Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver
Abstract
:1. Introduction
2. The Solar Receiver
3. Model Setup
3.1. Selection of Suitable Models
3.2. Mesh and Boundary Conditions
- Lateral receiver surface: adiabatic wall;
- Receiver hot wall material: Silicon Carbide, 5 mm thickness;
- Tubes material: high-temperature super-alloy;
- WF and outside domain: air modeled as an ideal gas;
- WF mass flow rate: 0.1 kg/s;
- WF inlet temperature: 863 K;
- WF inlet pressure: 200 kPa;
- PCM: eutectic alloy.
4. Storage Discharge and Charge Processes
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sylvain, Q.; Matthew, O. Rural electrification through decentralized concentrating solar power: Technological and socio-economic aspects. J. Sustain. Dev. Energy Water Environ. Syst. 2013, 1, 199–212. [Google Scholar]
- International Renewable Energy Agency (IRENA). Accelerating Renewable Mini-Grid Deployment: A Study on the Philippines; International Renewable Energy Agency (IRENA): Abu Dhabi, UAE, 2017. [Google Scholar]
- Chung, D.; Davidson, C.; Fu, R.; Ardani, K.; Margolis, R. US Photovoltaic Prices and Cost Breakdowns. Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015.
- Gaglia, A.G.; Lykoudis, S.; Argiriou, A.A.; Balaras, C.A.; Dialynas, E. Energy efficiency of PV panels under real outdoor conditions—An experimental assessment in Athens, Greece. Renew. Energy 2017, 101 (Suppl. C), 236–243. [Google Scholar] [CrossRef]
- Bashir, M.A.; Ali, H.M.; Ali, M.; Siddiqui, A.M. An Experimental Investigation of Performance of Photovoltaic Modules in Pakistan. J. Therm. Sci. 2015, 19 (Suppl. 2), S525–S534. [Google Scholar] [CrossRef]
- Bashir, M.A.; Ali, H.M.; Ali, M.; Khalil, S.; Siddiqui, A.M. Comparison of Performance Measurements of Photovoltaic Modules during Winter Months in Taxila, Pakistan. Int. J. Photoenergy 2014, 2014, 898414. [Google Scholar] [CrossRef]
- Giovannelli, A. State of the art on small-scale concentrated solar power plants. Energy Procedia 2015, 82, 607–614. [Google Scholar] [CrossRef]
- Blanco, M.; Santigosa, L.R. Advances in Concentrating Solar Thermal Research and Technology; Woodhead Publishing: Duxford, UK, 2017; ISBN 978-0-08-100516-3. [Google Scholar]
- Sugarmen, C.; Ring, A.; Buck, R.; Heller, P.; Schwarzbözl, P.; Téllez, F.; Marcos, M.J.; Enrile, J. Solar-hybrid gas turbine power plants—Test results and market perspective. In Proceedings of the ISES Solar World Congress, Gothenburg, Sweden, 14–19 June 2003; pp. 14–19. [Google Scholar]
- OMSOP EU Project. Available online: https://omsop.serverdata.net/Pages/Home.aspx (accessed on 11 April 2017).
- Dickey, B. Test results from a concentrated solar microturbine Brayton Cycle integration. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition Vancouver, BC, Canada, 6–10 June 2011. [Google Scholar]
- Winter, C.J.; Sizmann, R.L.; Vaunt-Hull, L.L. Solar Power Plants: Fundamentals, Technology, Systems, Economics; Springer: Berlin/Heidelberg, Germany, 1991; ISBN 3-540-18897-5. [Google Scholar]
- Lanchi, M.; Montecchi, M.; Crescenzi, T.; Mele, D.; Miliozzi, A.; Russo, V.; Mancini, R. Investigation into the coupling of micro gas turbines with CSP technology: OMSoP project. Energy Procedia 2015, 69, 1317–1326. [Google Scholar] [CrossRef]
- Harris, J.A.; Lenz, T.G. Thermal performance of solar concentrator/cavity receiver systems. Sol. Energy 1985, 34, 135–142. [Google Scholar] [CrossRef]
- Prakash, M.; Kedare, S.B.; Nayak, J.K. Investigations on heat losses from a solar cavity receiver. Sol. Energy 2009, 83, 157–170. [Google Scholar] [CrossRef]
- Paitoonsurikarn, S.; Lovegrove, K.; Hughes, G.; Pye, J. Numerical investigation of natural convection loss from cavity recievers in solar dish applications. J. Sol. Energy Eng. 2011, 133, 021004. [Google Scholar] [CrossRef]
- Ho, C.K.; Iverson, B.D. Review of high-temperature central receiver designs for concentrating solar power. Renew. Sustain. Energy Rev. 2014, 29, 835–846. [Google Scholar] [CrossRef]
- Kribus, A.; Doron, P.; Rubin, R.; Reuven, R.; Taragan, E.; Duchan, S.; Karni, J. Performance of the directly-irradiated annular pressurized receiver (DIAPR) operating at 20 bar and 1200 °C. J. Sol. Energy Eng. 2001, 123, 10–17. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Y.; Quan, Y.; Li, H.; Li, S.; Song, G.; Gao, W. Design and characteristics of a novel tapered tube bundle receiver for high-temperature solar dish system. Appl. Therm. Eng. 2015, 91, 791–799. [Google Scholar] [CrossRef]
- Aichmayer, L.; Spelling, J.; Laumert, B. Preliminary design and analysis of a novel solar receiver for a micro gas-turbine based solar dish system. Sol. Energy 2015, 114, 378–396. [Google Scholar] [CrossRef]
- Del Río, A.; Korzynietz, R.; Brioso, J.; Gallas, M.; Ordóñez, I.; Quero, M.; Díaz, C. Soltrec–pressurized volumetric solar air receiver technology. Energy Procedia 2015, 69, 360–368. [Google Scholar] [CrossRef]
- Wu, W.; Trebing, D.; Amsbeck, L.; Buck, R.; Pitz-Paal, R. Prototype testing of a centrifugal particle receiver for high-temperature concentrating solar applications. J. Sol. Energy Eng. 2015, 137, 041011. [Google Scholar] [CrossRef]
- Mande, O.; Miller, F. Window Design for a Small Particle Solar Receiver. In Proceedings of the 9th Annual International Energy Conversion Engineering Conference, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar]
- Röger, M.; Pfänder, M.; Buck, R. Multiple air-jet window cooling for high-temperature pressurized volumetric receivers: Testing, evaluation, and modeling. J. Sol. Energy Eng. 2006, 128, 265–274. [Google Scholar] [CrossRef]
- Wang, W.; Laumert, B.; Xu, H.; Strand, T. Conjugate heat transfer analysis of an impinging receiver design for a dish-Brayton system. Sol. Energy 2015, 119, 298–309. [Google Scholar] [CrossRef]
- Poživil, P.; Steinfeld, A. Integration of a pressurized-air solar receiver array to a gas turbine power cycle for solar power applications. J. Sol. Energy Eng. 2017, 139, 041007. [Google Scholar] [CrossRef]
- Neber, M.; Lee, H. Design of a high temperature cavity receiver for residential scale concentrated solar power. Energy 2012, 47, 481–487. [Google Scholar] [CrossRef]
- Lim, S.; Kang, Y.; Lee, H.; Shin, S. Design optimization of a tubular solar receiver with a porous medium. Appl. Therm. Eng. 2014, 62, 566–572. [Google Scholar] [CrossRef]
- Lukin, E.S.; Sysoev, É.P.; Poluboyarinov, D.N. The creep and long-term strength of alumina ceramics. Refractories 1976, 17, 757–760. [Google Scholar] [CrossRef]
- Dreshfield, R.L. Long Time Creep Rupture of Haynes Alloy 188; Minerals, Metals and Materials Society, Ed.; National Aeronautics and Space Administration, Lewis Research Center: Cleveland, OH, USA, 1996.
- Bradshow, R.W.; Goods, S.H. Corrosion Resistance of Stainless Steels During Thermal Cycling in Alkali Nitrate Molten Salts; Sandia Report, Sand 2001-8518; Sandia National Laboratories: Albuquerque, NM, USA, 2001.
- Meetam, G.W.; Van de Voorde, M.H. Materials for High Temperature Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 978-3540668619. [Google Scholar]
- American Iron and Steel Institute. High-Temperature Characteristics of Stainless Steels, A Designers’ Handbook Series N. 9004; Nickel Development Institute: Toronto, ON, Canada, 1972. [Google Scholar]
- Basuki, E.A.; Prajitno, D.H.; Muhammad, F. Alloys developed for high temperature applications. AIP Conf. Proc. 2017, 1805, 020003. [Google Scholar] [CrossRef]
- Boch, P.; Niepce, J.C. Ceramic Materials: Processes, Properties and Applications; Wiley: London, UK, 2010; ISBN 9781905209231. [Google Scholar]
- Giovannelli, A.; Bashir, M.A. Development of a solar cavity receiver with a short-term storage system. Energy Procedia 2017, 136, 258–263. [Google Scholar] [CrossRef]
- Giovannelli, A.; Bashir, M.A.; Archilei, E.M. High Temperature Solar Receiver Integrated with a Short-Term Storage System. AIP Conf. Proc. 2017, 1850, 050001. [Google Scholar] [CrossRef]
- Giovannelli, A.; Bashir, M.A. High-Temperature Cavity Receiver Integrated with a Short-Term Storage System for Solar MGT’s: Heat Transfer Enhancement. Energy Procedia 2017, 126, 557–564. [Google Scholar] [CrossRef]
- Cárdenas, B.; León, N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renew. Sustain. Energy Rev. 2013, 27, 724–737. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Murat, M.K. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Kotzé, J.P.; von BackstrÃļm, T.W.; Erens, P.J. High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids. J. Sol. Energy Eng. 2013, 135, 035001. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Li, X.; Wang, D.; Zhang, Q.; Chen, G.; Ren, Z. Aluminum and silicon based phase change materials for high capacity thermal energy storage. Appl. Therm. Eng. 2015, 89, 204–208. [Google Scholar] [CrossRef]
- Voller, V.R.; Prakash, C. A fixed grid numerical modelling methodology for convection diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. [Google Scholar] [CrossRef]
Power Plant | Value |
---|---|
Electrical power output (kW) | 5–8 |
Turbine Inlet Temperature (K) | 1073–1123 |
Air mass flow (kg/s) | 0.065–0.16 |
Air compressor inlet temperature (K) | 288 |
Air compressor inlet pressure (kPa) | 101,325 |
Compressor pressure ratio | 2–3 |
MGT efficiency (%) | 22–29 |
Expected receiver efficiency (%) | 60 |
Receiver Dimensions | Value |
---|---|
Cylinder diameter (mm) | 380 |
Cylinder length (mm) | 440 |
Cavity maximum diameter (mm) | 210 |
Cavity length (mm) | 300 |
Tube length (mm) | 826 |
Tube diameter (mm) | 15 |
No. of tubes | 12 |
Mg56-Si44 wt % | Value |
---|---|
Density (kg/m3) | 1900 |
Heat of fusion (kJ/Kg) | 757 |
Specific Heat (J/kg K) | 632 |
Thermal Conductivity (W/m K) | 70 |
Melting Temperature (K) | 1219 |
PCM volume inside the receiver (L) | 41 |
Grid | No. of Cells | Average Hot Wall Temperature (K) | Outlet WF Temperature (K) | PCM Liquid Fraction (%) |
---|---|---|---|---|
1 | 445,065 | 1373 | 1093 | 83 |
2 | 687,087 | 1379 | 1099 | 88 |
3 | 1,852,346 | 1387 | 1106 | 93 |
4 | 4,037,561 | 1373 | 1099 | 92 |
Domain | No. of Cells | Type of Cells |
---|---|---|
Tubes | 159,994 | Hexahedral |
PCM | 4,031,820 | Tetrahedral |
External domain | 1,155,246 | Tetrahedral |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovannelli, A.; Bashir, M.A. Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver. Energies 2017, 10, 1943. https://doi.org/10.3390/en10121943
Giovannelli A, Bashir MA. Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver. Energies. 2017; 10(12):1943. https://doi.org/10.3390/en10121943
Chicago/Turabian StyleGiovannelli, Ambra, and Muhammad Anser Bashir. 2017. "Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver" Energies 10, no. 12: 1943. https://doi.org/10.3390/en10121943
APA StyleGiovannelli, A., & Bashir, M. A. (2017). Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver. Energies, 10(12), 1943. https://doi.org/10.3390/en10121943