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Abstract: The module temperature is the most important parameter influencing the output power
of solar photovoltaic (PV) systems, aside from solar irradiance. In this paper, we focus on the
interdisciplinary research that combines the correlation analysis, mutual information (MI) and heat
transfer theory, which aims to figure out the correlative relations between different meteorological
impact factors (MIFs) and PV module temperature from both quality and quantitative aspects.
The identification and confirmation of primary MIFs of PV module temperature are investigated as the
first step of this research from the perspective of physical meaning and mathematical analysis about
electrical performance and thermal characteristic of PV modules based on PV effect and heat transfer
theory. Furthermore, the quantitative description of the MIFs influence on PV module temperature is
mathematically formulated as several indexes using correlation-based feature selection (CFS) and MI
theory to explore the specific impact degrees under four different typical weather statuses named
general weather classes (GWCs). Case studies for the proposed methods were conducted using actual
measurement data of a 500 kW grid-connected solar PV plant in China. The results not only verified
the knowledge about the main MIFs of PV module temperatures, more importantly, but also provide
the specific ratio of quantitative impact degrees of these three MIFs respectively through CFS and MI
based measures under four different GWCs.

Keywords: photovoltaic (PV) module temperature; meteorological impact factor (MIF); quantitative
influence analysis; correlation-based feature selection (CFS); mutual information (MI) theory

1. Introduction

Given the increasingly serious problems of fossil energy shortage and greenhouse gas emissions,
the need for sustainable and low-carbon energy technologies is on the rise [1]. As one of the most
promising emerging renewable energy technologies, solar photovoltaic (PV) power generation has
developed faster than anticipated [2]. The global installed PV capacity has grown from 0.96 GW in
1998 to 227 GW in 2015 [3]. There is no doubt that PV industry will play a more significant role in the
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future energy production. In particular, China has become the leader in the PV module manufacturing
since 2009. At the end of 2013, China accounted for 67% of the total PV production [4]. According to
the International Energy Agency (IEA), China leads the world in cumulative installed PV capacity,
with over 110 GW by 2015, and solar power could potentially provide one-third of the global energy
demand after 2060 [5,6].

However, there are still several problems that need to be solved due to the inherent properties of
solar energy, such as its variability and uncertainty, particularly the sharp ramps under specific
meteorological events and different outputs under variable weather conditions [7]. In order to
maintain a consistent balance of supply and demand, power system operation is generally based
on an understanding of the random variations in the load and the controllable and dispatchable
conventional stand-by power generation plants [8]. Therefore, the predictability of the solar PV power
generation and its accuracy are very important, both for the transmission and distribution sides.
For the transmission side, non-dispatchable central large-scale solar PV plants with tempestuous and
fast variable output may cause great issues to the active power balance and economic operation of
regional grids. From the distribution side, roof-top PV, building integrated photovoltaic (BIPV) and
other small-scale PV systems can be equivalent to negative electricity demand during the daytime with
solar irradiance, which significantly reshape the traditional load curves by providing electricity directly
to the load behind the meter. This effect will result in difficulties in load forecasting under different
weather conditions, on which the dispatch operation depends [9]. Numerical weather prediction
(NWP)-based multiple temporal and spatial scales solar PV power forecasting is a good measure to
facilitate more economic decisions for the dispatch operation of power system. With this knowledge,
the solar PV generation can be added into the grid operation more precisely like the economic dispatch
considering the uncertainty of deep penetration of wind power, which will make it possible to schedule
and adjust the dispatchable generators’ output to coordinate the fluctuation of solar PV plants as well
as the wind farms and the electricity load from users’ demand [10].

In addition to the material of PV modules, the output power produced by PV modules (P) mainly
depends on the amount of surface solar radiance flux on module plane (GT) and the PV cell temperature
(Tc) [11], which can be approximately analyzed using Equation (1) [6]:

P = ηrSGT [1− β(Tc − T0) + γ log GT ] (1)

where P is PV power output, ηr is the reference module efficiency, S is the aperture surface area of PV
module, β is temperature coefficients of PV modules, γ is solar irradiance coefficient of PV modules,
Tc and T0 are PV cell temperature and reference values of temperature respectively, and finally, GT is
surface solar radiance flux on module plane.

The γ, solar irradiance coefficient of PV modules, usually can be neglected because of its small
value. Then Equation (1) is rewritten as Equation (2):

P = ηrSGT [1− β(Tc − T0)] (2)

Reference [12] indicates that the temperature is almost uniform on the panel. Thus, an average
PV module temperature (Tm) is used to replace the PV cell temperature. Therefore, Equation (2) can be
rewritten as Equation (3):

P = ηrSGT [1− β(Tm − T0)] (3)

The above formulation clearly demonstrates the impact of Tm on the total power production
with the given value of other parameters including GT. Previous studies have shown a reduction in
electrical efficiency for increase in Tm exceeding a certain limit [13]. As a result of this relationship,
Tm is now regularly included in PV power prediction models [14–16]. This sufficiently highlights the
importance of Tm as a key factor in modeling and assessing the performance of PV modules.
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As a characteristic parameter of PV module, the PV module temperature is influenced by many
impact factors, and the primary drivers of Tm have been determined to be ambient temperature (Ta),
solar irradiance (GT), wind speed (VWS) and relative humidity, etc. [17–19], which reflect the complex
ongoing energy balance and heat transfer processes occurring in PV module environments [20].
Reference [11] preliminarily discussed the heat transfer and energy balance of a PV module. Besides
being a function of the weather variables, PV module temperature also depends on PV material,
parameters and module encapsulation materials [21]. To analyze meteorological impact factors (MIFs)
and material or system-dependent properties for PV module temperature, reference [22] summarized
a number of formulas of physical expression of Tm. Considering exchange of PV module temperature,
apart from the heat transfer and energy balance, power conversion efficiency of PV module affecting by
PV effect must take into account. Different weather classifications, namely, sunny, cloudy, or shower as
well as heavy rain and so on, could lead to different heat dissipation conditions, which also obviously
affect heat exchange between the PV module and the external environment, affecting the PV module
temperature [23].

The concern of this research is how to compute the quantitative metrics for the specific impacts of
MIFs on PV module temperature. Although the prior research and existing models illustrate basic
knowledge about MIFs of PV module temperature, however, most of them only focus on the calculation
of PV module temperature using related meteorological parameters, or observation from curves of
actual data and experimental proof through qualitative analysis from the theoretical and empirical
perspective based on thermodynamic and electrical theories, which hardly provided any corresponding
information with respect to the quantitative impact of MIFs on PV module temperature and other MIFs.
Therefore, here we introduce two mathematical methods to quantitatively describe the correlative
relations between different MIFs and PV module temperature associate with the quality analysis based
on heat transfer theory. The results of this research can help classification modeling to consider the
specific influences of multiple MIFs more clearly and precisely under different weather conditions.

References [24,25] adopted autocorrelation (AC) for the tasks of data preprocessing before
forecasting. As a measurement of correlation between feature-to-output variables, correlation-based
selection (CFS) is more suitable for identifying relevancy between variables. CFS based on correlation
coefficient analysis possesses the ability that can accurately capture the main features of the
relationships and express the measurement of each variable influence on the relationship [26]. However,
CFS is only able to detect linear correlations. In other words, it will not work well while extracting
the nonlinear relations between variables in many real applications. Fortunately, mutual information
(MI) theory has been widely used to explore nonlinear correlations between multiple variables [27–29]
in these cases. MI is utilized to extract the most informative feature with a maximum relevancy and
minimum redundancy for wind power forecasting [30]. As the impact factors of other forecasting
objections, the impact factors of PV module temperature also are complex and may bring more
redundancy to the results because of its tight coupling relations within each other.

The rest of this paper is organized as follows. Section 2 analyzes the electrical and thermal
processes of solar PV cells including PV effect, energy balance and heat transfer from the perspective
of physics to determine the primary MIFs of solar PV module temperature. Section 3 introduces the
mathematical foundation of this research. Section 4 is the case study using actual data of a grid-connect
PV plant to illustrate the quantitative analyses based on CFS and MI on the specific influence degree of
the determined impact factors under the cases of four different weather statuses. Finally, conclusions
were drawn in Section 5.

2. Physical Description of Photovoltaic Module Temperature

The impacts on PV module temperature include internal and external aspects [31]. The internal
aspect refers to the PV module physical characteristics related factors including material category,
parameters and system-dependent properties [32], which are fixed and unique to those individual PV
plants that already put into operation. The external aspect mostly refers to those meteorological factors
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that impact the PV module temperature during its operating duration. In particular, the heat transfer
process and thermal energy balance caused by radiation and convection [33], which is directly related
to the real-time environmental conditions of different weather statuses should be illustrated at first.

Equations (4)–(20) are utilized to express the overall module efficiency. The energy balance of PV
module can be divided into thermal and electrical performance [34]. We begin with the energy balance
analysis from Equation (4) [23]:

ατGTS = QS + ηSGT (4)

where τ is the transmittance of the cover system for irradiance, τGT is the part of GT crossing the
glass, α is the absorption coefficient of PV cells, ατGT is the part of GT absorbed by PV modules, η is
conversion efficiency of PV module, QS respects the thermal energy losses through radiation and
convection heat transfer from modules to surrounding [35].

The schematic of the heat transfer process of the PV cell is shown in Figure 1, where Tg and Ts,
are the temperature of ground and the temperature of sky, respectively. Here, Tg and Ts are all assumed
to equal to Ta.
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According to Newton’s law of cooling, the convective heat and irradiative transfer exchange from
a surface to the surrounding fluid can be expressed in Equation (5):

QS = hS(Tm − Ta) = (hr + hc)S(Tm − Ta) (5)

where h is heat transfer coefficient, hr and hc are heat transfer coefficient of radiation and heat transfer
coefficient of convection, respectively. They are calculated according to Equations (6) and (7):

hr = εσ(Tm + Ta)
(

T2
m + T2

a

)
(6)

hc = Nud/l (7)

where ε is emissivity of materials, σ is Stefan-Boltzmann constant, d is air thermal conductivity, l is
board length and Nu is Nusselt number.

For free cooling, if predominantly laminar flow is assumed, an approximation of Nu given by
Holman can be expressed as Equation (8) [35]:

Nu = 0.664× Pe
1
2 × Pr

1
3 (8)
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If it is the turbulent flow, the formula of Nu can be expressed as Equation (9) [35]:

Nu =
(

0.037× Re
4
5 − 871

)
× Pr

1
3 (9)

where Pr is Prandtl number, and Re is the Reynolds number, which is used to characterize the flow of
fluid, it is defined by Equation (10):

Re = VWS·l/ν (10)

where VWS is the wind speed and ν is kinematic viscosity.
If we substitute Equations (6)–(10) into Equation (5), QS will be obtained as Equation (11) in the

situation of laminar flow:

QS = εσS
(

T4
m − T4

a

)
+ S(Tm − Ta)0.664(VWS·l/ν)

1
2 Pr

1
3 d/l (11)

or as Equation (12) in the situation of turbulent flow:

QS = εσS
(

T4
m − T4

a

)
+ S(Tm − Ta)

(
0.037(VWS·l/ν)

4
5 − 871

)
Pr

1
3 d/l (12)

Referring back to Equation (4), QS can be obtained through the above and we now turn to the
module efficiency. Here we adopt the method given by Notton in 2005 [12]:

η = ηr[1− β(Tm − Ta)] (13)

where ηr is the reference value of PV module efficiency.
Finally, on the basis of σ being much smaller than Re, Tm is obtained in situation of laminar flow

as Equation (14):

Tm =
0.664Ta(VWS·l/v)

1
2 Pr

1
3 d/l + ατGT − ηrGT(1 + βTa)

0.664(VWS·l/ν)
1
2 Pr

1
3 d/l − ηrβGT

(14)

or in situation of turbulent flow as Equation (15):

Tm =
Ta

(
0.037(VWS·l/ν)

4
5 − 871

) 1
2

Pr
1
3 d/l + ατGT − ηrGT(1 + βTa)(

0.037(VWS·l/ν)
4
5 − 871

)
Pr

1
3 d/l − ηrβGT

(15)

From Equations (14) and (15), there are 11 impact factors of Tm:

(1) Five material/system-dependent factors: l, α, τ, ηr, and β.

Except for the structure parameter, l, the remaining four factors, α, τ, ηr, and β are performance
parameters of the PV module, which can be obtained from the specifications of the PV module.
These PV module parameters, which are constants for an already built PV plants, are dependent on
the PV module technologies and encapsulation materials.

Three performance parameters of PV module can be decided by PV module technologies: α, ηr,
and β. PV power plants usually use different PV module technologies, such as monocrystalline silicon
(mc-Si), poly-silicon (p-Si), amorphous silicon (a-Si), and other thin film technologies such as copper
indium diselenide (CIS), etc. [36]. In general, due to the advantages of crystalline silicon in the balance
of energy conversion and the cost, the PV power plants applying this technology account for the largest
proportion around the world, and dominate the PV market with around 90% share in 2014 [37,38].
When we refer to crystalline silicon, p-Si PV modules are normally cheaper, while mc-Si PV modules
are more efficient, which means lager values of α and ηr.
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The encapsulation materials are key characteristics of PV modules to determine the transmittance,
τ, which is important in both the immediate and long-term power production of modules. Appropriate
encapsulation materials can improve the optical flux transmittance, as well as protect the PV cell from
the surroundings. The materials include ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), poly
dimethyl siloxane (PDMS), polyolefins, ionomers, and thermoplastic polyurethane (TPU) and so on [39].
Many encapsulation materials were found to discolor, with the resulting reduction in transmittance
compromising PV module performance, so the transmittance of a PV module is influenced by thickness
and durability of the encapsulation materials. However, there is no evidence for different encapsulation
materials exhibiting much more different influence on transmittance in terms of same technology [39].

(2) Three surrounding-dependent factors: ν, Pr, k.

These three impact factors depend on the surroundings, especially ambient temperature.
According to “Properties of Air at Atmospheric Pressure” in Heat Transfer written by Holman ([35],
p. 643), the fitting relations between three factors and ambient temperature can be calculated as follows:

k = 7.559× 10−5Ta + 0.02435 (16)

Pr = 6.982× 10−3e−(Ta−57.14)2×9.309×10−5
(17)

ν = 1.024× 10−7Ta + 1.336× 10−5 (18)

It is obvious that at atmospheric pressure, the changes of the three factors only rely on ambient
temperature, which also enhances the effect of ambient temperature on PV module temperature.

(3) Three MIFs: Ta, GT, and VWS.

Due to the characteristics of the above nine impact factors, when it comes to an already built PV
plants, the changes of PV module temperature mainly rely on three MIFs: ambient temperature, solar
irradiance and wind speed. According to Equations (14) and (15), the effects of ambient temperature
and solar irradiance are almost proportional to the PV module temperature, while the effect of wind
speed is in the form of fractional exponent power, which means the effect of wind speed is qualitatively
weaker than the former two. Due to the fact the surroundings-dependent factors only rely on ambient
temperature, from the angle of qualitative analysis, ambient temperature should be the most influential
factor on PV module temperature, followed by solar irradiance, and wind speed is the weakest one.

The PV module temperature mainly relies on MIFs, which means the PV module temperature
process will be different when the regulations of MIFs change. It is apparent that there are varying
weather conditions, such as sunny days, cloudy days and so on [40], whose impacts on the PV
module temperature can be grouped in two aspects: heat dissipation conditions and power generation
performance. For example, on sunny days, solar irradiance and ambient temperature are stronger than
on cloudy days, which will reduce the heat dissipation but enhance power generation, and finally,
increase the PV module temperature. Thus, when we analyze the PV module temperature, the weather
conditions should be classified to several types based on the distinction of three MIFs.

On the other hand, ambient temperature, solar irradiance and wind speed as MIFs of PV module
temperature, are affected by each other. From a meteorological view, solar irradiance, as the main factor
measuring the solar power, has a dominant impact on the ambient temperature changes on long-term
time scale conditions or between different seasons other than a single day. It is the complexity and
tight coupling between MIFs, which will bring redundancy to the researches and make quantitative
analyses inaccurate, so mathematical methods relating PV module temperature and MIFs require
further research.

3. Mathematical Foundation

Based on the earlier physical analysis, the distinguishing features of MIFs of PV module
temperature can be summarized by the following aspects: diversity; complexity and cross coupling,
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so in order to analyse MIFs quantitatively, several statistical methods should be utilized. CFS, given by
Hall [41], is an available method based on correlation coefficient calculation to measure the correlation
degree between impact factors and PV module temperature, which provides a basis for the specific
degrees of influence of different factors on PV module temperature [26]. MI, given by Mackay [42],
is based on measuring the same information among different variables. It is a measure of relevance
and redundancy between variables, which can weigh the influence degrees as well [43]. On that basis,
two methods, which are linear and nonlinear, respectively, are adopted to describe and compare the
impact of MIFs on PV module temperature quantitatively as follows.

3.1. Correlation-Based Feature Selection

Given the target variable is Z and selected subset is C, CFS is defined as the following equation:

rCZ = kriZ/
√

k + k(k− 1)rii (19)

where rcz is the correlation between the Z and C, k is the number of features, riZ and rii are the
correlation coefficient between each feature in C and Z and the correlation coefficient between each
feature in C. The correlation coefficient can be calculated as Equation (20):

r = ∑n
i=1(xi − x)(yi − y)/

√
∑n

i=1(xi − x)2∑n
i=1(yi − y)2 (20)

where n is the number of data in a variable, xi and yi are the data in feature subsets and target
variable respectively.

CFS is a linear method measuring the relevance to find the best possible variable C by maximizing
the rsz, in which process the best relevant set of MIFs will be selected. Since the dimension of candidate
features maybe high, the time consumption cannot be neglected [26]. We adopt a greedy stepwise
search algorithm to find a best C starting with a small set of definite features and adding one another
feature at one time [44], and only if the data of rsz increases, the new feature will be accepted, and until
there is no improvement or no features to add, it stops to identify the most relevant subset which
contains the major relevant factors of PV module temperature.

3.2. Mutual Information

MI based on information entropy is a nonlinear method to measure the relevance and redundancy
between variables, in which entropy is a measurement of uncertainty of each variable, while MI
calculates the same information in two variables [45].

Given the random feature variable X is X = (x1, x2, . . . , xN), entropy information H(X) is defined
as Equation (21):

H(X) = −∑n
i=1 pi log pi (21)

where pi is the probability of xi with value between xi,p and xi,p+1,which means that x is needed to
divided into several segments in advance. Here we determine the segment number is k. pi is defined
as Equation (22):

pi =
number of x with value in

[
xi,p, xi.p+1

]
total number of data in xi subset

(22)

For any two random variables X and Y, the two-dimensional joint entropy is defined as
Equation (23):

H(X, Y) = −∑n
i=1∑

m
j=1 pij log pij (23)

Furthermore, the conditional entropy probability represents the amount of uncertainty in one
of variables when the other one is introduced, in which pij is the probability of x and y with value in
[xi,p, xi,p+1] and [yi,q, yi,q+1], as shown in Equations (24)–(26):
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H(X|Y) = −∑n
i=1∑

m
j=1 pij log

pij

pj
(24)

H(Y|X) = −∑n
i=1∑

m
j=1 pij log

pij

pi
(25)

pij =
number of (x, y)with value

[
xi,p, xi,p+1

]
and

[
yj,q, yj,q+1

]
total number of (x, y)

(26)

The relationship between joint entropy and conditional entropy is defined as Equation (27):

H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) (27)

Thus, MI expressing the information shared in both variables is defined as Equation (28):

I(X; Y) = I(Y; X) = H(X)− H(X|Y) = H(Y)− H(Y|X) = H(X) + H(Y)− H(X, Y) (28)

Conditional mutual information (CMI) reflects the MI between features that has not been selected
and the target variable Z with several features that has been determined, as Equation (29) shown:

I(X; Z|Y) = H(X|Y)− H(X|Z, Y) = ∑
y∈Y

p(y) ∑
x∈X

∑
y∈Y

p(x, z|y) log
p(x, z|y)

p(x|y)p(z|y) (29)

The joint mutual information (JMI) is defined as:

I(X, Y; Z) = I(X; Z|Y) + I(Y; Z) (30)

So the interaction information (II) between X, Y and Z is:

I(X; Y; Z) = I(X; Z) + I(Y; Z)− I(X, Y; Z) (31)

The Venn diagram, a presentation of concepts of H, MI, CMI JMI and II, is provided for visual
explanation of each method, as Figure 2 shows [46].
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Each area in Figure 2 expresses respectively:

• The circles: H values range of variables;
• The union of area 3 and 4: I(X; Y), MI;
• The area 1: I(X; Z|Y), CMI;
• The union of area 1, 2 and 4: I(X, Y; Z), JMI;
• The area 4: I(X; Y; Z), II.

As shown in Figure 2, the value of H represents the variable uncertainty, which also means the
information contained in this variable. MI reflects the relevant information between two variables,
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while II expresses the redundant information in three variables, so the values of H, MI and II can be
utilized in the quantitative measurements of relevancy and redundancy between MIFs and PV module
temperature, and these indexes based on MI theory are selected to explore the specific degree of impact
under varying typical weather statuses.

4. Quantitative Degree of Influence of Meteorological Impact Factors on Photovoltaic
Module Temperature

4.1. Data

The dataset used to carry out this research, covering the time range from January 2012 to December
2012, comes from a 500 kW grid-connected PV plant in China connecting the grid through a voltage
level of 6 kV, which includes the variables of solar irradiance (GT), ambient temperature (Ta), and wind
speed (VWS) with the time interval of 30 min. The annual total available records cover 310 days during
the whole year. The manufacturer of the PV module installed in this plant is JinKo Solar Company
(Shangrao, Jiangxi, China) and the assembly model is JKMS300P-72 adopting p-Si technology, which
can be seen in Figure 3. The total number of PV cells in each module is 72 (6 × 12). The size of each cell
is 156 mm× 156 mm. The parameters of the JKM300P-72 PV module are listed in Table 1, where NOCT
means normal operating cell temperature. The models and parameters of the sensors deployed in this
plant are listed in Table 2.
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Figure 3. The PV modules installed in the plant: (a) PV array; and (b) PV module.

Table 1. Parameters of PV module. NOCT: normal operating cell temperature.

Parameter Pmax Vmp Imp VOC ISC NOCT Weight

Value 300 Wp 36.6 V 8.20 A 45.3 V 8.84 A 45 ± 2 ◦C 26.5 kg
Category Electrical Electrical Electrical Electrical Electrical Condition Physical

Table 2. The models and parameters of senores.

Sensor Model Accuracy Measure Range Resolution Type

Solar irradiance JZ-TBQ ±5% W/m2 0–2000 W/m2 1 W/m2 Thermopile
Module Temperature JZ-HB9 ±0.2 ◦C −50–80 ◦C 0.1 ◦C Thermocouple
Ambient Temperature JZ-HB ±0.2 ◦C −50–80 ◦C 0.1 ◦C Thermocouple

Wind speed JZ-WS ±(0.3 + 0.03 V)·m/s 0–70 m/s 0.1 m/s Rotation cups

The analysis work is conducted only during the daytime period with sunlight because the purpose
of this research is to try to help improve the solar PV power forecasting through making clear the
influence of MIFs on PV module temperature. More importantly, due to heat transfer, PV module
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temperature is appropriately the same as the ambient temperature, which means the MIFs are different
during the day and night. Therefore, although the temperature data is continuous in a whole day,
we select the data from 7:00 a.m. to 5:00 p.m. to conduct the mathematical analysis, i.e., 20 data points
per day are selected for the case study.

As mentioned above in Sections 1 and 2 of this paper, weather conditions have significant impacts
on the heat dissipation conditions of PV modules. “GB/T 22164-2008 Public Climate Service—Weather
Graphic Symbols” released by China Meteorological Administration defined 33 types of weather
status [47]. In order to balance the accuracy and complexity of the analysis of PV module temperature,
the numbers of weather types should be reasonable and the summative weather statuses should be
typical and representative. Summarizing the most vital characteristics of all climates, the weather
statuses can generally be divided into four typical different classes: sunny day, cloudy day, shower
day and heavy rainy day [32]. Furthermore, the other weather statuses are assigned to one of these
four classes according to the degree of closeness described by a correlation coefficient, and then four
general weather classes (GWCs) named A, B, C, and D are constituted [40]. After removing the invalid
data, the distribution of four different GWCs are 24, 119, 148, and 19 days, respectively.

Figure 4 is the actual data of PV module temperature and its MIFs on a certain day under four
GWCs. The dates selected to represent the rules of four GWCs are 10 June, 18 June, 24 June, and 6 June
respectively. It is shown that the changes of PV module temperature are the common interaction
among all three MIFs. For example, in weather class A, although the solar irradiance is much stronger,
the ambient temperature is lower and the wind speed is bigger than in other classes, so the PV module
temperature is not very high.
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Figure 4. Actual data of PV module temperature and meteorological impact factors (MIFs) under
four general weather classes (GWCs): (a) solar irradiance; (b) ambient temperature; (c) wind speed;
and (d) PV module temperature.

Furthermore, we take the averages of the PV module temperature and its MIFs on each day to
draw Figure 5 to make further observation on the correlation relations.

Figure 6 is the actual data of PV module temperature in the whole year under four GWCs. The PV
module temperature data show a strip distribution, which is caused by the temperature difference of
about 20 ◦C per day, but as a whole, it is in accord with the seasonal characteristics.
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Figure 6. Actual data of PV module temperature in the whole year.

4.2. Quantitative Correlation Analysis by Correlation-Based Feature Selection

Figure 5 shows that the positive relation between ambient temperature and PV module
temperature is more obvious than the other two impact factors, but whether the change trend is
similar to the trend of impact degrees merits quantitative study. CFS provides a possibility for
quantitative analysis for PV module temperature. The quantitative relations in four GWCs between
MIFs and PV module temperature measured by correlation coefficients are shown in Table 3.

Table 3. Correlation coefficients between MIFs and Tm in four GWCs.

Weather
Correlation Coefficient

r(GT, Tm) r(Ta, Tm) r(VWS, Tm)

A 0.722 1 0.894 0.177
B 0.832 0.905 0.264
C 0.736 0.961 0.234
D 0.558 0.986 0.363

1 The value shows the correlation coefficient between solar irradiance and module temperature in weather class
A. The highest values are in red boxes and the lowest values are in green boxes.

Furthermore, the ratios of quantitative influence degrees of these three MIFs under four GWCs
measured by correlation coefficients are shown as Table 4.
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Table 4. Ratio of quantitative influence degrees measured by correlation coefficient.

Weather
Ratio of Quantitative Influence Degrees

GT Ta VWS

A 40% 50% 10%
B 42% 45% 13%
C 38% 50% 12%
D 29% 52% 19%

It shows that in four GWCs, the ambient temperature has the strongest correlation with PV
module temperature, followed by solar irradiance, and wind speed is the weakest influential factor on
PV module temperature. The quantitative ratio of influence degrees of these three MIFs measured
by correlation coefficients are 50:40:10, 45:42:13, 50:38:12 and 52:29:19, respectively, under four GWCs.
When we focus on only one factor, such as solar irradiance, the ratios of four GWCs are 40%, 42%,
38% and 29%, which are different in different weather classes. The reason is that the classification of
weather types is based on the differences of the meteorological factors, which in turn meteorological
factors perform differently in different weather classifications. For heavy rainy days (weather class D),
solar irradiance is the lowest and the changes are very small, which is the reason why the effect of
solar irradiance becomes less in weather class D.

The values of rcz are calculated based on the correlation coefficients, and the results are shown in
Table 5. According to the analysis above, the correlation coefficients between ambient temperature and
PV module temperature are the highest under four GWCs, so we put Ta in the C set firstly, and add
one another impact feature at one time.

Table 5. The rcz values in four GWCs. The highest values are in red boxes and the lowest values are in
green boxes.

rcz A B C D

Ta, GT 0.9577 0.9506 0.9596 0.8997
Ta, VWS 0.6871 0.7333 0.7584 0.8171

Ta, GT, VWS 0.8332 0.8446 0.8446 0.8402

Besides putting only one factor or all three factors as the study object, the combination of two
variables also has the opportunity to become the most influential subset. The process of selection by
rsz is presented in Figure 7 with the example in weather class A: firstly, determining C = {Ta}, secondly,
adding GT and VWS into the C set, comparing the rcz values of {Ta, GT} and {Ta, VWS} with original rcz

value, and choosing the new set with increased rcz values: {Ta, GT}, thirdly, adding VWS into {Ta, GT},
and repeating the previous step. The final result shows that in weather class A, the combination of GT
and Ta is the most relevant subset with Tm. Table 6 shows the other most relevant subsets with Tm in
four GWCs.
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Table 6. The most relevant subsets in four GWCs.

Weather Most Relevant Subsets Number

A {GT, Ta} 2
B {GT, Ta} 2
C {GT, Ta} 2
D {Ta} 1

It is evident that Ta is the most influential factor in all kinds of weather classifications, and GT is
a primary impact factor, except in weather class D, while VWS is not primarily relevant to Tm. Like in
the analysis above, in weather class D, solar irradiance is lower and changes little, which makes it have
little effect in this GWCs.

The result analyzed by CFS verifies the physical analysis results. However, the correlation
coefficient values cannot express the degree of relevance exactly because the correlation coefficient is
a linear value while the relationship between Tm and each impact factor is nonlinear. More importantly,
the relevant subsets contain a certain degree of redundant information due to the coupling relation
between MIFs. Thus, the nonlinear method, MI is worthy of further research.

4.3. Quantitative Correlation Analysis by Mutual Information Theory

The MI of two random variables is a measure of the mutual dependence between the two
variables. More specifically, it quantifies the “amount of information” obtained about one random
variable, through the other random variable. According to Equation (22), k as the number of data
segments, determines the intricacy of the study. If k is larger, the data is divided more detailed,
and each part of data range is smaller, which will lead the sample distribution more discrete, so in
this case, the entropy information and MI are larger generally. If k is smaller, the entropy information
and MI are smaller generally. Thus, what is the premise of accurate reflection of nonlinear coupling
relation is a reasonable k value.

In order to achieve a scientific and reasonable k value, accuracy and complexity need to be
considered. Due to the fact there is no mathematical method to determine k values, a method based
on actual data is applied in this paper. Firstly, a range values set of k are determined. Secondly,
the tendency of the average value of H is observed to find the reasonable k value after the H values
of all variables are calculated. Let’s take the weather class A as an example. As shown in Figure 8a,
the H values of four variables are calculated with k between 13 and 32 in weather class A. The slope
values of the H values are shown in Figure 8b, in which the tendency is more clear. It is obvious that
when the k value reaches 20, the slope values tend to be constant, which is the k value that should be
selected. As a result, the k values in weather class A is determined as 20. Figure 8a,b both indicates that
the H values of different variables are similar in the same weather classes, so we choose one of four
variables to study k values in the other three GWCs. The H values of GT in four GWCs with different k
values are shown in Figure 8c, and Figure 8d is the slope value of the above data. What is noteworthy
is that the set of k values in different weather classifications is different, which means that ki reflects
different values in different weather classification. The value ranges of k value in weather class B, C
and D are between 33 and 52, 37 and 56, 11 and 30, respectively. Similarly, according to our definition,
the k values in weather classes B, C and D are 40, 44 and 18, respectively.

With the identified k values, according to Equations (21) and (23), entropy information (H(X)) and
joint entropy (H(X, Y)) can be calculated. The results are shown in Tables 7 and 8.
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Table 7. The entropy information in four GWCs.

Weather
Entropy Information

H(GT) H(Ta) H(VWS) H(Tm)

A 1.252 1.211 1.175 1.195
B 1.481 1.461 1.400 1.497
C 1.533 1.543 1.281 1.562
D 0.995 1.155 1.123 1.185

Table 8. The joint entropy in four GWCs.

Weather
Joint Entropy

H(GT, Tm) H(Ta, Tm) H(VWS, Tm)

A 2.041 1.862 2.121
B 2.614 2.447 2.742
C 2.778 2.466 2.719
D 1.838 1.538 1.862

According to Equation (28), the MI (I(X, Y)) is obtained on the basic of entropy information and
joint entropy. Table 9 is the MI between three MIFs and PV module temperature. MI and correlation
coefficient are two methods to measure the relevance between two variables. When we compare Table 9
with Table 3, the correlation coefficient values are larger than the values of MI, shown as Figure 9.
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Table 9. The MI in four GWCs. The highest values are in red boxes and the lowest values are in
green boxes.

Weather
MI

I(GT, Tm) I(Ta, Tm) I(VWS, Tm)

A 0.407 0.544 0.249
B 0.364 0.511 0.155
C 0.317 0.639 0.124
D 0.342 0.802 0.318
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The reason is that CFS is a linear method, which will neglect the coupling relation between
MIFs, so the degree of influence of each MIF on PV module temperature is enhanced, which contains
redundancy between MIFs, while MI takes the interaction with other factors into consideration,
which will reduce the effect of this single impact factor. Thus, MI is more precise in quantitative
research on MIFs of PV module temperature.

Table 10 shows the ratios of MI between MIFs and PV module temperature under four GWCs and
the ratios of relevancy of these three MIFs measured by MI are 34:45:21, 35:50:15, 29:59:12, and 23:55:22,
respectively, under four GWCs. Furthermore, the results measured by two mathematical methods are
compared with each other, shown as Figure 10.

Table 10. Ratio of quantitative influence degrees measured by MI.

Weather
Ratio of Quantitative Influence Degrees

GT Ta VWS

A 34% 45% 21%
B 35% 50% 15%
C 29% 59% 12%
D 23% 55% 22%

The comparative results show several commonalities. Firstly, the monotone increasing order of the
degrees of influence of the three MIFs in four GWCs is: Ta, GT, and VWS. Secondly, the relation between
solar irradiance and PV module temperature (GT-Tm) measured by MI is smaller than the value
measured by CFS, while the relation between wind speed and PV module temperature (VWS-Tm) is
similar or larger. The decreasing ratios of solar irradiance are mainly due to the increasing redundancy
between ambient temperature and solar irradiance and MI can eliminate the influence of redundancy,
while CFS cannot.



Energies 2017, 10, 7 16 of 20

Energies 2016, 10, 7 15 of 19 

 

Figure 9. Relation between MIFs and PV module temperature measured by two methods under four 
GWCs: (a) relation between GT and Tm; (b) relation between Ta and Tm; and (c) relation between VWS 
and Tm. 

Table 10 shows the ratios of MI between MIFs and PV module temperature under four GWCs 
and the ratios of relevancy of these three MIFs measured by MI are 34:45:21, 35:50:15, 29:59:12, and 
23:55:22, respectively, under four GWCs. Furthermore, the results measured by two mathematical 
methods are compared with each other, shown as Figure 10. 

Table 10. Ratio of quantitative influence degrees measured by MI. 

Weather 
Ratio of Quantitative Influence Degrees

GT Ta VWS 
A 34% 45% 21% 
B 35% 50% 15% 
C 29% 59% 12% 
D 23% 55% 22% 

 

 
(a) (b)

 
(c) (d)

Figure 10. Relevancy between MIFs and PV module temperature measured by correlation-based 
feature selection (CFS) and MI: (a) in weather class A; (b) in weather class B; (c) in weather class C; 
and (d) in weather class D. 

The comparative results show several commonalities. Firstly, the monotone increasing order of 
the degrees of influence of the three MIFs in four GWCs is: Ta, GT, and VWS. Secondly, the relation 
between solar irradiance and PV module temperature (GT-Tm) measured by MI is smaller than the 
value measured by CFS, while the relation between wind speed and PV module temperature 
(VWS-Tm) is similar or larger. The decreasing ratios of solar irradiance are mainly due to the 
increasing redundancy between ambient temperature and solar irradiance and MI can eliminate the 
influence of redundancy, while CFS cannot. 

Furthermore, how much redundancy existed between each MIF is also addressed. According to 
Equations (30) and (31), the values of II can measure the redundancy between two variables when 
they act on the same object, which is shown in Table 11. 

Figure 10. Relevancy between MIFs and PV module temperature measured by correlation-based
feature selection (CFS) and MI: (a) in weather class A; (b) in weather class B; (c) in weather class C; and
(d) in weather class D.

Furthermore, how much redundancy existed between each MIF is also addressed. According to
Equations (30) and (31), the values of II can measure the redundancy between two variables when they
act on the same object, which is shown in Table 11.

Table 11. The interaction information (II) in four GWCs. The highest values are in red boxes and the
lowest values are in green boxes.

Weather
II

I(GT; Ta; Tm) I(Ta; VWS; Tm) I(VWS; GT; Tm)

A 0.435 0.205 0.077
B 0.581 0.305 0.138
C 0.351 0.147 0.066
D 0.221 0.120 0.017

The ratio of quantitative redundancy degrees is shown in Table 12. It is worth noticing that:

p(x|y) = p(xy)/p(y) (32)

and:
p(x, z|y) = p(xyz)/p(xy) (33)

The ratios of quantitative redundancy degrees between Ta and GT, Ta and VWS, GT and VWS are
61:28:11, 57:30:13, 62:26:12, and 62:33:5, respectively, under four GWCs. The redundancy between solar
irradiance and ambient temperature is highest in three variables, which is caused by the significant
effect of solar irradiance to ambient temperature. Wind speed also influences the ambient temperature
by accelerating heat transfer, which reflects in the higher values of I(Ta; VWS; Tm). Wind speed and
solar irradiance have little redundancy relation.
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Table 12. Ratio of quantitative redundancy degrees between MIFs.

Weather
Ratio of Quantitative Redundancy Degrees

Ta-GT Ta-VWS GT-VWS

A 61% 28% 11%
B 57% 30% 13%
C 62% 26% 12%
D 62% 33% 5%

5. Conclusions

Quantitative methods based on CFS and MI theory to describe the degree of influence of MIFs
on PV module temperature are proposed after the interdisciplinary theory analysis using correlation
analysis, PV material and heat transfer theory. A case study is conducted using the actual data from
January 2012 to December 2012 of a 500 kW grid-connected PV power plant in China. The mathematical
quantitative degree of correlation between MIFs and PV module temperature were simulated, analyzed
and compared under the cases of four actual different weather conditions named as GWCs. The results
obtained can be summarized as follows:

(1) Generally, there are 12 impact factors of PV module temperature, which can be divided into three
categories, i.e., six material/system-dependent factors, three surroundings-dependent factors,
and three MIFs.

(2) Material/system-dependent factors are depended on PV module technologies and encapsulation
materials, and surroundings-dependent factors rely on MIFs, especially ambient temperature,
while MIFs have complexity and tight coupling with each other and show discrepancies in
different weather statuses.

(3) In an existing PV plant, the changes of PV module temperature mainly rely on three MIFs:
ambient temperature, solar irradiance and wind speed.

(4) The ratios of quantitative degrees of influence of these three MIFs measured by correlation
coefficient are 50:40:10, 45:42:13, 50:38:12 and 52:29:19, respectively, under four GWCs.

(5) The ratios of quantitative influence degrees of these three MIFs measured by MI are 45:34:21,
50:35:15, 59:29:12, and 53:23:22, respectively, under four GWCs.

(6) The ratios of quantitative redundancy degrees between Ta and GT, Ta and VWS, GT and VWS are
61:28:11, 57:30:13, 62:26:12, and 62:33:5, respectively, under four GWCs.

We can confirm the key MIFs of PV module temperature and then address the influence and
degrees of redundancy quantitatively based on this research, which will help us to improve PV
module temperature predictions and provide a potential foundation to enhance the accuracy of
solar PV power forecasting. For example, it is very important for classification modeling of solar
PV forecasting to consider the specific influences of multiple MIFs clearly under different weather
conditions. The specific quantitative values of influence and degrees of redundancy probably will
be different from this paper when the environment conditions or locations of PV plants are changed.
Future studies on this topic will focus on discerning the applicability of the proposed methods for
other different PV plants, and the authors hope to undertake work on this topic not only in China but
also internationally.
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