A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches
Abstract
:1. Introduction
2. Key Features of ADS Planning
2.1. Definition of ADS
2.2. Features of ADS Planning
2.2.1. Optimal Allocation of DGs
2.2.2. Coupling of Operation and Planning
2.2.3. High-Level Uncertainties
2.2.4. Optimal Allocation of ESSs
2.2.5. Multiple Objective Approach
3. ADS Planning Model
3.1. Problem Formulation
3.2. Decision Variables
3.3. Planning Objectives
3.4. Constraints
3.5. Solving Algorithms
3.6. Case Study
4. Key Issues of ADS Planning
4.1. Methods to Deal with High-Level Uncertainties
4.2. Methods to Incorporate Operational Aspects into Planning Model
4.3. Integration of ESSs and DR
4.4. Methods to Deal with Multiple Time Scales
5. Recommendation for Future Works of ADS Planning
5.1. ADS Planning with Multiple Micro-Grids
5.2. Collaborative Planning Methods of ADS and Information Communication System
5.3. ADS Planning from Different Perspectives of Multi-Stakeholders
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABC | Artificial Bee Colony |
ADN | Active Distribution Network |
ADS | Active Distribution System |
AM | Active Management |
CHP | Combined Heat and Power |
DDG | Dispatchable Distributed Generations |
DE | Differential Evolution |
DER | Distributed Energy Resource |
DG | Distributed Generation |
DGO | Distributed Generation Operator |
DP | Dynamic Programming |
DR | Demand Response |
DSO | Distribution System Operator |
DPV | Distributed Photovoltaic |
DWG | Distributed Wind Generation |
EV | Electric Vehicle |
ESS | Energy Storage System |
GA | Genetic Algorithm |
MG | Micro-Grid |
MT | Micro Turbine |
OLTC | On-load Tap Changer |
OO | Ordinal Optimization |
O&M | Operation and Maintenance |
PCC | Point of Common Coupling |
Probability Distribution Function | |
RDG | Renewable Distributed Generation |
RES | Renewable Energy Source |
PSO | Particle Swarm Optimization |
SVC | Static Var Compensator |
ICS | Information Communication System |
ICT | Information Communication Technology |
References
- Kroposki, B.; Johnson, B.B.; Zhang, Y.C.; Gevorgian, V.; Denholm, P.; Hodge, B.-M.S.; Hannegan, B. Achieving a 100% renewable grid: Operating electric power systems with extremely high-levels of variable renewable energy. IEEE Power Energy Mag. 2017, 15, 61–73. [Google Scholar] [CrossRef]
- You, S.; Lin, J.; Hu, J. The Danish perspective of energy internet: From service-oriented flexibility trading to integrated design, planning and operation of multiple cross-sectoral energy systems. Proc. CSEE 2015, 35, 3470–3481. [Google Scholar]
- Philibert, C.; Frankl, P.; Tam, C.; Abdelilah, Y.; Bahar, H.; Marchais, Q.; Wiesner, H. Technology Roadmap Solar Photovoltaic Energy; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Omu, A.; Choudhary, R.; Boies, A. Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy 2013, 61, 249–266. [Google Scholar] [CrossRef]
- Hu, Z.; Li, F. Cost-benefit analyses of active distribution network management, part I: Annual benefit analysis. IEEE Trans. Smart Grid 2012, 3, 1067–1074. [Google Scholar] [CrossRef]
- Hu, Z.; Li, F. Cost-benefit analyses of active distribution network management, part II: Investment reduction analysis. IEEE Trans. Smart Grid 2012, 3, 1075–1081. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, H.; Wang, C. Technical and economic impacts of active management on distribution network. Int. J. Electr. Power Energy Syst. 2009, 31, 130–138. [Google Scholar] [CrossRef]
- Abapour, S.; Zare, K.; Mohammadi-Ivatloo, B. Evaluation of technical risks in distribution network along with distributed generation based on active management. IET Gener. Transm. Distrib. 2014, 8, 609–618. [Google Scholar] [CrossRef]
- Christian, D.A.; Taylor, P.C.; Jupe, S.; Buchholz, B.; Pilo, F.; Abbey, C.; Marti, J. Active distribution networks: General features, present status of implementation and operational practices. Electra 2009, 246, 22–29. [Google Scholar]
- Planning and Optimization Methods for Active Distribution Systems Working Group C6.19. August 2014. Available online: https://www.researchgate.net/profile/Birgitte_Bak-Jensen/publication/283569552_Planning_and_optimization_methods_for_active_distribution_systems/links/566e7ebc08ae430ab50027b9/Planning-and-optimization-methods-for-active-distribution-systems.pdf (accessed on 25 October 2017).
- D’Adamo, C.; Jupe, S.; Abbey, C. Global survey on planning and operation of active distribution networks: Update of CIGRE C6.11 working group activities. In Proceedings of the 20th International Conference and Exhibition on Electricity Distribution, Prague, Czech Republic, 8–11 June 2009; pp. 1–4. [Google Scholar]
- Hidalgo, R.; Abbey, C.; Joós, G. A review of active distribution networks enabling technologies. In Proceedings of the IEEE Power and Energy Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–9. [Google Scholar]
- Kazmi, S.A.A.; Shahzad, M.K.; Khan, A.Z.; Shin, D.R. Smart distribution networks: A review of modern distribution concepts from a planning perspective. Energies 2017, 10, 501. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, J.; Li, F.; Liu, Y.; Liu, Y.; Xu, R.; Su, Y.; Ding, L. Optimal active distribution network planning: A review. Electr. Power Compon. Syst. 2016, 44, 1075–1094. [Google Scholar] [CrossRef]
- Georgilakis, P.S.; Hatziargyriou, N.D. A review of power distribution planning in the modern power systems era: Models, methods and future research. Electr. Power Syst. Res. 2015, 121, 89–100. [Google Scholar] [CrossRef]
- Kazmi, S.; Shahzad, M.; Shin, D. Multi-objective planning techniques in distribution networks: A composite review. Energies 2017, 10, 208. [Google Scholar] [CrossRef]
- Huda, A.S.N.; Živanović, R. Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools. Renew. Sustain. Energy Rev. 2017, 76, 974–988. [Google Scholar] [CrossRef]
- Jain, S.; Kalambe, S.; Agnihotri, G.; Mishra, A. Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era. Renew. Sustain. Energy Rev. 2017, 77, 363–385. [Google Scholar] [CrossRef]
- Saboori, H.; Hemmati, R.; Ghiasi, S.M.S.; Dehghan, S. Energy storage planning in electric power distribution networks—A state-of-the-art review. Renew. Sustain. Energy Rev. 2017, 79, 1108–1121. [Google Scholar] [CrossRef]
- Pilo, F.; Celli, G.; Ghiani, E.; Soma, G.G. New electricity distribution network planning approaches for integrating renewable. Wires Energy Environ. 2013, 2, 140–157. [Google Scholar] [CrossRef]
- Hu, Z.; Li, F. Distribution network reinforcement utilizing active management means. In Proceedings of the IEEE Power and Energy Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–3. [Google Scholar]
- Siano, P.; Chen, P.; Chen, Z.; Piccolo, A. Evaluating maximum wind energy exploitation in active distribution networks. IET Gener. Transm. Distrib. 2010, 4, 598–608. [Google Scholar] [CrossRef]
- Martins, V.F.; Borges, C.L.T. Active distribution network integrated planning incorporating distributed generation and load response uncertainties. IEEE Trans. Power Syst. 2011, 26, 2164–2172. [Google Scholar] [CrossRef]
- Falaghi, H.; Singh, C.; Haghifam, M.R.; Ramezani, M. DG integrated multi-stage distribution system expansion planning. Int. J. Electr. Power Energy Syst. 2011, 33, 1489–1497. [Google Scholar] [CrossRef]
- Zou, K.; Agalgaonkar, A.P.; Muttaqi, K.M.; Perera, S. Distribution system planning with incorporating DG reactive capability and system uncertainties. IEEE Trans. Sustain. Energy 2011, 3, 112–123. [Google Scholar] [CrossRef]
- Ganguly, S.; Sahoo, N.C.; Das, D. Mono-and multi-objective planning of electrical distribution networks using particle swarm optimization. Appl. Soft Comput. 2011, 11, 2391–2405. [Google Scholar] [CrossRef]
- Naderi, E.; Seifi, H.; Sepasian, M.S. A dynamic approach for distribution system planning considering distributed generation. IEEE Trans. Power Deliv. 2012, 27, 1313–1322. [Google Scholar] [CrossRef]
- Sahoo, N.C.; Ganguly, S.; Das, D. Fuzzy-Pareto-dominance driven possibilistic model based planning of electrical distribution systems using multi-objective particle swarm optimization. Expert Syst. Appl. 2012, 39, 881–893. [Google Scholar] [CrossRef]
- Sahoo, N.C.; Ganguly, S.; Das, D. Multi-objective planning of electrical distribution systems incorporating sectionalizing switches and tie-lines using particle swarm optimization. Swarm Evol. Comput. 2012, 3, 15–32. [Google Scholar] [CrossRef]
- Millar, R.J.; Kazemi, S.; Lehtonen, M.; Saarijarvi, E. Impact of MV connected microgrids on mv distribution planning. IEEE Trans. Smart Grid 2012, 3, 2100–2108. [Google Scholar] [CrossRef]
- Borges, C.L.T.; Martins, V.F. Multi-stage expansion planning for active distribution networks under demand and distributed generation uncertainties. Int. J. Electr. Power Energy Syst. 2012, 36, 107–116. [Google Scholar] [CrossRef]
- Sedghi, M.; Aliakbar-Golkar, M.; Haghifam, M.R. Distribution network expansion considering distributed generation and storage units using modified PSO algorithm. Int. J. Electr. Power Energy Syst. 2013, 52, 221–230. [Google Scholar] [CrossRef]
- Hejazi, H.A.; Araghi, A.R.; Vahidi, B.; Hosseinian, S.H. Independent distributed generation planning to profit both utility and DG investors. IEEE Trans. Power Syst. 2013, 28, 1170–1178. [Google Scholar] [CrossRef]
- Samper, M.E.; Vargas, A. Investment decisions in distribution networks under uncertainties with distributed generation-part I: Model formulation. IEEE Trans. Power Syst. 2013, 28, 2331–2340. [Google Scholar] [CrossRef]
- Zidan, A.; Shaaban, M.F.; El-Saadany, E.F. Long-term multi-objective distribution network planning by DG allocation and feeders’ reconfiguration. Electr. Power Syst. Res. 2013, 105, 95–104. [Google Scholar] [CrossRef]
- Sahoo, N.C.; Ganguly, S.; Das, D. Multi-objective planning of electrical distribution systems using; dynamic programming. Int. J. Electr. Power Energy Syst. 2013, 46, 65–78. [Google Scholar]
- Junior, B.R.P.; Cossi, A.M.; Mantovani, J.R.S. Multiobjective short-term planning of electric power distribution systems using NSGA-II. J. Control Autom. Electr. Syst. 2013, 24, 286–299. [Google Scholar] [CrossRef]
- Gitizadeh, M.; Vahed, A.A.; Aghaei, J. Multi-stage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms. Appl. Energy 2013, 101, 655–666. [Google Scholar] [CrossRef]
- Chen, T.H.; Lin, E.H.; Yang, N.C.; Hsieh, T.Y. Multi-objective optimization for upgrading primary feeders with distributed generators from normally closed loop to mesh arrangement. Int. J. Electr. Power Energy Syst. 2013, 45, 413–419. [Google Scholar] [CrossRef]
- Rosseti, G.J.S.; Oliveira, E.J.D.; Oliveira, L.W.D.; Silva, I.C.; Peres, W. Optimal allocation of distributed generation with reconfiguration in electric distribution systems. Electr. Power Syst. Res. 2013, 103, 178–183. [Google Scholar] [CrossRef]
- Ziari, I.; Ledwich, G.; Ghosh, A.; Platt, G. Optimal distribution network reinforcement considering load growth, line loss, and reliability. IEEE Trans. Power Syst. 2013, 28, 587–597. [Google Scholar] [CrossRef]
- Humayd, A.S.B.; Bhattacharya, K. Comprehensive multi-year distribution system planning using back-propagation approach. IET Gener. Transm. Distrib. 2013, 7, 1415–1425. [Google Scholar] [CrossRef]
- El-Zonkoly, A.M. Multi-stage expansion planning for distribution networks including unit commitment. IET Gener. Transm. Distrib. 2013, 7, 766–778. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, H.; Tang, W.; Wang, M.; Cheng, H.; Yao, L. Planning for distributed wind generation under active management mode. Int. J. Electr. Power Energy Syst. 2013, 47, 140–146. [Google Scholar] [CrossRef]
- Rider, M.J.; Lopez-Lezama, J.M.; Contreras, J.; Padilha-Feltrin, A. Bilevel approach for optimal location and contract pricing of distributed generation in radial distribution systems using mixed-integer linear programming. IET Gener. Transm. Distrib. 2013, 7, 724–734. [Google Scholar] [CrossRef]
- Sugihara, H.; Yokoyama, K.; Saeki, O.; Tsuji, K.; Funaki, T. Economic and efficient voltage management using customer-owned energy storage systems in a distribution network with high penetration of photovoltaic systems. IEEE Trans. Power Syst. 2013, 28, 102–111. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, F.; Ledwich, G. Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Trans. Power Deliv. 2013, 28, 102–110. [Google Scholar] [CrossRef]
- Zeng, B.; Zhang, J.; Yang, X.; Wang, J.; Dong, J.; Zhang, Y. Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response. IEEE Trans. Power Syst. 2014, 29, 1153–1165. [Google Scholar] [CrossRef]
- Popović, Ž.N.; Kerleta, V.D.; Popović, D.S. Hybrid simulated annealing and mixed integer linear programming algorithm for optimal planning of radial distribution networks with distributed generation. Electr. Power Syst. Res. 2014, 108, 211–222. [Google Scholar] [CrossRef]
- Aghaei, J.; Muttaqi, K.M.; Azizivahed, A.; Gitizadeh, M. Distribution expansion planning considering reliability and security of energy using modified PSO (particle swarm optimization) algorithm. Energy 2014, 65, 398–411. [Google Scholar] [CrossRef]
- Kaabi, S.S.A.; Zeineldin, H.H.; Khadkikar, V. Planning active distribution networks considering multi-DG configurations. IEEE Trans. Power Syst. 2014, 29, 785–793. [Google Scholar] [CrossRef]
- Mohtashami, S.; Pudjianto, D.; Strbac, G. Strategic distribution network planning with smart grid technologies. IEEE Trans. Smart Grid 2017, 8, 2656–2664. [Google Scholar] [CrossRef]
- Zeng, B.; Zhang, J.; Zhang, Y.; Yang, X.; Dong, J.; Liu, W. Active distribution system planning for low-carbon objective using cuckoo search algorithm. J. Electr. Eng. Technol. 2014, 9, 433–440. [Google Scholar] [CrossRef]
- Yao, W.; Zhao, J.; Wen, F.; Dong, Z.; Xue, Y.; Xu, Y. A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems. IEEE Trans. Power Syst. 2014, 29, 1811–1821. [Google Scholar] [CrossRef]
- Lin, X.; Sun, J.; Ai, S.; Xiong, X.; Wan, Y.; Yang, D. Distribution network planning integrating charging stations of electric vehicle with V2G. Int. J. Electr. Power Energy Syst. 2014, 63, 507–512. [Google Scholar] [CrossRef]
- Kumar, D.; Samantaray, S.R.; Joos, G. A reliability assessment based graph theoretical approach for feeder routing in power distribution networks including distributed generations. Int. J. Electr. Power Energy Syst. 2014, 57, 11–30. [Google Scholar] [CrossRef]
- Nick, M.; Cherkaoui, R.; Paolone, M. Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support. IEEE Trans. Power Syst. 2014, 29, 2300–2310. [Google Scholar] [CrossRef]
- Xing, H.; Cheng, H.; Zhang, L.; Zhang, S.; Zhang, Y. Second-Order Cone model for Active Distribution Network Expansion Planning. In Proceedings of the IEEE Power and Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Koutsoukis, N.C.; Georgilakis, P.S.; Hatziargyriou, N.D. Multi-stage power distribution planning to accommodate high wind generation capacity. In Proceedings of the IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar]
- Sedghi, M.; Ahmadian, A.; Aliakbar-Golkar, M. Optimal storage planning in active distribution network considering uncertainties of wind power distributed generation. IEEE Trans. Power Syst. 2015, 31, 304–316. [Google Scholar] [CrossRef]
- Abapour, S.; Zare, K.; Mohammadi-Ivatloo, B. Dynamic planning of distributed generation units in active distribution network. IET Gener. Transm. Distrib. 2015, 9, 1455–1463. [Google Scholar] [CrossRef]
- Xu, X.; Makram, E.; Wang, T.; Medeiros, R. Customer-oriented planning of distributed generations in an active distribution system. In Proceedings of the IEEE Power and Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Dias, F.M.; Canizes, B.; Khodr, H.; Cordeiro, M. Distribution networks planning using decomposition optimisation technique. IET Gener. Transm. Distrib. 2015, 9, 1409–1420. [Google Scholar] [CrossRef]
- Montoya-Bueno, S.; Muoz, J.I.; Contreras, J. A stochastic investment model for renewable generation in distribution systems. IEEE Trans. Sustain. Energy 2015, 6, 1466–1474. [Google Scholar] [CrossRef]
- Mokryani, G. Active distribution networks planning with integration of demand response. Solar Energy 2015, 122, 1362–1370. [Google Scholar] [CrossRef]
- Bagheri, A.; Monsef, H.; Lesani, H. Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions. Int. J. Electr. Power Energy Syst. 2015, 73, 56–70. [Google Scholar] [CrossRef]
- Saboori, H.; Hemmati, R.; Abbasi, V. Multi-stage distribution network expansion planning considering the emerging energy storage systems. Energy Convers. Manag. 2015, 105, 938–945. [Google Scholar] [CrossRef]
- Liu, W.; Xu, H.; Niu, S.; Xie, J. Optimal Distributed Generator Allocation Method Considering Voltage Control Cost. Sustainability 2016, 8, 193. [Google Scholar] [CrossRef]
- Alnaser, S.W.; Ochoa, L.F. Optimal sizing and control of energy storage in wind power-rich distribution networks. IEEE Trans. Power Syst. 2016, 31, 2004–2013. [Google Scholar] [CrossRef]
- Hejazi, H.; Mohsenian-Rad, H. Energy storage planning in active distribution grids: A chance-constrained optimization with non-parametric probability functions. IEEE Trans. Smart Grid 2016, 99, 1–13. [Google Scholar] [CrossRef]
- Shen, X.; Shahidehpour, M.; Han, Y.; Zhu, S.; Zheng, J. Expansion planning of active distribution networks with centralized and distributed energy storage systems. IEEE Trans. Sustain. Energy 2016, 8, 126–134. [Google Scholar] [CrossRef]
- Saboori, H.; Hemmati, R. Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators. Renew. Sustain. Energy Rev. 2016, 71, 365–372. [Google Scholar] [CrossRef]
- Bongers, T.; Kellermann, J.; Franz, M.; Moser, A. Impact of curtailment of renewable energy sources on high voltage network expansion planning. In Proceedings of the Power Systems Computation Conference, Genoa, Italy, 20–24 June 2016; pp. 1–8. [Google Scholar]
- Tarôco, C.G.; Takahashi, R.H.C.; Carrano, E.G. Multi-objective planning of power distribution networks with facility location for distributed generation. Electr. Power Syst. Res. 2016, 141, 562–571. [Google Scholar] [CrossRef]
- Santos, S.F.; Fitiwi, D.Z.; Shafie-Khah, M.; Bizuayehu, A.W.; Cabrita, C.M.P.; Catalão, J.P.S. New multi-stage and stochastic mathematical model for maximizing RES hosting capacity-part II: Numerical results. IEEE Trans. Sustain. Energy 2016, 8, 320–330. [Google Scholar] [CrossRef]
- Wei, C.; Fu, Y.; Li, Z.; Jiang, Y. Optimal DG penetration rate planning based on S-OPF in active distribution network. Neurocomputing 2016, 174, 514–521. [Google Scholar] [CrossRef]
- Kanwar, N.; Gupta, N.; Niazi, K.R.; Swarnkar, A.; Bansal, R.C. Simultaneous allocation of distributed energy resource using improved particle swarm optimization. Appl. Energy 2016, 185, 1684–1693. [Google Scholar] [CrossRef]
- Shojaabadi, S.; Abapour, S.; Abapour, M.; Nahavandi, A. Optimal planning of plug-in hybrid electric vehicle charging station in distribution network considering demand response programs and uncertainties. IET Gener. Transm. Distrib. 2016, 10, 3330–3340. [Google Scholar] [CrossRef]
- Ahmadian, A.; Sedghi, M.; Aliakbar-Golkar, M.; Fowler, M.; Elkamel, A. Two-layer optimization methodology for wind distributed generation planning considering plug-in electric vehicles uncertainties: A flexible active-reactive power approach. Energy Convers. Manag. 2016, 124, 231–246. [Google Scholar] [CrossRef]
- Shu, W.; Yan, X.; Zhao, Y.; Zhao, J.; Yao, W.; Luo, F.; Wang, Y. A stochastic collaborative planning approach for electric vehicle charging stations and power distribution system. In Proceedings of the IEEE Power and Energy Society General Meeting, Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Zeng, B.; Wen, J.; Shi, J.; Zhang, J.; Zhang, Y. A multi-level approach to active distribution system planning for efficient renewable energy harvesting in a deregulated environment. Energy 2016, 96, 614–624. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, J.; Li, R.; Li, F.; Gu, C.; Tang, S. Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates. Appl. Energy 2016, 178, 647–659. [Google Scholar] [CrossRef]
- Ahmadian, A.; Sedghi, M.; Aliakbar-Golkar, M. Fuzzy load modeling of plug-in electric vehicles for optimal storage and DG planning in active distribution network. IEEE Trans. Veh. Technol. 2016, 66, 3622–3631. [Google Scholar] [CrossRef]
- Arasteh, H.; Sepasian, M.S.; Vahidinasab, V.; Siano, P. SoS-based multiobjective distribution system expansion planning. Electr. Power Syst. Res. 2016, 141, 392–406. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, W.; Liu, J.; Li, F. Multi-objective distribution network expansion incorporating electric vehicle charging stations. Energies 2016, 9, 909. [Google Scholar] [CrossRef]
- Ahmadigorji, M.; Amjady, N.; Dehghan, S. A novel two-stage evolutionary optimization method for multiyear expansion planning of distribution systems in presence of distributed generation. Appl. Soft Comput. 2016, 52, 1098–1115. [Google Scholar] [CrossRef]
- Daghi, M.; Sedghi, M.; Ahmadian, A.; Aliakbar-Golkar, M. Factor analysis based optimal storage planning in active distribution network considering different battery technologies. Appl. Energy 2016, 183, 456–469. [Google Scholar] [CrossRef]
- Liu, W.; Xu, H.; Niu, S. An integrated planning method of active distribution system considering decentralized voltage control. In Proceedings of the IEEE Power and Energy Society General Meeting, Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Xing, H.; Cheng, H.; Zhang, Y.; Zeng, P. Active distribution network expansion planning integrating dispersed energy storage systems. IET Gener. Transm. Distrib. 2016, 10, 638–644. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Mahesh, A. A new approach of sizing battery energy storage system for smoothing the power fluctuations of a PV/wind hybrid system. Int. J. Energy Res. 2016, 40, 1221–1234. [Google Scholar] [CrossRef]
- Esmaeeli, M.; Kazemi, A.; Shayanfar, H.; Chicco, G.; Siano, P. Risk-based planning of the distribution network structure considering uncertainties in demand and cost of energy. Energy 2017, 119, 578–587. [Google Scholar] [CrossRef]
- Sardi, J.; Mithulananthan, N.; Gallagher, M.; Hung, D.Q. Multiple community energy storage planning in distribution networks using a cost-benefit analysis. Appl. Energy 2017, 190, 453–463. [Google Scholar] [CrossRef]
- Ahmadian, A.; Sedghi, M.; Elkamel, A.; Aliakbar-Golkar, M.; Fowler, M. Optimal WDG planning in active distribution networks based on possibilistic–probabilistic PEVS load modelling. IET Gener. Transm. Distrib. 2017, 11, 865–875. [Google Scholar] [CrossRef]
- Liu, W.; Niu, S.; Huiting, X. Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system. J. Mod. Power Syst. Clean Energy 2017, 5, 177–186. [Google Scholar] [CrossRef]
- Karagiannopoulos, S.; Aristidou, P.; Hug, G. Hybrid approach for planning and operating active distribution grids. IET Gener. Transm. Distrib. 2017, 11, 685–695. [Google Scholar] [CrossRef]
- Humayd, A.S.B.; Bhattacharya, K. Distribution system planning to accommodate distributed energy resources and PEVS. Electr. Power Syst. Res. 2017, 145, 1–11. [Google Scholar] [CrossRef]
- Zou, B.; Wang, J.; Wen, F. Optimal investment strategies for distributed generation in distribution networks with real option analysis. IET Gener. Transm. Distrib. 2017, 11, 804–813. [Google Scholar] [CrossRef]
- Mokryani, G.; Hu, Y.; Pillai, P.; Rajamani, H.S. Active distribution networks planning with high penetration of wind power. Renew. Energy 2017, 104, 40–49. [Google Scholar] [CrossRef]
- Zeng, B.; Feng, J.; Zhang, J.; Liu, Z. An optimal integrated planning method for supporting growing penetration of electric vehicles in distribution systems. Energy 2017, 126, 273–284. [Google Scholar] [CrossRef]
- Kanwar, N.; Gupta, N.; Niazi, K.R.; Swarnkar, A. Optimal allocation of DGs and reconfiguration of radial distribution systems using an intelligent search-based TLBO. Electr. Power Compon. Syst. 2017, 45, 476–490. [Google Scholar] [CrossRef]
- Pombo, A.V.; Murta-Pina, J.; Pires, V.F. Multiobjective formulation of the integration of storage systems within distribution networks for improving reliability. Electr. Power Syst. Res. 2017, 148, 87–96. [Google Scholar] [CrossRef]
- Ganguly, S.; Dipanjan, S. Distributed generation allocation with on-Load tap changer on radial distribution networks using adaptive genetic algorithm. Appl. Soft Comput. 2017, 59, 45–67. [Google Scholar] [CrossRef]
- Mokryani, G.; Hu, Y.; Papadopoulos, P.; Niknam, T.; Aghaei, J. Deterministic approach for active distribution networks planning with high penetration of wind and solar power. Renew. Energy 2017, 113, 942–951. [Google Scholar] [CrossRef]
- Nick, M.; Rachid, C.; Mario, P. Optimal planning of distributed energy storage systems in active distribution networks embedding grid reconfiguration. IEEE Trans. Power Syst. 2017, 99, 1. [Google Scholar] [CrossRef]
- Awad, A.S.A.; EL-Fouly, T.H.M.; Salama, M.M.A. Optimal ESS allocation for benefit maximization in distribution networks. IEEE Trans. Smart Grid 2017, 8, 1668–1678. [Google Scholar] [CrossRef]
- Kumar, D.; Samantaray, S.R.; Kamwa, I. MOSOA-based multiobjective design of power distribution systems. IEEE Syst. J. 2017, 11, 1182–1195. [Google Scholar] [CrossRef]
- Tanwar, S.S.; Khatod, D.K. Techno-economic and environmental approach for optimal placement and sizing of renewable DGs in distribution system. Energy 2017, 127, 52–67. [Google Scholar] [CrossRef]
- Pilo, F.; Pisano, G.; Soma, G.G. Optimal coordination of energy resources with a two-stage online active management. IEEE Trans. Ind. Electron. 2011, 58, 4526–4537. [Google Scholar] [CrossRef]
- Mehmood, K.K.; Khan, S.U.; Lee, S.-J.; Haider, Z.M.; Rafique, M.K.; Kim, C.-H. A real-time optimal coordination scheme for the voltage regulation of a distribution network including an OLTC, capacitor banks, and multiple distributed energy resources. Int. J. Electr. Power Energy Syst. 2018, 94, 1–14. [Google Scholar] [CrossRef]
- Koutsoukis, N.C.; Siagkas, D.O.; Georgilakis, P.S.; Hatziargyriou, N.D. Online reconfiguration of active distribution networks for maximum integration of distributed generation. IEEE Trans. Autom. Sci. Eng. 2017, 14, 437–448. [Google Scholar] [CrossRef]
- Carr, S.; Premier, G.C.; Guwy, A.J.; Dinsdale, R.M. Energy storage for active network management on electricity distribution networks with wind power. IET Renew. Power Gener. 2013, 8, 249–259. [Google Scholar] [CrossRef]
- Huang, D.; Billinton, R. Effects of load sector demand side management applications in generating capacity adequacy assessment. IEEE Trans. Power Syst. 2012, 27, 335–343. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Pedrycz, W.; Miao, D.Q. Rough subspace-based clustering ensemble for categorical data. Soft Comput. 2013, 17, 1643–1658. [Google Scholar] [CrossRef]
- Xie, X.L.; Beni, G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 841–847. [Google Scholar] [CrossRef]
- Candler, W.; Norton, R.D. Multilevel Programming and Development Policy; The World Bank: Washington, DC, USA, 1977; Volume 258, pp. 1–40. [Google Scholar]
- Celli, G.; Ghiani, E.; Mocci, S.; Pilo, F.; Soma, G.G.; Vertuccio, C. Probabilistic planning of multi-microgrids with optimal hybrid multi-generation sets. In Proceedings of the CIGRÉ, Paris, France, 21–26 August 2016; pp. 1–10. [Google Scholar]
- Farzin, H.; Moeini-Aghtaie, M.; Fotuhi-Firuzabad, M. A hierarchical scheme for outage management in multi-microgrids. Int. Trans. Electr. Energy Syst. 2016, 26, 2023–2037. [Google Scholar] [CrossRef]
- Hasanvand, S.; Nayeripour, M.; Waffenschmidt, E.; Fallahza-deh-Abarghouei, H. A new approach to transform an existing distribution network into a set of micro-grids for enhancing reliability and sustainability. Appl. Soft Comput. 2017, 52, 120–134. [Google Scholar] [CrossRef]
- Fathi, M.; Bevrani, H. Adaptive energy consumption scheduling for connected microgrids under demand uncertainties. IEEE Trans. Power Deliv. 2013, 28, 1576–1583. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Wang, J.; Begovic, M.M.; Chen, C. Coordinated energy management of networked microgrids in distribution systems. IEEE Trans. Smart Grid 2015, 6, 45–53. [Google Scholar] [CrossRef]
- Wu, J.; Guan, X. Coordinated multi-microgrids optimal control algorithm for smart distribution management system. IEEE Trans. Smart Grid 2013, 4, 2174–2181. [Google Scholar] [CrossRef]
- Liu, J.; Gao, H.; Ma, Z.; Li, Y. Review and prospect of active distribution system planning. J. Mod. Power Syst. Clean Energy 2015, 3, 457–467. [Google Scholar] [CrossRef]
- Konig, J.; Nordstrom, L. Assessing impact of ICT system quality on operation of active distribution grids. In Proceedings of the IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–8. [Google Scholar]
- Fan, M.; Zhang, Z.; Tian, T. The analysis of the information needed for the planning of active distribution system. In Proceedings of the International Conference and Exhibition on Electricity Distribution, Stockholm, Sweden, 10–13 June 2013; pp. 1–4. [Google Scholar]
- Shen, Y.; Xu, J.; Yue, Y.; Zhu, S.; Li, Q. Comprehensive coordinated model of active distribution network planning. In Proceedings of the IEEE International Conference on Power System Technology, Wollongong, NSW, Australia, 28 September–1 October 2016; pp. 1–6. [Google Scholar]
- Yang, T.; Huang, Z.; Pen, H.; Zhang, Y. Optimal planning of communication system of CPS for distribution network. J. Sens. 2017, 2017, 9303989. [Google Scholar] [CrossRef]
Types | Decision Variables | References |
---|---|---|
Traditional variables | Locations and sizes of new substations | [26,29,30,32,36,38,54,55,58,66,80,85,89] |
Sizes of existing substations for reinforcement | [24,26,27,29,32,34,36,38,42,52,54,58,64,66,73,80,85,89,95,96,99] | |
Locations and sizes of new feeders | [24,26,28,29,30,31,32,38,39,43,49,50,54,55,56,58,63,66,71,74,80,84,85,89,91,106] | |
Sizes of existing feeders for reinforcement | [21,23,24,26,27,29,31,34,35,36,37,41,42,43,48,49,50,52,53,59,66,67,71,73,75,81,84,86,95,96,99] | |
Locations of reserve feeders and interconnection switches | [23,24,28,29,31,32,36,38,50,66,81,82,101] | |
Additional variables | Locations, sizes, and types of dispatchable distributed generations (DDGs) | [23,24,25,27,31,32,33,34,35,38,39,40,41,42,43,45,48,50,61,66,72,77,81,83,84,86,96,97,100,102] |
Locations, sizes, and types of RDGs | [22,25,34,35,44,48,51,53,58,62,64,65,66,68,74,75,76,79,81,88,89,93,98,99,103,107] | |
Locations of new dynamic active load demand (e.g., charging station of EVs) | [23,47,54,55,78,80,82,85] | |
Locations, sizes, and types of centralized/distributed ESSs | [32,46,57,60,69,70,71,72,75,83,87,90,92,94,101,104,105] | |
Locations and sizes of voltage control devices (e.g., capacitor banks and Static var compensator (SVC)) | [37,41,52,63,68,75,77,79,88,96] |
DWG penetration = 0% | Location (Node No.) | 15 | 19 | 20 | 21 | - | Total |
Capacity (kWh) | 590 | 80 | 630 | 630 | - | 1930 | |
Power rating (kW) | 120 | 45 | 125 | 120 | - | 410 | |
DWG penetration = 10% | Location (Node No.) | 13 | 15 | 17 | 19 | 20 | Total |
Capacity (kWh) | 780 | 770 | 800 | 715 | 710 | 3775 | |
Power rating (kW) | 150 | 170 | 150 | 150 | 160 | 780 | |
DWG penetration = 30% | Location (Node No.) | 11 | 13 | 15 | 19 | 20 | Total |
Capacity (kWh) | 1680 | 1880 | 1840 | 1820 | 1365 | 8585 | |
Power rating (kW) | 275 | 300 | 290 | 290 | 245 | 1400 |
Planning Goals | |
---|---|
DSOs | Increased customer services (e.g., being able to connect generation customers and demand customers more quickly and cost effectively) |
Better system performance metrics (e.g., reliability and electric power quality) | |
Reducing the investment, maintenance, and operation costs | |
…… | |
DGOs | Quicker and cheap connections |
Investment incentives | |
…… |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, W.; Chen, Z.; Jiang, J.; Zhang, W. A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches. Energies 2017, 10, 1715. https://doi.org/10.3390/en10111715
Li R, Wang W, Chen Z, Jiang J, Zhang W. A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches. Energies. 2017; 10(11):1715. https://doi.org/10.3390/en10111715
Chicago/Turabian StyleLi, Rui, Wei Wang, Zhe Chen, Jiuchun Jiang, and Weige Zhang. 2017. "A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches" Energies 10, no. 11: 1715. https://doi.org/10.3390/en10111715
APA StyleLi, R., Wang, W., Chen, Z., Jiang, J., & Zhang, W. (2017). A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches. Energies, 10(11), 1715. https://doi.org/10.3390/en10111715