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Abstract: Multi-state weighted k-out-of-n systems are widely applied in various scenarios, such
as multiple line (power/oil transmission line) transmission systems where the capability of fault
tolerance is desirable. However, the complex operating environment and the dynamic features of load
demands influence the evaluation of system reliability. In this paper, a stochastic multiple-valued
(SMV) approach is proposed to efficiently predict the reliability of two models of systems with
non-repairable components and dynamically repairable components. The weights/performances and
reliabilities of multi-state components (MSCs) are represented by stochastic sequences consisting of a
fixed number of multi-state values with the positions being randomly permutated. Using stochastic
sequences with L multiple values, linear computational complexities with parameters n and L are
required by the SMV approach to compute the reliability of different multi-state k-out-of-n systems
at a reasonable accuracy, compared to the complexities of universal generating functions (UGF)
and fuzzy universal generating functions (FUGF) that increase exponentially with the value of n.
The analysis of two benchmarks shows that the proposed SMV approach is more efficient than the
analysis using UGF or FUGF.

Keywords: multi-state weighted k-out-of-n system; transmission lines; universal generating function;
fuzzy universal generating function; stochastic multi-value approach

1. Introduction

The k-out-of-n system is widely used to model various industrial systems that require the
adoption of redundancy for the purpose of fault tolerance, such as multiple lines transmission systems
and production systems consuming multiple resources [1]. A binary-stated k-out-of-n: G system is
anticipated to be reliable unless the number of working components is no less than a pre-specified
threshold k [2], and a binary-stated k-out-of-n: F system is inaccessible when the number of failed
components is no less than k [3]. However, some engineering systems such as power/oil lines
transmission systems perform the intended tasks at multiple performance levels, which indicates the
system’s capability (electric power, oil, etc.) from perfectly operational to completely out-of-order [4].
Another example is of a power generator in a power station that can work at full capacity; however,
some types of failure cause the generator to completely fail and other failures lead to the generator
working at a reduced capacity. The abilities of a power generating system consisting of several power
generators to meet different power load demands can be regarded as different system states [5]. Hence,
the binary-valued assumption is incapable of accurately reflecting the behaviors of these systems.
Instead, these systems can be described as multi-state systems (MSS) [5]. A multi-state k-out-of-n: G
system and a multi-state k-out-of-n: F system model were investigated in References [6,7].
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The performance of a practical system is not only dependent on system operation but is also
affected by the total contribution of all the components. The contribution of a component can be
quantified and the total contribution of all components is supposed to be above a pre-specified
performance level [8]. For example, consider a power station with three components, and each
component is a generator. Each component has maybe three different states: 0, 1, 2; and the distribution
probability may be different in each state. The power outputs of a component are 0 megawatts (MW),
10 MW, and 100 MW, corresponding the states 0, 1, 2. The total power output of the system is the
weighted sum of each component. When the total output is greater than 100 MW, the system is in state 2;
when the output is greater than 50 MW, the system is in state 1; otherwise, it is in state 0. The reliability
of a system is defined by considering its structure and the weight of each component [9]. Then,
the proposed models for binary and multi-state k-out-of-n systems are generalized into binary and
multi-state weighted models [10–12]. For a weighted k-out-of-n system, the weight of the component i
in state j is assigned to be wij . The system is supposed to be correctly working only if the total weight
of the components is no less than the pre-determined value of K.

To perform the reliability analysis of a k-out-of-n system, the method of universal generating
function (UGF) is adopted. This concept was introduced in Reference [13] and it was first utilized to
predict the reliability of a power system in Reference [14]. In previous research [4,15–18], the UGF
technique was used to determine the reliability of several multi-state systems, which are composed of
series, parallel, series-parallel, and bridge structures. The required computational complexity analysis of
the UGF technique to evaluate the reliability of a multi-state weighted k-out-of-n system is performed in
Reference [11]. The number of system states increases dramatically with the system scale (the adoption
of more components) [19], so the UGF method incurs a large computational complexity for systems
consisting of many components or multi-state components. In order to reduce the computational
complexity, a fuzzy universal generating function (FUGF) method is presented in References [20,21].
It combines the fuzzy set theory [22,23], UGF, and a clustering technique [24] to obtain the reliability of
a multi-state weighted k-out-of-n system. However, the clustering technique in FUGF is likely to reduce
the prediction accuracy of the results considerably and usually too much time is consumed.

The UGF and FUGF methods can be used to perform exact and approximate performance
assessments of a multi-state k-out-of-n system, respectively. However, the above methods are
mainly focused on the steady state study of a multi-state k-out-of-n system with the assumption
of non-repairable property for the component. In practice, the corresponding state probability may
gradually change with time because of the aging process [25]. When considering repairable operations,
the performance of a component can not only transmit to a lower level, but also return to a higher
level unless the component is completely failed. A dynamic general k-out-of-n system with repairable
components is investigated in Reference [26], and the discrete time Markov chain and UGF are
combined to predict the system reliability. However, aiming to perform the analysis of a complex
system, a large complexity is required according to the state transition matrix (STM).

In this paper, a stochastic multiple-valued (SMV) approach is presented that aims to predict the
reliability of different multi-state k-out-of-n systems. The weights and reliabilities of components are
encoded into randomly permuted multiple-valued sequences. The corresponding proposed stochastic
architectures are composed of stochastic multi-valued logic gates. By propagating the multiple-valued
sequences through the above stochastic architecture, an output sequence can be inherently obtained. Then,
the corresponding reliability is predicted by analyzing the output sequence of the proposed model.

The remainder of the paper is organized as follows: In Section 2, some fundamentals related to
UGF, FUGF, and the two models of multi-state weighted k-out-of-n systems are reviewed. In Section 3,
corresponding stochastic models are presented for a multi-state k-out-of-n system with non-repairable
components as well as for a dynamic system with repairable components. Then, the proposed
stochastic multi-valued models are validated by a theoretical proof. Section 4 gives some case studies
and a comparison of simulation results with different methods. Finally, Section 5 concludes the paper,
as well as provides some future work.
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2. Multi-State k-Out-of-n System and UGF, FUGF Methods

In this section, two types of multi-state weighted k-out-of-n systems [11], using universal
generating function (UGF) and fuzzy universal generating function (FUGF), are presented.

2.1. Multi-State Weighted k-Out-of-n System

The definition of model I of multi-state weighted k-out-of-n systems is given as follows [11]:

Definition 1. In a system with n components, each component can be in M + 1 states: 0, 1, 2, . . . , M.
Component i (1 ≤ i ≤ n) in state j carries a weight of wij with a probability of pij (0 ≤ j ≤M). The system is
in state j or a higher state if the total weights of all the components is greater than or equal to K , a pre-defined
value. Then, we have Pr{φ ≥ j} = Pr{W ≥ K} , where φ is the structure function of a system and W describes
the total weight of all components.

Because in some systems the components whose states are below j do not make any contribution
for the system to be in state j or a higher state, then the model II is described below.

Definition 2. The system is in state j or a higher state if the sum of the weights of the components in state j or
a higher state is greater than or equal to K. We can have Pr{φ ≥ j} = Pr{W ≥ K}, where φ is the structure
function of a system and W denotes the total weight of the components in state j or a higher state.

2.2. UGF and FUGF

For UGF, the output performance distribution (OPD) is described by a polynomial function of
US(z). The function relates to the weight wj, and the corresponding probability (reliability) Pj of the
system in the state j is given by:

Us(z) =
M

∑
j=0

Pj·zwj , (1)

where M is the highest state of the system. The probability distribution (PD) of component i can be
obtained by:

ui(z) =
M

∑
j=0

pij ·z
α(wij

−l)
,
(

wij − l
)
=

{
wij , wij ≥ l
0 , wij < l

. (2)

where l is zero and a pre-defined non-zero value in model I and model II of the multi-state weighted
system, respectively. pij represents the corresponding probability if component i is supposed to be in
state j (0 ≤ j ≤M), while wij denotes the corresponding weight of the above scenario, and wij ≥ 0.

In order to obtain the PD of a multi-state weighted k-out-of-n system with an arbitrary structure
function φ, a composition operator Ωφ is represented by the UGF of n system components as follows [11]:

Us(z) = Ωφ{u1(z), . . . , un(z)}
= Ωφ{∑M

j=0 p1j
·zα(w1j

−l)
, . . . , ∑M

j=0 pnj ·z
α(wnj−l)},

= ∑M
j=0 . . . ∑M

j=0 p1j . . . pnj ·z
α(w1j

−l)+···+α(wnj−l)
,

(3)

where Us(z) represents the OPD of the system.
Then, we can obtain the reliability of a system for any required weight (K) using the operator δA

in Equation (4), when the UGF of a multi-state weight k-out-of-n system is obtained:

Rs(K) = δA(Us(z), K) = δA

(
M

∑
j=0

Pj·zwj , K

)
=

M

∑
j=0

Pj·α(wj − K), (4)
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where α(x) =

{
1 , x ≥ 0.
0 , x < 0.

In some systems, the dimension of the weight vector/state vector of subsystems is too large. To reduce
the computational overhead, a fuzzy universal generating function (FUGF) is proposed [19,21]. The
weight vector and state vector of the subsystem are divided into some clusters [24], and these clusters are
represented by the fuzzy values. Hence, a multi-state weight of k-out-of-n system with n components is
transformed into a fuzzy multi-state weight of k-out-of-n system with n∗ subsystems, and each subsystem
i∗ consists of ni∗ components. The PD of subsystem i∗ can be determined by adopting the UGF method [21].

3. The Stochastic Multiple-Valued Models

3.1. Stochastic Multiple-Valued Logic

For stochastic computation, signal probability is indicated by a random binary bit stream [27].
In the binary steam, a proportional number of bits is set to be 1, aiming to denote the signal probability.
Stochastic computation can also perform a probabilistic analysis of multiple-valued signals by using
logic gates. For certain signals with a discretization level of m, the probability vector is usually
described as P = [pm−1 . . . p0], with ∑m−1

h=0 ph = 1. In Figure 1, a probability vector of a ternary-valued
signal is indicated by a multi-valued sequence [28].
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Figure 1. An illustration of the encoding process of a ternary-valued probability vector with a 10 digit
sequence of 0, 1, 2.

A multiple-valued smaller (MVS) operator and a multi-valued equal or larger (MVEL) operator
perform the functions:

MVS(A < a) =

{
A, A < a
0 , A ≥ a

. (5)

MVEL(A ≥ a) =

{
A, A ≥ a
0 , A < a

. (6)

The ternary-valued gates such as an inverter, an MVS operator, an MVEL operator, and a 4-to-1
multiplexer are introduced in Figure 2.
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As discussed in Reference [27], the result of stochastic computational analysis is usually a
probabilistic value because of the inevitable fluctuations of stochastic computation. For a Bernoulli
sequence Sa, which is adopted to encode probability Pa, the final result P_ a is usually different from
Pa due to random fluctuations. If the length of Sa is L, the fluctuation error ef is assumed to be the
difference between Pa and P_ a. It can be approximated as [29]:

e f =

√
Pa(1− P_ a)

L
. (7)

Equation (7) indicates that the fluctuation error can be reduced by adopting a longer sequence
length. It has been shown that stochastic fluctuation can be significantly attenuated if the initial inputs
are non-Bernoulli sequences; here, the corresponding sequence is composed of fixed numbers of 1s and
0s while the positions are randomly permutated [30]. Furthermore, the application of non-Bernoulli
sequences is capable of reducing the result inaccuracy. Hence, the stochastic multi-valued sequence in
Reference [28] is adopted to deal with multi-valued scenarios and utilized as the input of stochastic
multi-valued models proposed in this paper.

3.2. SMV Models for a Multi-State k-Out-of-n System with Non-Repairable Components

For the stochastic multi-valued model, the weights of components are encoded in the multi-values
stochastic sequences. As shown in Figure 3, the weights and reliabilities of component i at different
states are simultaneously encoded into stochastic multi-value sequences.
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The weights and PD of multi-state weighted k-out-of-n systems consisting of non-repairable
components can be obtained by the output sequence of an add operation, as shown in Figure 4.

Energies 2017, 10, 1740  5 of 16 

 

݁ = ටೌ (ଵି_ ೌ) . (7)

Equation (7) indicates that the fluctuation error can be reduced by adopting a longer sequence 
length. It has been shown that stochastic fluctuation can be significantly attenuated if the initial inputs 
are non-Bernoulli sequences; here, the corresponding sequence is composed of fixed numbers of 1s 
and 0s while the positions are randomly permutated [30]. Furthermore, the application of non-
Bernoulli sequences is capable of reducing the result inaccuracy. Hence, the stochastic multi-valued 
sequence in Reference [28] is adopted to deal with multi-valued scenarios and utilized as the input 
of stochastic multi-valued models proposed in this paper. 

3.2. SMV Models for a Multi-State k-Out-of-n System with Non-Repairable Components 

For the stochastic multi-valued model, the weights of components are encoded in the multi-values 
stochastic sequences. As shown in Figure 3, the weights and reliabilities of component i at different 
states are simultaneously encoded into stochastic multi-value sequences. 

 
Figure 3. The stochastic encoding of the weights and reliabilities of component i using a multi-valued 
sequence with sequence length L = 10. 

The weights and PD of multi-state weighted k-out-of-n systems consisting of non-repairable 
components can be obtained by the output sequence of an add operation, as shown in Figure 4. 

K
SRjj iiw p/

jj
w 11 /p

jj
w nn p/

 
Figure 4. The stochastic multi-valued model for a multi-state weighted k-out-of-n system consisting 
of non-repairable components. 

In Figure 4, ݓೕ and ೕ are the weight and probability of component Ci in state j, the sequence 
Si encodes the weights and reliabilities of Ci in all states, and the total number of values in sequence 
Si is L, i ∊ [1, n], j ∊ [0, M]. The sequence Si’ is the output of an MVEL gate. As defined in Equation (2), 
the value of l can be zero or a pre-defined non-zero value—it is determined by model I or model II of 
the multi-state weighted k-out-of-n system. The sequence Sout represents the sum of sequence Si’, and 
the weights and the PD of the system can be obtained from Sout. ܭ is the required weight of the 
system. ܴௌ is a proportional number of non-zero values in Sout; it denotes the reliability of the system 
for the required weight ܭ. 

3.3. SMV Models for a Multi-State k-Out-of-n System with Repairable Components 

For some systems, the corresponding state of a component may gradually change with time due 
to aging. Hence, a multi-state weighted k-out-of-n system that considers the time factor was proposed 
in Reference [26] with the incorporation of dynamic behavior. A state of each component may be 

Figure 4. The stochastic multi-valued model for a multi-state weighted k-out-of-n system consisting of
non-repairable components.

In Figure 4, wij and pij are the weight and probability of component Ci in state j, the sequence Si
encodes the weights and reliabilities of Ci in all states, and the total number of values in sequence Si is L,
i ∈ [1, n], j ∈ [0, M]. The sequence Si’ is the output of an MVEL gate. As defined in Equation (2), the value
of l can be zero or a pre-defined non-zero value—it is determined by model I or model II of the multi-state
weighted k-out-of-n system. The sequence Sout represents the sum of sequence Si’, and the weights and the
PD of the system can be obtained from Sout. K is the required weight of the system. RK

S is a proportional
number of non-zero values in Sout; it denotes the reliability of the system for the required weight K.
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3.3. SMV Models for a Multi-State k-Out-of-n System with Repairable Components

For some systems, the corresponding state of a component may gradually change with time due to
aging. Hence, a multi-state weighted k-out-of-n system that considers the time factor was proposed in
Reference [26] with the incorporation of dynamic behavior. A state of each component may be changed to
a lower state. In addition, the component can return to a higher state when the component is repairable.
Assuming that a time period T is divided into a number of time intervals ∆T, the representation of the
states for a repairable component i within the given period T are presented in Figure 5.
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Let component i be in state M (which is being regarded as perfectly operational) at the start of
the mission time. Pi

Mj denotes the probability transforming from the state M to another state j of
component i. Hence, component i has a state transition matrix (STM) as:

STMi =

 Pi
00 . . . Pi

0M
...

. . .
...

Pi
M0 . . . Pi

MM

 Si
0
...

Si
M

. (8)

In Equation (8), ∀i, ∑M
j=0 Pi

mj = 1, m ∈ [0, M]. Let Pi
j (t) and Pi

m(t− 1) indicate the probabilities
of component i in state j at time t and in state m at time t − 1, respectively. At time t − 1, any state
of component i can be changed to state j, and the transition probability is Pi

mj. Based on STMi and

Figure 5, Pi
j (t) is given by:

Pi
j (t) =

M

∑
m=0

Pi
m(t− 1)·Pi

mj, i [1, n], t [0,
T

∆T
], (9)

where Pi
M(0) = 1, Pi

h(0) = 0, h ∈ [0, M − 1].
The stochastic multi-valued architecture for a dynamic multi-state weighted k-out-of-n system with

repairable components is presented as in Figure 6. Here, the transition probability Pi
mj (m, j ∈ [0, M];

i ∈ [1, n]) and corresponding states are encoded in sequence Si
m with length L (as shown in Equation (8)).

A proportional number of 0s in sequence Si
m(t− 1) denotes the corresponding probability of component i

being in state m at time point t− 1 (i.e., Pi
m(t− 1)). In sequence Si

m(t− 1) with length L, Pi
m(t− 1)·L digits

are valid, L× (1− Pi
m(t− 1)) digits are filled with an invalid number V (i.e., elements in sequence Si

m(t− 1)
are only ‘0’ and V), V is used to compensate sequence Si

m(t− 1), and ‘0’ ensures that the maximum state of
component i is still M at time point t. If sequences Si

m and Si
m(t− 1) are the inputs of an add operation, the

proportional number of valid values in the output sequence indicates the probability of component i being
in the state of m at time point t. Sequence Si(t) denotes the PD of components i in different states at time
t. The states in the sequence Si(t) are replaced by the corresponding weights to be sequence Si′(t) by the
block STW (state to weight). The sequences Si′(t) are the inputs of the model for a multi-state weighted
k-out-of-n system with non-repairable components (referred to as MMWN) in Figure 4. RK

S (t) denotes the
corresponding system reliability meeting the requirement of a pre-specified value of K at time t.
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3.4. Validation of the Stochastic Multi-Valued Models

To validate the proposed stochastic multi-valued model for a multi-state weighted k-out-of-n
system with non-repairable components, a theoretical proof is first presented.

Theorem 1. The product of polynomials u1(z) =
(

∑M
j=0 Pj·zwj

)
and u2(z) =

(
∑M

i=0 Pi·zwi
)

, where Pj and wj

are encoded in a stochastic multi-valued sequence s1 , and Pi and wi are encoded in a stochastic multi-valued
sequence s2 as in Figure 3, is encoded in the sum of s1 and s2.

Proof of Theorem 1. Assuming n = 2 in Equation (3), the probability mass functions (PMFs) of two
components (u1 and u2) indicate the reliability and weight of each state for a component. As per
Equation (2), u1 and u2 can be represented by polynomials u1(z) and u2(z). The reliabilities and the
weights of all states for component i are encoded in the stochastic multi-valued sequence si, i ∈ [1, n].

As shown in Reference [29], the product of polynomials u1(z) and u2(z) can be expressed as a
convolution of u1 and u2. Equation (3) performs a polynomial multiplication. Hence, Equation (3) can
be described by:

Us(z) = Ωφ{u1(z), u2(z)} = u1 ⊗ u2, (10)

where u1 ⊗ u2 denotes the convolution of u1 and u2.
The PD of the sum of two or more independent random variables is the convolution of their

individual distributions [31], so we have:

u1 ⊗ u2 = utemp, (11)

where utemp is the PMF of a temporary variable; the weights of the variable are obtained by summing
the two components’ weights.

In the stochastic multi-valued models, the probabilities and weights of the two components are
encoded in the stochastic multi-value sequences s1 and s2, and the number of the multi-values in
these sequences is L. In other words, sequences s1 and s2 encode u1 and u2, respectively. utemp is then
encoded by summing the sequence s1 and s2. This completes the proof.

Hence, the proposed model for a multi-state weighted k-out-of-n system with non-repairable
components shown in Figure 4 is validated.

The validation of the proposed stochastic multi-value model for a dynamic multi-state weighted
k-out-of-n system with repairable components is presented as follows.

As defined in Equation (1), the transition probabilities Pi
mj of component i and its states are

given by:

ui
m =

M

∑
j=0

Pi
mj ·zj, (12)
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where M + 1 is the number of states. Let ui
m(t− 1) denote the probability of component i at time t − 1

(i.e., Pi
m(t− 1)); then, we have:

ui
m(t− 1) = Pi

m(t− 1)·z0+
(

1 − Pi
m(t− 1)

)
·zv, (13)

where v is an invalid number. Let Ui
m(t) denote the performance distribution of component i in state m

at time t; thus, we obtain:

Ui
m(t) = Ωφ

{
ui

m, ui
m(t− 1)

}
= ∑M

j=0 Pi
mjP

i
m(t− 1)·zj+0 + ∑M

j=0 Pi
mj
(
1− Pi

m(t− 1)
)
·zj+v

= ∑M
j=0 Pi

mjP
i
m(t− 1)·zj.

(14)

assuming that the transition probabilities Pi
mj and the states of component i are encoded in a stochastic

multi-value sequence si
m. In the sequence Si

m(t− 1), a probability of component i at time t − 1 in state
m (i.e., Pi

m(t− 1)) is encoded as a proportional number of 0s, and the other values in the sequence are
invalid numbers v (m, j ∈ [0, M]; i ∈ [1, n]).

As per Theorem 1, Equation (14) can be obtained by summing the stochastic multi-value sequences
Si

m and Si
m(t− 1), and Equation (14) is equivalent to Equation (9). Hence, the reliability of component i

at time t in state m can be obtained by summing the stochastic multi-value sequences Si
m and Si

m(t− 1).
In a stochastic multi-value model for a dynamic multi-state weighted k-out-of-n system with

repairable components (as shown in Figure 6), when the probability of component i in state m at
time t, and Pi

m(t) is used for the inputs of the MMWN, then the reliability of the system can be
obtained accordingly.

4. Analysis of Illustrative Examples

In this section, consider the multiple line transmission system proposed in Reference [1] to
investigate the efficiency and the accuracy of the proposed SMV approach. As shown in Figure 7,
power/oil is delivered from the source to five stations through six transmission lines. Any lines
with weight/performance that characterizes the flow available at its different points connected to
the stations can be considered as a multi-state component [1]. The system depicted in Figure 7 can
be regarded as a multi-state weighted k-out-of-n system with n = 6, M = 5, where n is the number of
multi-state components (lines), and M is the highest state of the lines. Each transmission line has six
states. Different states of each transmission line i are described by different random weight vector
wi consisting of wij , where wij is the weight/performance of line i in state j, i ∈ [1, n] and j ∈ [1, M].
Different demands are required by different stations.
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In order to investigate more complex systems, for the same structure as in Figure 7, larger values
of n and M may be selected. The results are compared with those obtained by adopting the UGF [11,26]
and FUGF methods [19,21]. The computer programs for all approaches are developed in MATLAB,
and all simulations are run on a computer with a 3.4-GHz Intel microprocessor with 16 GB memory.

4.1. Analysis of a Multiple Line Transmission System with Non-Repairable Components

For a reliability evaluation of a multiple line transmission system using model I, the computational
complexity of the UGF method is O

(
(M + 1)n) [21]. For model II, the computational complexity of the

UGF method for state j or a higher state is O
(
(M + 2− j)n) [19]. For a multiple line transmission system

divided into n∗ subsystems, the computational complexities of the FUGF method are O
(
(M + 1)n∗

)
and O

(
(M∗ + 1)n∗

)
for model I and II, respectively [19], when n∗ is large enough (M∗ is the maximum

possible state in the subsystem). However, when n∗ is a small value, FUGF will incur a large
computational overhead due to the clustering operation [19].

The computational complexity of the SMV approach for a multiple line transmission system is
presented in this section. For reliability evaluation using model I, (n − 1)·L multiple-valued logic add
operations and L MVEL operations are required; hence, the computational complexity of the SMV
approach with sequences is O(n·L) for an accuracy indicated by Equation (7), where L is the number
of multi-values in the sequence. For model II, (n − 1)·L multiple-valued logic add operations, L MVEL
operations, and L MVS operations are required; hence, the computational complexity of the SMV
approach is O((n + 1)·L) for an accuracy indicated by Equation (7).

Several examples are used to compare the efficiency and accuracy of the SMV approach with
the UGF [11,26] and FUGF [19,21] methods. The central processing unit (CPU) time is obtained for n
components, and the highest state value of component M. The weights of components are real values
randomly selected from (0, 10), and ‘0’ indicates the weight of the component in state 0. The probability
of component i in state j is randomly selected from (0, 1), and meets the requirement of ∑M

j=0 pij = 1.
The reliabilities obtained by different methods are compared in order to evaluate the accuracy of the
SMV approach.

4.1.1. Model I

The run time of different methods are presented in Tables 2 and 3, for a system with n = 6 and 12
components and a pre-defined weight threshold value K = 0.5 ∑n

i=0 wi M. As shown in Tables 1 and 2,
the CPU time required by the UGF and FUGF methods increases with the number of component states
M + 1. However, the CPU time using the SMV approach is not influenced by the number of component
states, but increases with the length of stochastic sequences. When the system has six components, the
UGF method is more efficient than the SMV approach which L (the sequence length) is 10 k (k =1000),
only when the value of M is 10 or less. When the system has 12 components, the SMV approach which
L is 1 k is faster than the UGF and FUGF methods for all M values.

Table 1. Efficiency comparison for a system of model I with six components.

The M Value
CPU Time (s) by

UGF (T1)
CPU Time (s) by

FUGF (T2)
CPU Time (s) by SMV Approach (T3)

L = 1 k L = 10 k

5 0.00383 0.80163 0.02026 0.21170
10 0.10356 1.92038 0.02049 0.21593
15 0.40486 3.74018 0.02128 0.21545
20 2.32911 4.60791 0.02023 0.22064
25 10.9098 5.40370 0.02018 0.21960
30 31.4016 6.97095 0.02104 0.22146
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Table 2. Efficiency comparison for a system of model I with 12 components.

The M Value
CPU Time (s) by

UGF (T1)
CPU Time (s) by

FUGF (T2)
CPU Time (s) by SMV Approach (T3)

L = 1 k L = 10 k

5 6.4141 1.4204 0.05372 0.54842
8 726.37 4.7341 0.05447 0.55142
10 6173.62 16.2819 0.05381 0.55647
12 / 53.3925 0.05523 0.56025
15 / 201.8218 0.05695 0.56324

When a system has six components with 15 states for each component, Table 3 illustrates the
accuracy of the comparison between the FUGF and SMV approaches. The results reveal that absolute
and relative errors calculated by the SMV approach which L is 10 k are smaller than that calculated by
FUGF in all cases. In short, the accuracy of the SMV approach is higher than that of FUGF.

Table 3. Accuracy of the SMV approach and FUGF [19,21], compared with UGF [11,26], when a system
of model I has six components with 15 states.

The kj Value Reliability by
UGF

Reliability by
FUGF

Reliability by SMV
Approach with L = 10 k

Absolute/Relative
Error by FUGF

Absolute/Relative Error
by SMV Approach with

L = 10 k

0 1.0000 1.0000 1.0000 0/0% 0/0%
10 0.9920 0.9913 0.9920 0.0007/0.071% 0/0%
20 0.7727 0.7468 0.7716 0.0059/0.763% 0.0011/0.142%
30 0.2461 0.2414 0.2440 0.0047/1.909% 0.0021/0.853%
40 0.0902 0.0955 0.0930 0.0053/5.875% 0.0028/3.104%
50 0.0033 0.0038 0.0030 0.0005/15.15% 0.0003/9.090%
60 0.000001 0 0 0.000001/0% 0.000001/0%

4.1.2. Model II

For this model, when a system has n = 6 and 12 components, the run time of different methods
are shown in Tables 4 and 5. The pre-defined weight K is 0.5 ∑n

i=0 wi M, the value of l defined in
Equation (2) is 2.

Table 4. Efficiency comparison for a system of model II with six components.

The M Value
CPU Time (s) by

UGF (T1)
CPU Time (s) by

FUGF (T2)
CPU Time (s) by SMV Approach (T3)

L = 1 k L = 10 k

5 0.00261 0.21352 0.02717 0.28382
10 0.09704 0.52451 0.02802 0.28211
15 0.37363 1.3736 0.02829 0.28575
20 1.8075 2.1417 0.02874 0.28298
25 6.1865 3.5425 0.02939 0.28638
30 19.2374 4.7721 0.02985 0.28673

Table 5. Efficiency comparison for a system of model II with 12 components.

The M Value
CPU Time (s) by

UGF (T1)
CPU Time (s) by

FUGF (T2)
CPU Time (s) by SMV Approach (T3)

L = 1 k L = 10 k

5 0.08263 0.96846 0.06119 0.65196
8 1.5327 1.2458 0.06161 0.65514
10 2.1682 2.6382 0.06793 0.65930
12 18.9435 3.7936 0.06534 0.66064
15 22.3949 5.8395 0.06759 0.66199
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As revealed in Table 4, UGF and FUGF are faster than the SMV approach which L is 1 k or 10 k,
when M is 5 or less. As shown in Table 5, when the system has 12 components, the SMV approach
which L is 1 k or 10 k is more efficient than the UGF and FUGF methods for all M values. The results
in Tables 4 and 5 show that the run time of the UGF and FUGF methods increases with the number
of components n and states M + 1, and the run time of the SMV approach increases with the number
of components n and the length of the sequence. As shown in Table 6, when the system has six
components with 15 states, the system reliability obtained by the SMV approach which L is 10 k is
more accurate than that obtained by FUGF.

Table 6. Accuracy of the SMV approach and FUGF [19,21], compared with UGF [11,26], when a system
of model II has six components with 15 states.

The kj Value Reliability by
UGF

Reliability by
FUGF

Reliability by SMV
Approach with L = 10 k

Absolute/Relative
Error by FUGF

Absolute/Relative Error
by SMV Approach with

L = 10 k

0 1.0000 1.0000 1.0000 0/0% 0/0%
10 0.9897 0.9986 0.9894 0.0011/0.111% 0.0003/0.030%
20 0.6946 0.6903 0.6924 0.0043/0.619% 0.0022/0.316%
30 0.2275 0.2204 0.2246 0.0071/3.120% 0.0029/1.274%
40 0.0774 0.0731 0.0769 0.0043/5.555% 0.0025/3.229%
50 0.0027 0.0020 0.0024 0.0007/25.92% 0.0003/11.11%
60 0.000001 0 0 0.000001/0% 0.000001/0%

4.2. Analysis of a Multiple Line Transmission System with Repairable Components

An example is introduced to validate the effectiveness of the proposed stochastic multi-value model
in Figure 6. Similar to the system structure shown in Figure 7, a dynamic multi-state line transmission
system is considered here with six repairable components/transmission lines and five stations. Each
component has six possible states. It is assumed that five time periods have been considered for the
working period of the system. The weights of each component in each state are provided in Table 7.

Table 7. The weights/performance of each component in each state.

Component (Line)
State

0 1 2 3 4 5

1 0 2 3 4 6 7
2 0 1 2 4 5 6
3 0 1 2 3 5 6
4 0 1 3 4 6 7
5 0 1 2 3 4 5
6 0 3 4 5 6 7

The state transition matrix for component i (STMi) denotes the transition probabilities of
component i.

STM 1 =



0.2 0.15 0.25 0.15 0.1 0.15
0.1 0.5 0.1 0.15 0.05 0.1

0.05 0.05 0.55 0.15 0.1 0.1
0.03 0.1 0.17 0.6 0.05 0.05
0.03 0.07 0.2 0.15 0.45 0.1
0.05 0.05 0.1 0.2 0.2 0.4


,STM 2 =



0.4 0.2 0.1 0.15 0.1 0.05
0.1 0.45 0.15 0.15 0.1 0.05
0.05 0.05 0.5 0.25 0.1 0.05
0.06 0.14 0.2 0.5 0.05 0.05
0.08 0.1 0.12 0.2 0.4 0.1
0.05 0.1 0.15 0.2 0.1 0.4
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STM 3 =



0.4 0.2 0.15 0.1 0.1 0.05
0.1 0.5 0.15 0.15 0.05 0.05
0.1 0.2 0.4 0.15 0.05 0.1

0.05 0.1 0.15 0.5 0.15 0.05
0.05 0.05 0.1 0.15 0.5 0.15
0.05 0.05 0.1 0.1 0.15 0.55


,STM 4 =



0.45 0.2 0.15 0.1 0.05 0.05
0.15 0.5 0.15 0.1 0.05 0.05
0.05 0.1 0.6 0.1 0.1 0.05
0.05 0.15 0.1 0.55 0.1 0.05
0.1 0.1 0.05 0.15 0.5 0.1
0.05 0.1 0.15 0.1 0.05 0.55



STM 5 =



0.35 0.25 0.15 0.1 0.1 0.05
0.1 0.5 0.1 0.15 0.05 0.1

0.05 0.15 0.5 0.15 0.1 0.05
0.2 0.1 0.05 0.55 0.05 0.05

0.05 0.05 0.2 0.2 0.45 0.05
0.1 0.1 0.05 0.05 0.2 0.5


,STM 6 =



0.5 0.2 0.1 0.1 0.05 0.05
0.15 0.55 0.1 0.1 0.05 0.05
0.1 0.1 0.5 0.15 0.1 0.05
0.06 0.13 0.21 0.5 0.05 0.05
0.05 0.05 0.1 0.5 0.4 0.1
0.05 0.05 0.1 0.1 0.15 0.55


The reliability and accuracy of model I and model II systems in each period using the UGF, FUGF,

and SMV methods are provided in Tables 8 and 9. Accuracy is defined as the ratio of the disparity between
an approximate reliability and the accurate value over the accurate result. The pre-defined weight K is
20 in the system of model I and model II. In model II, a component does not make a contribution to the
system when the states of the components are below j, and the weight threshold in component state j is
set to be 2. From Tables 8 and 9, the results indicate that the SMV approach which L is 1 k or 10 k is faster
than the UGF method for the model I and model II systems. The SMV approach which L is 1 k or 10 k is
more efficient and more accurate than the FUGF method for the systems of model I and model II.

Table 8. The reliability and accuracy of a dynamic system of mode I in each period using UGF, FUGF,
and SMV methods; L: The sequence length for the SMV approach.

Reliability/Accuracy in Each Period
CPU Time (s)

0 1 2 3 4 5

UGF [11,26] 1 0.9557 0.8074 0.6717 0.5870 0.5401 0.4097

FUGF [19,21] 1/0% 0.9551/
0.063%

0.8091/
0.211%

0.6729/
0.179%

0.5852/
0.29%

0.5424/
0.424% 1.3267

SMV approach
with L = 1 k 1/0% 0.9549/

0.083%
0.8069/
0.062%

0.6720/
0.045%

0.5864/
0.102%

0.5409/
0.123% 0.0912

SMV approach
with L = 10 k 1/0% 0.9557/

0.0%
0.8075/
0.012%

0.6715/
0.029%

0.5868/
0.034%

0.5403/
0.037% 0.3571

Table 9. The reliability and accuracy of a dynamic system of mode II in each period using UGF, FUGF,
and SMV methods; L: The sequence length for the SMV approach.

Reliability/Accuracy in Each Period
CPU Time (s)

0 1 2 3 4 5

UGF [11,26] 1 0.9407 0.7656 0.6185 0.5310 0.4837 0.4372

FUGF [19,21] 1/0% 0.9423/
0.17%

0.7639/
0.222%

0.6162/
0.372%

0.5329/
0.358%

0.4811/
0.536% 1.3321

SMV approach
with L = 1 k 1/0% 0.94/

0.074%
0.7648/
0.1045

0.6189/
0.065%

0.5316/
0.113%

0.4829/
0.165% 0.0936

SMV approach
with L = 10 k 1/0% 0.9405/

0.021%
0.7657/
0.013%

0.6182/
0.049%

0.5313/
0.056%

0.4833/
0.083% 0.3794

For a multi-state weighted k-out-of-n system with repairable components, a (M + 1) × (M + 1)
state transition matrix (STM) is provided for each component (M is the maximum possible state of each
component), resulting in a complexity of O

(
T(M + 1)n) and O

(
T(M + 2− j)n) by the UGF method to

obtain the system reliability of model I and model II, respectively. The complexity of the FUGF method
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can be expressed as O
(

T(M + 1)n∗
)

and O
(

T(M∗ + 1)n∗
)

when the system model I and model II
have n∗ subsystems, where T is the number of the time period, and m∗ is the maximum possible
state in the subsystem. However, a computational complexity of O(nTL) is required to calculate the
PD of the system at each time period using the SMV approach. Then the reliability of the system
can be obtained by the comparison of the PD of the system and the pre-defined value K (the PD of
six components is presented in the Appendix A, where L is the length of the randomly permuted
multiple-valued sequence used in the SMV approach).

5. Conclusions

Computational overhead is a key challenge in the evaluation of the reliability of multi-state
k-out-of-n systems with large numbers of components and states that can describe the behavior of
multiple line transmission systems (e.g., power/oil transmission systems). In addition, the exact values
of system reliability are not always necessary. This work therefore proposes an SMV approach to
approximately evaluate the reliability of multi-state k-out-of-n systems. Two stochastic multi-value
models are presented for steady state and dynamic multi-state k-out-of-n systems, respectively.
The efficiency and accuracy of the proposed models are compared with the UGF and FUGF methods.

The results indicate that the run time of the SMV approach increases with the length of the
sequences and the number of components, while the run time required by UGF and FUGF increases
with the number of components and the number of components’ states. Furthermore, as shown in the
analysis of computational complexities of SMV, UGF, and FUGF methods, the number of component
states is not a crucial factor that affects the run time in the reliability evaluation using the SMV approach
compared to the use of the UGF and FUGF methods. The SMV approach is more efficient than the
UGF and FUGF methods for a complex system with a larger number of component states. Due to the
influence of component states, an SMV approach with L = 10 k is more accurate than the FUGF method
for evaluating the reliability of complex multi-state k-out-of-n systems.
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Appendix A

For a dynamic multi-state weighted k-out-of-n system with repairable components, as shown in
Figure 7, with six components and six states of each component, the PD of components at each time
period obtained by the SMV approach are presented in Tables A1–A6 (sequence length L = 10 k).

Table A1. Probability distribution of component 1 using the SMV approach.

State Period 0 1 2 3 4 5

0 0 0.05 0.052 0.0532 0.0546 0.0556
1 0 0.05 0.0915 0.1133 0.1237 0.1284
2 0 0.1 0.1865 0.2297 0.2481 0.2552
3 0 0.2 0.26 0.2776 0.2826 0.2839
4 0 0.2 0.1975 0.1728 0.1563 0.1479
5 1 0.4 0.2125 0.1534 0.1347 0.1290
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Table A2. Probability distribution of component 2 using the SMV approach.

State Period 0 1 2 3 4 5

0 0 0.05 0.0775 0.0904 0.0959 0.0983
1 0 0.1 0.1405 0.157 0.1637 0.1664
2 0 0.15 0.207 0.228 0.2355 0.238
3 0 0.2 0.26 0.2774 0.2823 0.2835
4 0 0.1 0.12 0.123 0.123 0.1228
5 1 0.4 0.195 0.1242 0.0996 0.091

Table A3. Probability distribution of component 3 using the SMV approach.

State Period 0 1 2 3 4 5

0 0 0.05 0.075 0.0883 0.0956 0.0997
1 0 0.05 0.1 0.135 0.1569 0.17
2 0 0.1 0.14 0.1585 0.1679 0.1729
3 0 0.1 0.155 0.1832 0.1973 0.2043
4 0 0.15 0.185 0.187 0.1817 0.1763
5 1 0.55 0.345 0.248 0.2006 0.1768

Table A4. Probability distribution of component 4 using the SMV approach.

State Period 0 1 2 3 4 5

0 0 0.05 0.0825 0.1023 0.1138 0.1203
1 0 0.1 0.15 0.1756 0.1890 0.1961
2 0 0.15 0.2075 0.2275 0.2332 0.2341
3 0 0.1 0.1475 0.1706 0.1821 0.1878
4 0 0.05 0.085 0.106 0.1176 0.1237
5 1 0.55 0.3275 0.218 0.1643 0.1380

Table A5. Probability distribution of component 5 using the SMV approach.

State Period 0 1 2 3 4 5

0 0 0.1 0.1175 0.1254 0.1319 0.1367
1 0 0.1 0.1475 0.1719 0.1858 0.1942
2 0 0.05 0.1175 0.1539 0.1687 0.1734
3 0 0.05 0.125 0.1767 0.2055 0.2199
4 0 0.2 0.2125 0.1887 0.167 0.153
5 1 0.5 0.28 0.1834 0.1411 0.1228

Table A6. Probability distribution of component 6 using the SMV approach.

State Period 0 1 2 3 4 5

0 0 0.05 0.0835 0.1063 0.1217 0.1319
1 0 0.05 0.0955 0.1306 0.1553 0.1716
2 0 0.1 0.151 0.178 0.192 0.199
3 0 0.1 0.16 0.1893 0.2017 0.2061
4 0 0.15 0.1775 0.1707 0.1582 0.1479
5 1 0.55 0.3325 0.2251 0.1711 0.1435
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