, 2, . . . , n from the distri-
bution.

(ii) We sort the random numbers in ascending order and pick up x[k] = xnk , where

nk = n × k
K

for k = 1, 2, . . . , K − 1.
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(iii) Given x[K] = (x[1], x[2], . . . , x[K−1])
′ and the hyper-parameters (µ0, τ2

0 , ν0, λ0), we obtain
the estimates and marginal likelihoods assuming the LN, DA, and SM distributions.
In the MCMC procedure, we run a random walk MH (RWMH) algorithm, with
4000 iterations excluding the first 2000 iterations. For the modified harmonic mean
estimator, α = 0.5, 0.75 and 0.9 are considered.

(iv) We repeat (i)–(iii) L times, where L = 1000, as mentioned above.
(v) From L marginal likelihoods, we count the distribution with the largest marginal

likelihood.

In the first scenario, we assume the true DGP as the LN distribution with µ = 1
and σ2 = 0.5 and examine the prior sensitivity. Therefore, we assume (µ0, τ2

0 , ν0, λ0) =

(0, 100, 2, 1), (0, 1, 2, 1), (0, 1000, 2, 1), (0, 100, 0.01, 0.01), (0, 100, 20, 10) for the LN distri-
bution and the same hyper-parameters (ν0, λ0) with the LN distribution for the SM and
DA distributions.4

In the second scenario, the purpose of the analysis is to analyze whether the true
distribution can be properly selected and what selection is made when the true distribution
is not included in the candidate distributions. Therefore, we assume the GB2 distribution
with (a, b, p, q) = (2, 1, 1.5, 1), (2, 1, 3, 1), (2, 1, 1, 1.5), (2, 1, 1, 3), (2, 1, 2.5, 1.5), (2, 1, 1.5, 2.5),
where the first two cases assume that the true distributions are the DA distributions, the
second two cases assume the true distributions are the SM distributions, and last two cases
assume that the true distributions are not included in the candidate distributions. It should
be mentioned that, as shown by Kakamu (2016), the SM distributions are selected if p < q
and p > 1, while the DA distributions are selected if p > q and q > 1, in terms of AIC.5 As
the hyper-parameters, we set (µ0, τ2

0 , ν0, λ0) = (0, 100, 2, 1) for all cases.
Table 1 displays the results of our Monte Carlo simulations, assuming the LN distri-

bution. The results reveal that when the sample size n is sufficiently large, for example,
n =100,000, the LN distribution is consistently selected correctly across all estimators, re-
gardless of the hyper-parameter choices. However, as the sample size n decreases, the
choice of hyper-parameters begins to influence the selection of the hypothetical income
distribution, particularly when using Equations (4) and (5). In cases where the prior for
µ becomes diffuse, i.e., when τ2

0 is large, the DA or SM distributions are preferred over
the LN distribution, even if the true DGP is the LN distribution. Moreover, when ν0 and
λ0 are large, the DA distribution is favored. It seems to be affected by the prior informa-
tion when the sample size is not large enough, because it is well-known that biases of
Equations (4) and (5) are relatively smaller than Equation (3). It is also consistent with the
previous literature because the harmonic mean estimator will not change much as the prior
changes. Therefore, it is worth noting that the use of the harmonic mean estimator should
be criticized when the sample size is not large enough and/or when we assume some tight
prior distribution.

To investigate why the true distribution is not selected in small samples and under
certain prior settings, we examined the empirical distributions of the log of marginal
likelihoods and the posterior means from the LN, DA, and SM distributions. Table 2
presents the means and standard deviations of the log of marginal likelihoods obtained
from Monte Carlo simulations. The results reveal the following: First, the distribution with
the highest mean marginal likelihood was consistently selected. Second, the means reported
by Geweke (1999) and Chib and Jeliazkov (2001) are similar, whereas those of Newton and
Raftery (1994) differ from Geweke (1999) and Chib and Jeliazkov (2001) across all cases.
Third, when n = 1000, the marginal likelihood estimates appear relatively stable for Newton
and Raftery (1994). However, these estimates change when τ2

0 is altered or when ν0 and
λ0 are adjusted. In particular, the changes in the marginal likelihood estimates for LN,
when ν0 and λ0 are varied, indicate greater sensitivity to the choice of hyper-parameters
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compared to changes in τ2
0 . Needless to say, the marginal likelihood estimates are even

more sensitive to the choice of hyper-parameters in Geweke (1999) and Chib and Jeliazkov
(2001). Based on these observations, we proceed to examine the posterior estimates derived
from the three distributions.

Table 1. Monte Carlo results of the log of marginal likelihoods for the LN distribution.

µ0 = 0, τ2
0 = 100, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 726 136 138 990 3 7 1000 0 0
Geweke (1999) (α = 0.5) 280 379 341 986 9 5 1000 0 0
Geweke (1999) (α = 0.75) 289 373 338 986 9 5 1000 0 0
Geweke (1999) (α = 0.9) 289 371 340 986 9 5 1000 0 0
Chib and Jeliazkov (2001) 322 362 316 988 7 5 1000 0 0

µ0 = 0, τ2
0 = 1, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 733 128 139 990 3 7 1000 0 0
Geweke (1999) (α = 0.5) 699 158 143 992 4 4 1000 0 0
Geweke (1999) (α = 0.75) 704 157 139 992 4 4 1000 0 0
Geweke (1999) (α = 0.9) 700 159 141 992 4 4 1000 0 0
Chib and Jeliazkov (2001) 708 152 140 993 3 4 1000 0 0

µ0 = 0, τ2
0 = 10,000, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 742 128 130 988 4 8 1000 0 0
Geweke (1999) (α = 0.5) 10 508 482 971 19 10 1000 0 0
Geweke (1999) (α = 0.75) 15 508 477 971 19 10 1000 0 0
Geweke (1999) (α = 0.9) 14 513 473 971 19 10 1000 0 0
Chib and Jeliazkov (2001) 29 507 464 972 18 10 1000 0 0

µ0 = 0, τ2
0 = 100, ν0 = 0.01, λ0 = 0.01

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 740 145 115 988 6 6 1000 0 0
Geweke (1999) (α = 0.5) 999 0 1 1000 0 0 1000 0 0
Geweke (1999) (α = 0.75) 999 0 1 1000 0 0 1000 0 0
Geweke (1999) (α = 0.9) 999 0 1 1000 0 0 1000 0 0
Chib and Jeliazkov (2001) 998 0 2 999 1 0 1000 0 0

µ0 = 0, τ2
0 = 100, ν0 = 20, λ0 = 10

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 750 88 162 989 4 7 1000 0 0
Geweke (1999) (α = 0.5) 348 568 84 991 5 4 1000 0 0
Geweke (1999) (α = 0.75) 344 575 81 991 5 4 1000 0 0
Geweke (1999) (α = 0.9) 351 569 80 991 5 4 1000 0 0
Chib and Jeliazkov (2001) 390 538 72 991 5 4 1000 0 0
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Table 2. Summary statistics of the log of marginal likelihoods for the LN distribution.

µ0 = 0, τ2
0 = 100, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 11.771 10.242 10.224 22.071 8.905 8.924 32.519 −92.521 −92.283
(2.037) (2.314) (2.299) (2.066) (5.411) (5.393) (1.977) (15.708) (15.742)

Geweke (1999) (α = 0.5) 3.894 4.581 4.516 11.882 0.029 0.011 20.015 −104.840 −104.681
(1.893) (2.219) (2.161) (1.946) (5.350) (5.304) (1.826) (15.629) (15.754)

Geweke (1999) (α = 0.75) 3.889 4.564 4.504 11.879 0.022 0.002 20.014 −104.849 −104.689
(1.892) (2.219) (2.158) (1.945) (5.353) (5.304) (1.823) (15.630) (15.752)

Geweke (1999) (α = 0.9) 3.886 4.555 4.497 11.877 0.016 −0.007 20.012 −104.856 −104.697
(1.893) (2.219) (2.158) (1.945) (5.352) (5.303) (1.823) (15.630) (15.753)

Chib and Jeliazkov (2001) 4.103 4.571 4.449 12.084 −0.043 −0.066 20.215 −104.904 −104.756
(1.926) (2.277) (2.213) (1.992) (5.357) (5.306) (1.865) (15.652) (15.739)

µ0 = 0, τ2
0 = 1, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 11.800 10.242 10.224 22.069 8.905 8.924 32.560 −92.521 −92.283
(1.989) (2.314) (2.299) (2.035) (5.411) (5.393) (1.962) (15.708) (15.742)

Geweke (1999) (α = 0.5) 5.698 4.581 4.516 13.692 0.029 0.011 21.823 −104.840 −104.681
(1.897) (2.219) (2.161) (1.950) (5.350) (5.304) (1.823) (15.629) (15.754)

Geweke (1999) (α = 0.75) 5.698 4.564 4.504 13.687 0.022 0.002 21.822 −104.849 −104.689
(1.896) (2.219) (2.158) (1.949) (5.353) (5.304) (1.823) (15.630) (15.752)

Geweke (1999) (α = 0.9) 5.694 4.555 4.497 13.685 0.016 −0.007 21.819 −104.856 −104.697
(1.896) (2.219) (2.158) (1.949) (5.352) (5.303) (1.822) (15.630) (15.753)

Chib and Jeliazkov (2001) 5.911 4.571 4.449 13.911 −0.043 −0.066 22.039 −104.904 −104.756
(1.936) (2.277) (2.213) (2.025) (5.357) (5.306) (1.858) (15.652) (15.739)

µ0 = 0, τ2
0 = 10,000, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 11.797 10.242 10.224 22.099 8.905 8.924 32.567 −92.521 −92.283
(2.023) (2.314) (2.299) (2.051) (5.411) (5.393) (1.945) (15.708) (15.742)

Geweke (1999) (α = 0.5) 1.594 4.581 4.516 9.585 0.029 0.011 17.720 −104.840 −104.681
(1.895) (2.219) (2.161) (1.945) (5.350) (5.304) (1.824) (15.629) (15.754)

Geweke (1999) (α = 0.75) 1.591 4.564 4.504 9.581 0.022 0.002 17.716 −104.849 −104.689
(1.894) (2.219) (2.158) (1.945) (5.353) (5.304) (1.823) (15.630) (15.752)

Geweke (1999) (α = 0.9) 1.590 4.555 4.497 9.579 0.016 −0.007 17.713 −104.856 −104.697
(1.893) (2.219) (2.158) (1.945) (5.352) (5.303) (1.823) (15.630) (15.753)

Chib and Jeliazkov (2001) 1.804 4.571 4.449 9.783 −0.043 −0.066 17.937 −104.904 −104.756
(1.935) (2.277) (2.213) (1.977) (5.357) (5.306) (1.864) (15.652) (15.739)

µ0 = 0, τ2
0 = 100, ν0 = 0.01, λ0 = 0.01

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 11.778 10.211 10.114 22.097 8.942 8.961 32.531 −92.485 −92.298
(2.026) (2.364) (2.320) (2.063) (5.392) (5.377) (1.869) (15.638) (15.769)

Geweke (1999) (α = 0.5) −0.149 −7.093 −7.048 7.838 −11.643 −11.626 15.976 −116.513 −116.319
(1.894) (2.191) (2.161) (1.945) (5.351) (5.307) (1.823) (15.636) (15.750)

Geweke (1999) (α = 0.75) −0.149 −7.113 −7.059 7.835 −11.653 −11.634 15.970 −116.522 −116.327
(1.891) (2.189) (2.162) (1.945) (5.351) (5.306) (1.822) (15.637) (15.750)

Geweke (1999) (α = 0.9) −0.153 −7.118 −7.066 7.834 −11.660 −11.641 15.967 −116.529 −116.336
(1.891) (2.194) (2.163) (1.946) (5.350) (5.308) (1.822) (15.636) (15.752)

Chib and Jeliazkov (2001) 0.056 −7.131 −7.095 8.054 −11.736 −11.692 16.180 −116.597 −116.387
(1.954) (2.213) (2.215) (1.989) (5.378) (5.338) (1.860) (15.681) (15.759)
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Table 2. Cont.

µ0 = 0, τ2
0 = 100, ν0 = 20, λ0 = 10

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 11.864 9.169 10.227 22.096 7.963 8.893 32.558 −92.636 −92.303
(1.969) (2.566) (2.324) (2.062) (5.534) (5.359) (1.894) (15.653) (15.745)

Geweke (1999) (α = 0.5) 5.037 5.689 3.389 13.068 −0.238 −0.923 21.206 −105.418 −105.596
(1.898) (2.762) (2.266) (1.947) (5.414) (5.297) (1.819) (15.620) (15.750)

Geweke (1999) (α = 0.75) 5.033 5.675 3.379 13.064 −0.248 −0.931 21.204 −105.426 −105.604
(1.897) (2.758) (2.266) (1.947) (5.415) (5.296) (1.822) (15.618) (15.751)

Geweke (1999) (α = 0.9) 5.028 5.668 3.368 13.060 −0.255 −0.936 21.200 −105.433 −105.612
(1.896) (2.758) (2.264) (1.947) (5.415) (5.294) (1.822) (15.617) (15.750)

Chib and Jeliazkov (2001) 5.252 5.785 3.293 13.266 −0.317 −0.991 21.423 −105.528 −105.689
(1.929) (2.762) (2.321) (1.964) (5.408) (5.317) (1.873) (15.637) (15.755)

Tables 3–5 present summaries of the empirical distributions of the posterior means
derived from the LN, DA, and SM distributions. The means and standard deviations of the
posterior means from the LN distribution (see Table 3) exhibit minimal variation, whereas
those from the DA and SM distributions (see Tables 4 and 5) show noticeable changes,
particularly when the sample size is small (n = 1000). Additionally, it is noteworthy that the
influence of the prior settings persists even when the sample size increases to n = 100,000
(e.g., for ν0 = 20 and λ0 = 10). This indicates that the choice of hyper-parameters affects
the posterior estimates of the hypothetical income distribution, leading to variations in the
marginal likelihood estimates, particularly for Chib and Jeliazkov (2001); Geweke (1999).

Table 3. Summary statistics of the LN distribution.

Hyper-Parameters
n = 1000 n = 10,000 n = 100,000

µ σ2 µ σ2 µ σ2

µ0 = 0, τ2
0 = 100, 1.000 0.504 1.000 0.501 1.000 0.500

ν0 = 2, λ0 = 1 (0.023) (0.027) (0.007) (0.009) (0.002) (0.003)

µ0 = 0, τ2
0 = 1, 0.999 0.504 1.000 0.501 1.000 0.500

ν0 = 2, λ0 = 1 (0.023) (0.027) (0.007) (0.009) (0.002) (0.003)

µ0 = 0, τ2
0 = 10,000, 1.000 0.504 1.000 0.501 1.000 0.500

ν0 = 2, λ0 = 1 (0.023) (0.027) (0.007) (0.009) (0.002) (0.003)

µ0 = 0, τ2
0 = 100, 1.000 0.504 1.000 0.501 1.000 0.500

ν0 = 0.01, λ0 = 0.01 (0.023) (0.027) (0.007) (0.009) (0.002) (0.003)

µ0 = 0, τ2
0 = 100, 1.000 0.503 1.000 0.501 1.000 0.500

ν0 = 20, λ0 = 10 (0.023) (0.025) (0.007) (0.009) (0.002) (0.003)
Note: The means and standard deviations (in parentheses) of the empirical distribution of the posterior means
from the LN distribution are displayed when the true DGPs are from the LN distribution.

To sum up, when the sample size is sufficiently large, the posterior estimates of the LN,
DA, and SA do not change and the weight of the prior distribution seems to be sufficiently
small (see Tables 3–5). Therefore, the marginal likelihood estimates of Newton and Raftery
(1994), Geweke (1999), and Chib (1995) do not change, even when the hyper-parameters
have changed (see Table 2). On the other hand, the posterior estimates of the DA and SM
distributions are different when the hyper-parameters have changed (see Tables 4 and 5),
but the posterior estimates of the LN distribution, especially the ones of σ2, have small
biases; however, the biases do not change so much, even when the hyper-parameters have
changed (see Table 3). Moreover, the marginal likelihood estimates of Geweke (1999) and
Chib (1995) require prior distribution to estimate them. We think these facts lead to small
changes in the marginal likelihoods of Geweke (1999) and Chib (1995) and the wrong
choice of hypothetical income distribution depending on the hyper-parameter settings
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(see Table 2). These results suggest that selecting appropriate hyper-parameters is crucial,
especially when the sample size is small. However, with a sufficiently large sample size
and appropriate prior settings, valid model selection can still be achieved.

Table 4. Summary statistics of the DA distribution.

Hyper-Parameters
n = 1000 n = 10,000 n = 100,000

a b p a b p a b p

ν0 = 2, λ0 = 1 2.316 2.538 1.169 2.343 2.640 1.052 2.348 2.653 1.040
(0.148) (0.309) (0.233) (0.047) (0.100) (0.060) (0.015) (0.032) (0.018)

ν0 = 0.01, λ0 = 0.01 2.350 2.610 1.124 2.347 2.648 1.047 2.348 2.654 1.040
(0.159) (0.329) (0.247) (0.047) (0.101) (0.060) (0.015) (0.032) (0.018)

ν0 = 20, λ0 = 10 2.149 2.160 1.451 2.310 2.566 1.099 2.344 2.645 1.045
(0.084) (0.179) (0.173) (0.044) (0.096) (0.061) (0.015) (0.032) (0.019)

Note: The means and standard deviations (in parentheses) of the empirical distribution of the posterior means
from the DA distribution are displayed when the true DGPs are from the LN distribution.

Table 5. Summary statistics of the SM distribution.

Hyper-Parameters
n = 1000 n = 10,000 n = 100,000

a b p a b p a b p

ν0 = 2, λ0 = 1 2.342 2.928 1.128 2.345 2.804 1.050 2.347 2.790 1.042
(0.144) (0.364) (0.212) (0.048) (0.107) (0.060) (0.015) (0.033) (0.018)

ν0 = 0.01, λ0 = 0.01 2.352 2.927 1.127 2.347 2.800 1.048 2.347 2.790 1.041
(0.158) (0.429) (0.256) (0.048) (0.108) (0.060) (0.015) (0.033) (0.018)

ν0 = 20, λ0 = 10 2.280 2.993 1.173 2.332 2.830 1.066 2.345 2.793 1.043
(0.085) (0.201) (0.114) (0.045) (0.102) (0.057) (0.015) (0.033) (0.018)

Note: The means and standard deviations (in parentheses) of the empirical distribution of the posterior means
from the SM distribution are displayed when the true DGPs are from the LN distribution.

Table 6 presents the results of our Monte Carlo simulations under the assumption of the
GB2 distribution. Similar to the findings under the LN distribution, when the sample size
n is sufficiently large, for instance, n = 100,000, the true distribution is consistently favored,
aligning with Kakamu (2016), even when the true distributions are not included among
the candidate distributions. However, as the sample size n decreases, the performance of
Equation (3) declines compared to Equations (4) and (5).6 Consequently, when the sample
size n is not sufficiently large, caution is warranted when using Equation (3).

Table 6. Monte Carlo results of the log of marginal likelihoods for the GB2 distribution.

GB2(2, 1, 1.5, 1) = DA(2, 1, 1.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 119 631 250 0 765 235 0 996 4
Geweke (1999) (α = 0.5) 15 917 68 0 944 56 0 998 2
Geweke (1999) (α = 0.75) 14 923 63 0 939 61 0 998 2
Geweke (1999) (α = 0.9) 13 926 61 0 938 62 0 998 2
Chib and Jeliazkov (2001) 25 853 122 0 926 74 0 998 2
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Table 6. Cont.

GB2(2, 1, 3, 1) = DA(2, 1, 3)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 3 818 179 0 964 36 0 1000 0
Geweke (1999) (α = 0.5) 0 885 115 0 993 7 0 1000 0
Geweke (1999) (α = 0.75) 0 884 116 0 993 7 0 1000 0
Geweke (1999) (α = 0.9) 0 887 113 0 993 7 0 1000 0
Chib and Jeliazkov (2001) 0 894 106 0 994 6 0 1000 0

GB2(2, 1, 1, 1.5) = SM(2, 1, 1.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 123 377 500 0 229 771 0 6 994
Geweke (1999) (α = 0.5) 17 20 963 0 64 936 0 4 996
Geweke (1999) (α = 0.75) 17 22 961 0 65 935 0 4 996
Geweke (1999) (α = 0.9) 16 26 958 0 64 936 0 4 996
Chib and Jeliazkov (2001) 25 57 918 0 78 922 0 3 997

GB2(2, 1, 1, 3) = SM(2, 1, 3)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 7 227 766 0 35 965 0 0 1000
Geweke (1999) (α = 0.5) 0 27 973 0 5 995 0 0 1000
Geweke (1999) (α = 0.75) 0 25 975 0 5 995 0 0 1000
Geweke (1999) (α = 0.9) 0 25 975 0 5 995 0 0 1000
Chib and Jeliazkov (2001) 0 24 976 0 7 993 0 0 1000

GB2(2, 1, 2.5, 1.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 192 643 165 2 968 30 0 1000 0
Geweke (1999) (α = 0.5) 5 961 34 0 999 1 0 1000 0
Geweke (1999) (α = 0.75) 5 956 39 0 999 1 0 1000 0
Geweke (1999) (α = 0.9) 5 951 44 0 999 1 0 1000 0
Chib and Jeliazkov (2001) 11 909 80 1 997 3 0 1000 0

GB2(2, 1, 1.5, 2.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

Newton and Raftery (1994) 199 246 555 1 25 974 0 0 1000
Geweke (1999) (α = 0.5) 6 15 979 0 2 998 0 0 1000
Geweke (1999) (α = 0.75) 5 16 979 0 2 998 0 0 1000
Geweke (1999) (α = 0.9) 7 17 976 0 2 998 0 0 1000
Chib and Jeliazkov (2001) 10 46 944 0 1 999 0 0 1000

In summary, when employing the marginal likelihood for selecting the hypothetical
income distribution, Equations (4) and (5) are typically preferred. However, it is essential
to exercise caution in choosing the hyper-parameters when using these equations. On the
other hand, if the sample size n is sufficiently large, Equation (3) can also be used effectively
without the need to be overly concerned about hyper-parameter selection.

4. Empirical Example
Using the Japanese household survey, Family Income and Expenditure Survey in

2020, which was compiled by the Statistics Bureau of the Ministry of Internal Affairs and
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Communications, we will consider the choice of the hypothetical income distributions.
There are data on two types of households: two-or-more-person households and workers’
households (unit: million yen). The sample size for each dataset is n = 10,000 and the
dataset in decile form is utilized; therefore, nk = 1000 for k = 1, 2, . . . , K = 10.7 Finally, we
set the hyper-parameters to µ0 = 0, τ2

0 = 100, ν0 = 2 and λ0 = 1 and run the RWMH
algorithm using 22,000 iterations while discarding the first 2000 iterations.

Table 7 shows the results for the log of the marginal likelihoods for both two-or-more
person households and workers’ households. From the table, although we can confirm
that there are severe biases in the values of the log of the marginal likelihood using (3),
we can see that the LN distribution was chosen as the most suitable hypothetical income
distribution in both datasets, as was using (4) and (5). In this sense, if the model selection
is only performed using the marginal likelihoods, then using (3) is not considered to be a
major problem.

Table 7. Empirical results of the log of marginal likelihoods.

Two-or-More Person Household Workers’ Household

LN DA SM LN DA SM

Newton and Raftery (1994) −9.997 −54.578 −61.286 9.078 −6.012 0.770
Geweke (1999) (α = 0.5) −22.427 −64.823 −70.826 −5.310 −19.474 −11.330
Geweke (1999) (α = 0.75) −22.391 −64.795 −70.879 −5.339 −19.491 −11.351
Geweke (1999) (α = 0.9) −22.394 −64.841 −70.900 −5.323 −19.490 −11.374
Chib and Jeliazkov (2001) −22.140 −64.109 −71.014 −4.670 −19.948 −10.987

Since the LN distributions are selected from three hypothetical income distributions
for both datasets, the posterior estimates from the LN distribution are shown in Table 8
with the trace plots shown in Figure 1. The trace plots confirm that the convergence of the
MCMC chains is fast with respect to mixing. Therefore, we can conclude that the algorithm
described in Appendix A works well for the LN distribution with the datasets. Focusing
on the posterior estimates, we see that the standard deviations are very small, with narrow
95% credible intervals. This suggests that the fits of the LN distribution are very good and
is the reason why the LN distributions are chosen as the hypothetical income distribution
for the datasets.

Table 8. Posterior estimates of the LN distribution.

Two-or-More Person Household Workers’ Household

Mean SD 95%CI Mean SD 95%CI

µ 1.688 0.006 1.677 1.699 1.906 0.004 1.898 1.915
σ2 0.313 0.005 0.303 0.323 0.200 0.003 0.194 0.207

Note: The posterior means (Mean), standard deviations (SD), and 95% credible intervals (95%CI) are displayed.
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Figure 1. The trace plots for two-or-more person (left) and workers’ (right) households.

5. Conclusions
This study investigated the performance of the marginal likelihood in selecting the

hypothetical income distribution from grouped data, with a specific focus on the harmonic
mean estimator, using Monte Carlo simulations. The results confirmed that the harmonic
mean estimator can effectively choose the appropriate hypothetical income distribution
when the sample size is sufficiently large under appropriate prior settings, despite the
presence of severe biases observed in the empirical example. Consequently, the harmonic
mean estimator, due to its pronounced bias, may cause problems when used to compute
BMA or Bayes factors, but it remains a valuable tool for selecting the appropriate model,
provided the sample size is sufficient under the appropriate prior settings.

As the remaining issue, it is reasonable to examine other marginal likelihood estima-
tors, such as those by Chan and Eisenstat (2015) and Chan (2023). It is our future remark,
but our findings represent an interesting first step.
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Appendix A
In this appendix, we introduce a MCMC method using a RWMH algorithm to estimate

the parameters of the distributions, which is used by Chotikapanich and Griffiths (2000)
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and Kakamu (2016). To obtain the posterior estimates for the LN, DA, and SM distributions,
we implement the following RWMH algorithm in the general setting.

1. Set r = 1 and initial value θ(0).
2. Generate a candidate value θnew from N (θ(r−1), c2Σ), where c is a tuning parameter

and Σ is the maximum likelihood covariance estimate.8

3. Compute

α(θ(r−1), θnew) = min

{
1,

π(θnew|x[K], n)

π(θ(r−1)|x[K], n)

}
,

and if any of the elements of θnew fall outside the feasible parameter region, then
α(θ(r−1), θnew) = 0.

4. Generate a value u from U (0, 1), where U (a, b) is a uniform distribution on the interval
(a, b).

5. If u ≤ α(θ(r−1), θnew), set θ(r) = θnew, otherwise θ(r) = θ(r−1).
6. Return to step 2, with r set to r + 1.

Appendix B
In this appendix, we report the Monte Carlo experiments for the information criteria.

To examine the performance of the information criteria, we examined the Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), and deviance information
criterion (DIC), as in Doğan (2023), through Monte Carlo simulation. The simulation set-
tings are the same as those in Section 3. Tables A1 and A2 show the results of our Monte
Carlo simulation, which counts the distribution with the smallest information criteria, for
the cases where the true DGPs are the LN and GB2 distributions, respectively. From the
tables, we can confirm that the performance of the information criteria is almost the same
as that of Newton and Raftery (1994) in general. The differences appear when n = 1000.
Especially, in the case of the LN distribution, as is different from the marginal likelihoods,
the LN distributions are preferred to other distributions without being affected by the prior
distributions. Moreover, the performance of AIC and BIC seems to be poorer than that of
DIC in both cases. It suggests that the penalty term of DIC works well, while the number
of parameters does not work well to select an appropriate hypothetical income distribution.
Therefore, we can conclude that DIC becomes a candidate for selecting a hypothetical
income distribution when the sample size is small.

Table A1. Monte Carlo results of the information criteria for the LN distribution.

µ0 = 0, τ2
0 = 100, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 699 66 235 987 8 5 1000 0 0
BIC 699 66 235 987 8 5 1000 0 0
DIC 776 156 71 991 3 5 1000 0 0

µ0 = 0, τ2
0 = 1, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 696 67 237 987 8 5 1000 0 0
BIC 696 67 237 987 8 5 1000 0 0
DIC 781 149 70 990 4 6 1000 0 0



J. Risk Financial Manag. 2025, 18, 72 14 of 16

Table A1. Cont.

µ0 = 0, τ2
0 = 10,000, ν0 = 2, λ0 = 1

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 697 67 236 987 8 5 1000 0 0
BIC 697 67 236 987 8 5 1000 0 0
DIC 783 150 67 991 3 6 1000 0 0

µ0 = 0, τ2
0 = 100, ν0 = 0.01, λ0 = 0.01

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 698 73 229 986 9 5 1000 0 0
BIC 698 73 229 986 9 5 1000 0 0
DIC 787 150 63 991 3 6 1000 0 0

µ0 = 0, τ2
0 = 100, ν0 = 20, λ0 = 10

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 725 75 200 989 4 7 1000 0 0
BIC 725 75 200 989 4 7 1000 0 0
DIC 781 80 139 992 3 5 1000 0 0

Table A2. Monte Carlo results of the information criteria for the GB2 distribution.

GB2(2, 1, 1.5, 1) = DA(2, 1, 1.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 113 305 582 0 801 199 0 997 3
BIC 113 305 582 0 801 199 0 997 3
DIC 108 787 105 0 806 194 0 997 3

GB2(2, 1, 3, 1) = DA(2, 1, 3)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 2 479 519 0 953 47 0 1000 0
BIC 2 481 517 0 953 47 0 1000 0
DIC 1 929 70 0 977 23 0 1000 0

GB2(2, 1, 1, 1.5) = SM(2, 1, 1.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 80 438 482 0 192 808 0 1 999
BIC 80 438 482 0 192 808 0 1 999
DIC 128 390 482 0 196 804 0 1 999

GB2(2, 1, 1, 3) = SM(2, 1, 3)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 5 302 693 0 32 968 0 0 1000
BIC 5 302 693 0 32 968 0 0 1000
DIC 8 192 800 0 32 968 0 0 1000

GB2(2, 1, 2.5, 1.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM
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Table A2. Cont.

AIC 180 432 388 1 992 7 0 1000 0
BIC 180 432 388 1 992 7 0 1000 0
DIC 186 747 67 1 992 7 0 1000 0

GB2(2, 1, 1.5, 2.5)

n = 1000 n = 10,000 n = 100,000

LN DA SM LN DA SM LN DA SM

AIC 153 249 598 0 10 990 0 0 1000
BIC 153 249 598 0 10 990 0 0 1000
DIC 213 217 570 1 9 990 0 0 1000

Notes
1 For prior distributions, we assume µ ∼ N (µ0, τ2

0 ), 1/σ2 ∼ G(ν0, λ0) for the LN distribution, a ∼ G(ν0, λ0), b ∼ G(ν0, λ0),
p ∼ G(ν0, λ0) for the DA distribution, and a ∼ G(ν0, λ0), b ∼ G(ν0, λ0), q ∼ G(ν0, λ0) for the SM distribution, respectively, where
N (µ0, τ2

0 ) is a normal distribution and G(ν0, λ0) is a gamma distribution.
2 It should be mentioned that the number of income classes K also plays an important role in the performance of the estimator. As

it has already been discussed in Kakamu and Nishino (2019) that the estimates become worse when K is small, we focus on the
effects of n and prior hyper-parameters in this study.

3 The probability density function of the GB2 distribution is expressed by

f (x|θ) = axap−1

bapB(p, q)
[
1 +

( x
b

)a]p+q ,

where θ = (a, b, p, q)′ and B(p, q) is a beta function.
4 From the nature of the gamma distribution, as ν0 increases, the expectation and variance increase, while as λ0 increases, the

expectation is larger and variance is smaller. As is well known, as τ2
0 increases, the variance becomes large in the case of a normal

distribution, i.e., the prior distribution becomes diffuse.
5 It is not our concern, but it is interesting to examine the performance of the information criteria for selecting the hypothetical

income distribution (see Doğan (2023) for the case of spatial models). These results are reported in Appendix B.
6 It is worthwhile to mention that if p → 1 for the DA distribution or q → 1 for the SM distribution, the performance of the model

selection becomes worse. It is also consistent with the results from Kakamu (2016).
7 For more details, see http://www.stat.go.jp/english/ (accessed on 31 January 2025).
8 It is sometimes difficult to find the mode of the parameters by the maximum likelihood method. Therefore, we implement the

simulated annealing of Goffe et al. (1994). In addition, if the Cholesky decomposition of Σ fails, the modified Cholesky of Nocedal
and Wright (2000) is used. The appropriate choice of step sizes used in the random walk chain is determined by the procedure in
Holloway et al. (2002) during the burn-in period.
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