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Abstract: Hybrid electric vehicle (HEV) control strategy is a management approach for generating,
using, and saving energy. Therefore, the optimal control strategy is the sticking point to effectively
manage hybrid electric vehicles. In order to realize the optimal control strategy, we use a robust
evolutionary computation method called a “memetic algorithm (MA)” to optimize the control
parameters in parallel HEVs. The “local search” mechanism implemented in the MA greatly enhances
its search capabilities. In the implementation of the method, the fitness function combines with the
ADvanced VehIcle SimulatOR (ADVISOR) and is set up according to an electric assist control strategy
(EACS) to minimize the fuel consumption (FC) and emissions (HC, CO, and NOx) of the vehicle
engine. At the same time, driving performance requirements are also considered in the method.
Four different driving cycles, the new European driving cycle (NEDC), Federal Test Procedure
(FTP), Economic Commission for Europe + Extra-Urban driving cycle (ECE + EUDC), and urban
dynamometer driving schedule (UDDS) are carried out using the proposed method to find their
respectively optimal control parameters. The results show that the proposed method effectively helps
to reduce fuel consumption and emissions, as well as guarantee vehicle performance.

Keywords: hybrid electric vehicle (HEV); control strategy; memetic algorithm (MA);
parameters optimization

1. Introduction

The development of clean vehicles with high fuel economy and low emissions is gradually
becoming mainstream in the automotive industry owing to the aggravation of the global energy crisis
and environmental problems. In the field of vehicle engineering, conventional power systems driven
by internal combustion engines (ICEs) have several disadvantages that adversely affect fuel economy
and emissions. Furthermore, ICEs are generally over-designed approximately 10 times to meet the
required vehicle driving performance that causes the cruising operating point to deviate away from the
optimal operation point [1]. Hybrid electric vehicles (HEVs) do not certainly require external battery
charging and new infrastructure; therefore, many researchers have focused on HEV in the past few
years. Additionally, their superior fuel economy and lower emissions with no compromise in dynamic
performance make HEVs a viable solution for providing cleaner and more fuel-efficient vehicles.
Tanoue et al. [2] pointed out that hybrid technology is of crucial importance for future automobiles.

An HEV includes at least two energy converters, i.e., ICE and an electric motor (EM), to generate
the mechanical energy required to drive the vehicle and operate the on-board accessories. Therefore,
energy flow management plays an important role in HEV efficiency. In order to make HEVs as efficient
as possible, the HEV control strategy [3–11] is used to properly manage their energy components.
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By designing an appropriate control strategy, the HEV not only cuts down toxic exhaust emissions,
but also maintains the performance of the road-driven vehicle while minimizing fuel consumption.
A parameter-optimized control strategy can be used for solve this problem.

In early studies, rule-based control was widely used for parametric optimization. Dynamic
programming (DP) can be used to decide the global optimal control parameters [12] when the driving
cycle and vehicle performance are known. Pontryagin’s minimum principle (PMP) may be used
to determine the local optimal control parameters, and it can obtain an optimal trajectory in less
computing time than DP [13]. Many HEVs have been discussed in literature, Assanis et al. attempted
to improve the fuel consumption (FC) while maintaining the driving performance within the standard
limits and using the determined optimal sizes of the ICE, EM and battery pack [14]. Sciarretta et al.
proposed equivalent consumption minimization strategy (ECMS) a strategy based on the definition of
the fuel equivalent of the electrical energy for the real-time load control of parallel HEVs [15]. Johri
and Filipi [16] developed a supervisory controller for HEVs based on the principles of reinforcement
learning and neuro-dynamic programming to overcome the curse of dimensionality, and solving
policy optimization for a system with very large design state space. Poursamad and Montazeri [17]
presented a fuzzy logic controller that is tuned by a genetic algorithm for parallel HEVs to minimize
fuel consumption and emissions. Panday and Bansal developed a fuel efficient energy management
strategy which for power-split hybrid electric vehicle using modified state of charge estimation method.
Their energy management strategy adapts GA to compute the optimal values of various governing
parameters, and then uses Pontryagin’s minimum principle to decide the threshold power at which
engine is turned on [18]. Several targets are usually considered simultaneously in HEV control strategy.
To minimize vehicle fuel consumption and engine emissions, and maintain driving performance is the
primary purpose of an HEV control strategy. Control strategies designed based on engineering intuition
usually fail to achieve satisfactory overall system efficiency owing to the complex nature of HEVs.
Several studies based on evolutionary computation have been proposed to determine the optimal
parameters for the control strategy for HEVs. Montazeri and Poursamad [19] proposed a genetic
algorithm (GA) to minimize the weighted sum of FC and emissions, and they also considered the
Partnership for a New Generation of Vehicles (PNGV) performance requirements as constraints [20].
Wu et al. [21] employed a particle swarm optimization (PSO) method to determine the optimal
parameters of the powertrain and the control strategy to reduce the FC, emissions, and manufacturing
costs of HEVs. Long and Nhan [22] used bees algorithm (BA) to minimize the weighted sum of FC and
emissions, and considered the PNGV constraints for the vehicle performance. Hao et al. [23] employed
the DIvided RECTangle (DIRECT) algorithm to optimize the extracted seven key parameters based
on the optimization model of the key parameters from the perspective of fuel economy. More other
control algorithms for HEVs can be referred to [24,25].

The characteristics of the powertrain system are highly non-linear and discontinuous, and may
contain several local optima. However, many methods proposed in the literature lack local search
capabilities that makes the optimal solution is difficult to obtain. In this study, a robust evolutionary
computation method—memetic algorithm (MA) [26] is proposed to optimize the control parameters.
The “local search” mechanism implemented in the MA greatly enhances its search capabilities.
Therefore, it is particularly suitable for solving such problems. MAs were inspired by Dawkins’
notion of a meme [27]. They are similar, yet superior to the GA. MAs progress through a local search
before becoming involved in the evolution process [28] to ensure that all chromosomes and offspring
gain some experiences. To solve this problem, a single objective problem is used and a goal-attainment
method is substituted for the original multi-objective optimization problem. The goal of optimization
in this problem is to minimize the engine fuel consumption and emissions within the given criteria.
In addition, vehicle performance requirements must also be maintained. The used fitness function
is proposed according to an electric assist control strategy (EACS) [4]. The proposed method is then
performed for four different driving cycles, including new European driving cycle (NEDC), Federal
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Test Procedure (FTP), Economic Commission for Europe + Extra-Urban driving cycle (ECE + EUDC)
and urban dynamometer driving schedule (UDDS).

Using MAs to solve the control strategy optimization problem associated with minimizing engine
fuel consumption and emissions while maintaining driving performance saves a considerable amount
of time and provides a global optimal solution. The MA proposed for the control strategy optimization
correctly and quickly identifies the optimal parameters required for parallel HEVs. Our experimental
results further indicate that MAs applied in the design of control strategy are effective in minimizing
minimize fuel consumption and emissions while maintaining driving performance.

2. Configurations of HEVs

Before discussing the configurations of HEVs, we first mention the differences between a
conventional HEV and a plug-in HEV. There are two fundamental differences between them, one is
the main power source and the other is the whole energy efficiency of the two vehicle architectures.
The main power source is a gasoline-powered ICE for conventional HEVs, while it is a battery-powered
electric motor for plug-in HEVs. In conventional HEVs, the electric motor is used to complement
the ICE and electricity is generated on board. Its energy savings are not substantial in comparison to
plug-in HEVs. In plug-in HEVs, the ICE is used to complement the electric motor and grid-supplied
electricity. Its energy savings are more substantial than conventional HEVs. Other types of prominent
technology [29] are also used. Series and parallel type are currently two common configurations for
HEVs. Another common type of HEV synthesizes the characteristics of both series and parallel types
and is called dual-mode or multi-mode type [30].

2.1. Series HEV

The configuration of a series type HEV mainly consists of a fuel converter/ICE, a generator,
an energy storage system/battery, and an electric motor, as shown in Figure 1. In the series HEV,
the fuel converter does not directly drive the vehicle wheels. On the contrary, the series HEV uses
a generator to convert mechanical power into electrical energy that is stored in the battery and to
provide the electric motor power to achieve the torque required to drive the wheels.
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Figure 1. Series configuration of a hybrid electric vehicle (HEV).

2.2. Parallel HEV

In the configuration of a parallel type HEV, the fuel converter and the electric motor both transmit
power to the vehicle, as shown in Figure 2. The electric motor can also be used as a generator to
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charge the battery via the regenerative brake or by absorbing the excess power of the fuel converter.
In comparisons, the parallel type is better than the series type in the configuration. The parallel type
has a smaller fuel converter and a smaller electric motor than the series type while it provides the same
performance. This characteristic makes the parallel type HEV more suitable for heavy-duty passenger
vehicles than the series type.
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Figure 2. Parallel configuration of an HEV.

2.3. Dual-Mode HEV

The configuration of the synthesized series–parallel type includes additional mechanical links as
compared to the configuration of the series type, and it has an additional generator as compared to
the configuration of the parallel type. That makes the synthesized series–parallel type relatively more
complex and expensive than the series and parallel types.

3. Control Strategy for Parallel HEV

There are two power-drive units (i.e., fuel converter and electric motor) integrated into the parallel
type; therefore, the purpose of the control strategy of the parallel HEV is to decide how to allocate
the required torque between the fuel converter and the electric motor during driving. When positive
torque is requested, the summation of torques for the fuel converter and electric motor is equal to the
demand of the driver. On the contrary, when negative torque is requested, the summation of torques
for the electric motor and brake is equal to the demand of the driver while the engine torque is zero.

Several control strategies have been employed for parallel HEVs. EACS [4] is the most commonly
used control strategy; the fuel converter is the major energy provider, and the electric motor is the
assistant component for fuel converter. The baseline control strategy (BCS) is used by the ADvanced
VehIcle SimulatOR (ADVISOR) in a parallel HEV. Eight independent input parameters are defined
to minimize the engine energy usage, and the variables are also usually defined for an EACS [19],
as listed in Table 1. This EACS is a common method of hybrid control; examples of its application are
the Toyota Prius [31] and Honda Insight [32].
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Table 1. Eight independent input parameters/variables for an electric assist control strategy (EACS).

Parameter BCS Variable [8] Description

SOCL cs_lo_soc The lowest state of charge allowed.

SOCH cs_hi_soc The highest state of charge allowed.

Tch cs_charge_trq An alternator-like torque loading on the engine to recharge the
battery pack.

Tmin cs_min_trq_frac

When commanded at a lower torque, the engine will be
manipulated at the threshold torque (minimum torque threshold =
Tmin × Tmax). Additionally, if SOC < SOCL, the electric motor
serves as a generator.

Toff cs_off_trq_frac When commanded at a lower torque and if SOC > SOCL, the engine
will be shut down (minimum torque threshold = Toff × Tmax).

ELSL cs_electric_launch_spd_lo The lowest vehicle speed threshold.

ELSH cs_electric_launch_spd_hi The highest vehicle speed threshold.

Dch cs_charge_deplete_bool To use charge deplete strategy or charge sustaining strategy.

The electric motor is used by the EACS in several specific ways:

(1) When the battery state of charge (SOC) is more than SOCL, the engine will be shut down if the
required speed is less than the ELS, which is also called the electric launch speed (as shown in
Figure 4, Case 1).

(2) When the required torque is less than a minimum torque threshold (Toff × Tmax), the engine will
also be shut down (as shown in Figure 4, Case 2).

(3) The electric motor will provide the total required torque when the engine is shut down (as shown
in Figure 4, Cases 1 and 2, and Figure 3, Case 1).

(4) When the battery SOC is less than its SOCL, an alternator-like torque (Tch) is provided from the
engine to charge the battery (as shown in Figure 3, Case 2). This alternator-like charging torque is
proportional to the difference between the SOC and the average of the SOCL and SOCH.

(5) The engine charging torque is only applied when the engine is started up (as shown in Figure 3,
Case 2).

(6) To avoid the engine working at an inefficient low torque status, the engine torque must be
maintained at the minimum torque threshold (Tmin × Tmax) (as shown in Figure 3, Case 3).

The fuel consumption, emissions, battery charge, and vehicle performance are greatly influenced
by the control strategy parameters. Consequently, we proposed the robust evolutionary computation
method MA to optimize the control parameters in this study.Energies 2017, 10, 305 6 of 21 
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4. Definition of Objective Function

In the optimization of the control strategy parameters, there are two different approaches to be
considered [33,34], and they have already been applied to all types of evolutionary computation-based
methods related to this problem [19,21,22]. The two different approaches are to optimize a single
objective function that is a weighted aggregation of some of the goals and to define the other goals as
constraints. Several simultaneous goals including the FC, emissions, charge requirement, and driving
performance are managed in the HEV control strategy. In the other words, the HEV control strategy
must minimize the weighted sum of the FC and emissions (HC, CO and NOx) while meeting the
charge sustaining requirement and driving performance. We thus define FC, HC, CO, and NOx as a
single objective function that is a weighted aggregation as shown in Equation (1):

Objective (x) = (wfc × FC) + (whc ×HC) + (wco ×CO) + (wnox ×NOx) (1)

where x is a vector that consists of eight parameters of the control strategy as shown in above-mentioned
Table 1. Chromosome encoding in Section 5. The design of MA for optimize control strategy of parallel
HEVs in details); wfc, whc, wco, and wnox are defined as weighting factors employed to respectively
investigate the influences of the different objectives of FC, HC, CO, and NOx on the optimization results.

Furthermore, we use the PNGV [20] as the dynamic performance requirements to guarantee that
the vehicle performance is still maintained during optimization. Table 2 describes the seven PNGV
dynamic performance constraints considered.

Table 2. The seven PNGV dynamic performance constraints considered [22]. PNGV: partnership for a
new generation of vehicles.

Parameter Description yi ci(x)

Acceleration time

Acceleration time 1 for 0–60 mph in 12 s 1.2 c1(x)

Acceleration time 2 for 40–60 mph in 5.3 s 1.5 c2(x)

Acceleration time 3 for 0–85 mph in 23.4 s 1.2 c3(x)

Maximum speed ≥0.017 mi/s 1.2 c4(x)

Maximum acceleration ≥0.0032 mi/s2 1.2 c5(x)

Distance in 5 s ≥0.0265 mi 1.2 c6(x)

Gradeability 6.5% gradeability at 55 mph with 272 kg
additional weight for 20 min 2.0 c7(x)
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In order to apply the MA directly to the constrained optimization problem, the seven PNGV
constraints are integrated into the objective function [35] as shown in Equation (2):

min
x∈S

Objective(x) s.t. ci(x) ≤ 0, i = 1, 2, 3, . . . , 6, 7 (2)

where x is a vector of the parameters of the control strategy as mentioned above and it is a solution
within the solution space S; Objective(x) is the objective function; and ci(x) is the PNGV dynamic
performance constraints.

5. The Design of MA for Optimized Control Strategy of Parallel HEVs

MAs were inspired by Dawkins’ conception [27,36]. The adjective ‘memetic’ is derived from the
term ‘meme’, which denotes an analogue to a gene in the context of cultural evolution [26]. Similar to
GAs, the evolutionary computations involved, such as selection, crossover and mutation are effective
in implementing optimal solutions for the control strategy of parallel HEVs. However, in contrast
to GAs, MAs progress through a local refinement of individuals before becoming involved in the
evolution process and thus assure that all individuals and offspring gain some experiences. After each
run, individuals in an MA share information with each other, and superior solutions based on a fitness
rule are refined from generation to generation [37].

The flowchart of the proposed MA for the optimize control strategy is shown in Figure 5. There
are eight dissociated procedures included: (1) chromosome encoding; (2) population initialization;
(3) local search; (4) fitness evaluation; (5) ADVISOR evaluation; (6) judgment on termination conditions;
(7) selection, crossover, and mutation processes; and (8) replacement process. These eight procedures
are described below.
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Figure 5. Flowchart of memetic algorithm (MA) for optimize control strategy.

(1) Chromosome encoding

In order to use the MA to optimize the control strategy parameters in parallel HEVs, a chromosome
encoding x must first be defined. In this study, we use eight independent control strategy parameters
of an EACS as shown in Table 1 as the chromosome encoding for this optimization problem.
The chromosome encoding x is a vector with eight dimensions as shown in Equation (3):

x = (SOCL, SOCH, Tch, Tmin, Toff, ELSL, ELSH, Dch) (3)

where x represents a vector that encodes eight parameters of the control strategy.
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(2) Population initialization

When performing the MA algorithm for the control strategy optimization, at the start, dozens of
chromosomes x = (SOCL, SOCH, Tch, Tmin, Toff, ELSL, ELSH, Dch) are randomly generated for an
initial population without duplicates. The values of SOCL, SOCH, Tch, Tmin, Toff, ELSL, ELSH and Dch
are randomly generated between default bounds given by the EACS constraint. Their default bounds
are presented in Table 3.

Table 3. Range of the parameters of the EACS constraints for the proposed method.

Parameter (Unit) Lower Bound Upper Bound

SOCL (-) 0.1 0.5
SOCH (-) 0.55 1
Tch (Nm) 1 80.9
Tmin (-) 0.05 1
Toff (-) 0.05 1

ELSL (m/s) 0 15
ELSH (m/s) 10 30

Dch (-) 0 1

(3) Local search

The local search is the highly capable of identifying superior individuals (i.e., chromosomes
with good fitness) from amongst the neighbors of an original individual. The experience of
the original individual will be improved by getting experience from the neighbors, and thus a
local optimum solution can be acquired. At the beginning of the algorithm, the local search
process is performed by all individuals in order to acquire the local optimality of each individual.
Furthermore, the local search process is also performed by new generated individuals in each iteration
in order for the local optimum to always be retained. Finally, a global optimum is determined.
We applied the pseudo-code of the local search to the proposed method which is as follows.

Local Search Pseudo-Code for the Proposed Method

1 Begin;
2 Select an incremental value d = a × Rand ();
3 For a given individual i∈Population: calculate fitness (i);
4 For j = 1 to the number of variables in individual i;
5 value (j) = value (j) + d;
6 calculate fitness (i);
7 If fitness of the individual is not improved then
8 value (j) = value (j) − d;
9 else if fitness of the individual is improved then
10 retain value (j);
11 Next j;
12 End;

(4) Fitness evaluation

The fitness function is a function used to evaluate the fitness of the chromosomes in the individuals.
To make use of the MA in the simultaneous optimization of parallel HEVs in the study, the fitness
function adapts the inverse of the objective function Objective(x) in Equation (1) and the seven PNGV
dynamic performance constraints are considered as penalty functions to maximize the fitness value as
shown in Equation (4):

fitness(x) = 1/[Objective(x) +
7

∑
i=1

yi × pi(x)] (4)
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where yi are penalty factor selected by trial and error [22] as indicated in Table 2, and pi(x) are penalty
functions that are related to the i-th constraint ci(x) in Table 2.

The seven penalty functions pi(x), i = 1, 2, 3, . . . , 6, 7 for the PNGV dynamic performance
constraints are respectively shown in the following Equations (5)–(11).

• Acceleration time 1

p1(x) =

{
0, if acceleration time 1 satisfied the PNGV acceleration time 1

acceleration time 1− PNGV acceleration time 1, if acceleration time 1 > PNGV acceleration time 1
(5)

• Acceleration time 2

p2(x) =

{
0, if acceleration time 2 satisfied the PNGV acceleration time 2

acceleration time 2− PNGV acceleration time 2, if acceleration time 2 > PNGV acceleration time 2
(6)

• Acceleration time 3

p3(x) =

{
0, if acceleration time 3 satisfied the PNGV acceleration time 3

acceleration time 3− PNGV acceleration time 3, if acceleration time 3 > PNGV acceleration time 3
(7)

• Maximum speed

p4(x) =

{
0, if max speed satisfied the PNGV max speed

PNGV max speed−max speed, if max speed < PNGV max speed
(8)

• Maximum acceleration

p5(x) =

{
0, if max acceleration satisfied the PNGV max acceleration

PNGV max acceleration−max acceleration, if max acceleration < PNGV max acceleration
(9)

• Distance in 5 s

p6(x) =

{
0, if distance in 5 s satisfied the distance in 5 s

PNGV distance in 5 s− distance in 5 s, if distance in 5 s < PNGV distance in 5 s
(10)

• Gradeability

p7(x) =

{
0, if grade satisfied the PNGV grrade

PNGV grade− grade, if grade < PNGV grade
(11)

(5) ADVISOR evaluation

ADVISOR is an abbreviation of “ADvanced VehIcle SimulatOR” which is written in the
MATLAB/Simulink environment and was developed by the National Renewable Energy Laboratory
in November 1994. It provides the vehicle engineering community with an easy-to-use, flexible, yet
robust and supported analysis package for advanced vehicle modeling [38]. In order to effectively
measure the FC, emissions (HC, CO, and NOx), and driving performance for the used control strategy
in parallel HEVs, we have combined the ADVISOR with the proposed MA to evaluate the fitness in
chromosomes. When the fitness function is called, the control strategy variables will be passed on to
the ADVISOR to calculate the FC, emissions (HC, CO, and NOx), and driving performance and return
their values. These values will then be used to evaluate the fitness of the control strategy.
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(6) Judgment on termination conditions

The termination conditions provide the evolutionary computation method to stop meaningless
and endless computations. Here, two termination conditions are employed in the proposed method.
One is that the maximum number of iterations is reached, and the other is that the fitness value is no
longer updated in several following iterations (i.e., the computation has converged).

(7) Selection, crossover, and mutation processes

The election, crossover, and mutation processes are the fundamental operations for the
evolutionary computation of an MA. The proposed MA only performs either the crossover or mutation
process. In the selection process, two individuals are randomly selected from the population for the
following crossover or mutation operations. In the crossover process, uniform crossover is applied
to the proposed MA. When the crossover probability is satisfied, the selected two individuals will
be processed by the crossover operation. Figure 6a illustrates the flowchart of the crossover process.
In the mutation process, one-point mutation is implemented in the proposed MA. When the mutation
probability is satisfied, the selected two individuals will be processed by the mutation operation.
Figure 6b illustrates the flowchart of the mutation process.
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(8) Replacement process

In order to update the individuals of the population from iteration to iteration, the replacement
process is an essential and crucial operation. In the proposed MA, the worst individuals in the
population will be replaced with the new individuals. This process is repeated in each next generation
until one of the termination conditions is met.

6. Driving Cycles for Optimized Control Strategy of Parallel HEVs

Four different driving cycles, including NEDC, FTP, ECE + EUDC, and UDDS are carried out by
the proposed method to find out the optimal control parameters for each driving cycle. The parameters
used are listed in Table 4.
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The NEDC eliminates the idling period, which causes the engine to start at 0 s, and the emission
sampling begins at the same time as the entire cycle [39]. The FTP is used for regulatory emission
testing of heavy-duty on-road engines in the United States (40 CFR 86.1333). It is based on the UDDS
chassis dynamometer driving cycle and includes “motoring” segments, and therefore, requires a DC
or AC electric dynamometer capable of both absorbing and supplying power [40]. The ECE + EUDC is
performed on a chassis dynamometer and was used for EU type approval testing of emissions and
fuel consumption in light-duty vehicles [EEC Directive 90/C81/01]. This cycle is used for the emission
certification of light-duty vehicles in Europe and is also known as the MVEG-A cycle. The entire cycle
includes four ECE segments repeated without interruption, followed by one EUDC segment. Before
the test, the vehicle is allowed to soak for at least 6 h at a test temperature of 20–30 ◦C. It is then started
and allowed to idle for 40 s [39]. The UDDS is also called FTP-72 (Federal Test Procedure) or LA-4
cycle. It is used for light-duty vehicle testing. The cycle simulates an urban route of 7.5 miles with
frequent stops. The maximum speed is 56.7 mph, and the average speed is 19.6 mph. Two phases are
included in the cycle: (1) 505 s (3.59 miles at 25.6 mph average speed); and (2) 867 s [41].

Table 4. Parameters for NEDC, FTP, ECE + EUDC, and UDDS driving cycle. NEDC: new
European driving cycle; FTP: Federal Test Procedure; ECE + EUDC: Economic Commission for
Europe + Extra-Urban driving cycle; UDDS: urban dynamometer driving schedule.

Parameter
Value

NEDC FTP ECE + EUDC UDDS

Time 1184 s 2477 s 1225 s 1369 s
Distance 6.79 miles 11.04 miles 6.79 miles 7.45 miles

Maximum speed 74.56 mph 56.70 mph 74.56 mph 56.70 mph
Average speed 20.64 mph 16.04 mph 19.95 mph 19.58 mph

Maximum acceleration 0.00066 mi/s2 0.00092 mi/s2 0.00066 mi/s2 0.00092 mi/s2

Maximum deceleration −0.00086 mi/s2 −0.00092 mi/s2 −0.00086 mi/s2 −0.00092 mi/s2

Average acceleration 0.00034 mi/s2 0.00034 mi/s2 0.00034 mi/s2 0.00031 mi/s2

Average deceleration −0.00049 mi/s2 −0.00036 mi/s2 −0.00049 mi/s2 −0.00036 mi/s2

Idle time 298 s 360 s 339 s 259 s
Number of stops 13 22 13 17

Maximum up grade 0% 0% 0% 0%
Average up grade 0% 0% 0% 0%

Maximum down grade 0% 0% 0% 0%
Average down grade 0% 0% 0% 0%

Data source: ADVISOR, United States Environmental Protection Agency (EPA), and DieselNet.

7. Results

7.1. Parameter Settings

Four parameters are set in the proposed method, i.e., the number of generations, the population
size, the probability of crossover, and the probability of mutation. Their values were set to 50, 20, 1.0,
and 1.0, respectively. The parameters are chosen by “trial and error.” Furthermore, our experience in
algorithmic design has also helped us to select suitable parameters for the problem. The published
papers for the algorithms used by the authors can also be referred to [36,37,42–49]. Furthermore,
the components for the parallel HEV model are set as shown in Table 5, and the parameters for the
used parallel HEV model are set as shown in Table 6.
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Table 5. Components for the parallel HEV model.

Component Version Type Description

Vehicle - - Hypothetical small car (VEH_SMCAR)

Fuel Converter ic si Spark Ignition; Geo 1.0 L (41 KW) SI engine (FC_SI41_emis)

Exhaust Aftertreat - - Standard catalyst for stoichiometric SI engine (EX_SI)

Energy Storage rint pb Lead-Acid; Hawker Genesis 12V26Ah10EP VRLA battery, tested
by VA Tech. (ESS_PB25)

Motor - - Westinghouse 75-KW (continuous) AC induction motor/inverter
(MC_AC75)

Transmission man man Manual transmission; manual 5-speed transmission (TX_5SPD)

Torque Coupling - - Lossless belt drive (TC_DUMMY)

Wheel/Axle Crr Crr Constant coefficient of rolling resistance model; wheel/axle
assembly for small car (WH_SMCAR)

Accessory Const Const Constant power accessory load models; 700-W constant electric
load (ACC_HYBRID)

Powertrain Control par man Parallel manual transmission; 5-speed parallel charge depleting
hybrid (PTC_PAR_CD)

Vehicle - - Hypothetical small car (VEH_SMCAR)

Fuel converter ic si Spark Ignition; Geo 1.0 L (41 KW) SI engine (FC_SI41_emis)

The versions and types are the parameters used in ADVISOR.

Table 6. Parameters for the used parallel HEV model.

Parameter (Unit) Variable Value

Mass of the vehicle without components (kg) veh_glider_mass 592
Cargo mass (kg) veh_cargo_mass 136

Test mass, including fluids, passengers, and cargo (kg) veh_mass 1350
Vehicle frontal area (m2) veh_FA 2

Coefficient of aerodynamic drag veh_CD 0.335
Coefficient of wheel rolling resistance wh_1st_rrc 0.009

Radius of the wheel (m) wh_radius 0.304

The variables are the parameters used in ADVISOR.

7.2. Results for the Used Driving Cycles

Table 7 shows the initial values and optimal values obtained, and Figure 7 shows the histogram
for fitness values obtained using the proposed MA method with the parameters of the control strategy
for four driving cycles: NEDC, FTP, ECE + EUDC, and UDDS. The result for the FC and emissions
is presented in Table 8 and Figure 8. Further, the result for the dynamic performance is presented in
Table 9 and Figure 9. On comparing the results presented in Table 8, Figure 8, Table 9, and Figure 9,
we observe that the results obtained using the initial and optimal values of the parameters of the
control strategy are very different. The optimal values of the parameters of the control strategy found
using the proposed MA method indeed help to reduce the integral FC, HC, CO and NOx emissions.
Furthermore, the dynamic performance not only simultaneously meets the PNGV constraints but
also exceeds its requirements. From the above results, the ability of the proposed MA method to
optimize the control parameters in parallel HEVs is confirmed. The results used in this study are freely
accessible and provided online for those interested [50].
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Table 7. The initial values and optimal values of the parameters of the control strategy.

Parameter (Unit)
NEDC FTP ECE + EUDC UDDS

Initial Optimal Initial Optimal Initial Optimal Initial Optimal

SOCL (-) 0.13 0.276 0.235 0.271 0.306 0.31 0.046 0.267
SOCH (-) 0.271 0.848 0.433 0.862 0.33 0.931 0.087 0.788
Tch (Nm) 61.144 66.879 74.815 14.61 7.186 14.33 1.41 6.64
Tmin (-) 0.29 0.211 0.703 0.355 0.83 0.09 0.87 0.798
Toff (-) 0.047 0.431 0.891 0.236 0.957 0.084 0.077 0.342

ELSL (m/s) 12.583 1.998 5.137 2.496 10.974 13.932 4.207 0.23
ELSH (m/s) 27.902 18.566 25.473 14.75 28.098 25.214 26.695 17.776

Dch (-) 0 1 0 1 1 1 1 1

Fitness value 0.017 0.028 0.015 0.028 0.021 0.029 0.017 0.029

Energies 2017, 10, 305 13 of 21 

 

Table 7. The initial values and optimal values of the parameters of the control strategy. 

Parameter (Unit) 
NEDC FTP ECE + EUDC UDDS 

Initial Optimal Initial Optimal Initial Optimal Initial Optimal
SOCL (-) 0.13 0.276 0.235 0.271 0.306 0.31 0.046 0.267 
SOCH (-) 0.271 0.848 0.433 0.862 0.33 0.931 0.087 0.788 
Tch (Nm) 61.144 66.879 74.815 14.61 7.186 14.33 1.41 6.64 
Tmin (-) 0.29 0.211 0.703 0.355 0.83 0.09 0.87 0.798 
Toff (-) 0.047 0.431 0.891 0.236 0.957 0.084 0.077 0.342 

ELSL (m/s) 12.583 1.998 5.137 2.496 10.974 13.932 4.207 0.23 
ELSH (m/s) 27.902 18.566 25.473 14.75 28.098 25.214 26.695 17.776 

Dch (-) 0 1 0 1 1 1 1 1 
Fitness value 0.017 0.028 0.015 0.028 0.021 0.029 0.017 0.029 

 

Figure 7. The histogram of fitness values for initial and optimal values of the parameters of the control 
strategy. 

Table 8. The result for fuel consumption (FC) and emissions using initial and optimal values of the 
parameters of the control strategy. 

Parameter (Unit) 
NEDC FTP ECE + EUDC UDDS 

Initial Optimal Initial Optimal Initial Optimal Initial Optimal
FC (mi/gal) 31.08  31.80  26.69 32.18  32.08 31.72  29.56  29.51  
HC (g/mi) 0.71  0.61  0.50  0.47  0.69  0.67  0.63  0.67  
CO (g/mi) 8.05  2.93  10.83 3.22  3.73  3.56  5.73  3.81  
NOx (g/mi) 0.68  0.52  0.30  0.45  0.73  0.58  0.65  0.68  

0.017
0.015

0.021
0.017

0.028 0.028 0.029 0.029

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

NEDC FTP ECE+EUDC UDDS

Initial Optimal

Figure 7. The histogram of fitness values for initial and optimal values of the parameters of the
control strategy.

Table 8. The result for fuel consumption (FC) and emissions using initial and optimal values of the
parameters of the control strategy.

Parameter (Unit)
NEDC FTP ECE + EUDC UDDS

Initial Optimal Initial Optimal Initial Optimal Initial Optimal

FC (mi/gal) 31.08 31.80 26.69 32.18 32.08 31.72 29.56 29.51
HC (g/mi) 0.71 0.61 0.50 0.47 0.69 0.67 0.63 0.67
CO (g/mi) 8.05 2.93 10.83 3.22 3.73 3.56 5.73 3.81

NOx (g/mi) 0.68 0.52 0.30 0.45 0.73 0.58 0.65 0.68
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Table 9. The result for the dynamic performance using initial and optimal values of the parameters of
the control strategy.

Parameter (Unit)
NEDC FTP ECE + EUDC UDDS

Initial Optimal Initial Optimal Initial Optimal Initial Optimal

0–60 mph (s) 14.57 9.59 12.67 9.55 12.96 9.18 15.46 9.85
40–60 mph (s) 7.84 4.89 6.81 4.86 6.96 4.61 8.31 5.05
0–85 mph (s) 33.18 19.88 28.36 19.80 29.06 18.76 35.69 20.61

Maximum speed (mi/s) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Maximum acceleration (mi/s2) 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Distance in 5 s (mi) 0.028 0.034 0.031 0.034 0.030 0.034 0.027 0.033
Gradeability (%) 6.5 6.5 - 6.5 6.5 6.5 - 6.5
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Figure 9. The histogram for dynamic performance using initial and optimal values of the parameters
of control strategy. (A) dynamic performance based on NEDC cycle; (B) dynamic performance based
on FTP cycle; (C) dynamic performance based on ECE + EUDC cycle; and (D) dynamic performance
based on UDDS cycle.

7.3. Analysis of the Results

7.3.1. Improvement in Overall Effectiveness

First, for the observation of the fitness values as shown in Table 7 and Figure 7, the fitness values of
the optimal results are 0.011, 0.013, 0.008, and 0.012, which are better than those at the initial conditions
in the driving cycles of NEDC, FTP, ECE + EUDC, and UDDS, respectively (as shown in Figure 10).
This shows that the proposed MA method is quite useful for selecting a feasible control strategy from
the given bounds in the EACS constraints (see Table 3). The improvement in the fitness value means
the improvement in overall effectiveness, including the reduction of the FC and emissions, and the
improvement or maintain of dynamic performance. Different driving cycles show distinct degrees of
improvement owing to the different parameters of each driving cycle (see Table 4).
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7.3.2. Improvement in FC and Emissions

For the FC and emissions (HC, CO, and NOx) as shown in Table 8 and Figure 8, we observe that
the FC is improved for the driving cycles of the NEDC and FTP. The FC is improved by 0.72, 5.49,
−0.36, and −0.05 mi/gal for the NEDC, FTP, ECE + EUDC, and UDDS, respectively.

The HC emission is reduced for all the driving cycles except UDDS. The HC emission is reduced
by 0.10, 0.03, 0.02, and −0.04 g/mi for the NEDC, FTP, ECE + EUDC, and UDDS, respectively. The CO
emission is reduced for all the driving cycles. The CO emission is substantially reduced by 5.12, 7.62,
0.16, and 1.92 g/mi for the NEDC, FTP, ECE + EUDC, and UDDS, respectively. The NOx emission
is improved for the driving cycles of the NEDC and ECE + EUDC. The NOx emission is reduced
by 0.16, −0.15, 0.15, and −0.03 g/mi for the NEDC, FTP, ECE + EUDC, and UDDS, respectively.
The improvement results for the FC and emissions are shown in Figure 11. Although some values of
the parameters are not greatly improved, their improved values are reflected in the other parameters
or the following resultant dynamic performance.
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7.3.3. Improvement in Dynamic Performance

With respect to the dynamic performance, all the optimal values of the control strategy satisfy the
seven PNGV dynamic performance constraints and the dynamic performance shows improvements
from the initial conditions as shown in Table 2. Table 9 and Figure 9 show the improved results.
The improvement in the dynamic performance is shown in Figure 10. For the NEDC, the acceleration
time is reduced by 4.98, 2.96, and 13.29 s for 0–60 mph, 40–60 mph, and 0–85 mph, respectively.
The maximum speed is increased by 0.003 mi/s, the maximum acceleration is maintained at the
original value of 0.003 mi/s2, the distance traveled in 5 s is increased by 0.005 mi, and the gradeability
is maintained at 6.5%. For the FTP, the acceleration time is reduced by 3.12, 1.94, and 8.56 s for
0–60 mph, 40–60 mph, and 0–85 mph, respectively. The maximum speed is increased by 0.002 mi/s,
the maximum acceleration is maintained at the original value of 0.003 mi/s2, the distance traveled in
5 s is increased by 0.003 mi, and the gradeability increased from 0% to 6.5%. For the ECE + EUDC,
the acceleration time is reduced by 3.79, 2.35, and 10.31 s for 0–60 mph, 40–60 mph, and 0–85 mph,
respectively. The maximum speed is increased by 0.003 mi/s, the maximum acceleration is maintained
at its original value of 0.003 mi/s2, the distance traveled in 5 s is increased by 0.004 mi, and the
gradeability is maintained at the original value of 6.5%. Finally, for the UDDS, the acceleration time is
reduced by 5.61, 3.27, and 15.08 s for 0–60 mph, 40–60 mph, and 0–85 mph, respectively. The maximum
speed is increased in 0.003 mi/s, the maximum acceleration is maintained at its original value of
0.003 mi/s2, the distance traveled in 5 s is increased by 0.006 mi, and the gradeability improves from
0% to 6.5%. There improvements in the dynamic performance are shown in Figure 12.
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8. Conclusions

This study proposes a robust evolutionary computation method called a “memetic algorithm
(MA)” to optimize the control parameters in parallel HEVs. Its “local search” mechanism greatly
enhances the search capabilities for obtaining optimal values of the parameters of the control strategy.
We combine the ADVISOR with the fitness function in the proposed MA method and use it to
effectively evaluate the FC and emissions (HC, CO, and NOx) of the vehicle engine based on the
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EACS. Furthermore, we consider that the driving performance requirements, which are referred to
as the PNGV constraints, must be satisfied simultaneously. In order to verify the proposed method,
we have employed four different driving cycles—NEDC, FTP, ECE + EUDC, and UDDS; the results
for these driving cycles are verified. The fitness values of the optimal results are 0.011, 0.013, 0.008,
and 0.012, which are better than those of the initial conditions in the driving cycles of the NEDC,
FTP, ECE + EUDC, and UDDS, respectively. For the FC and emissions (HC, CO, and NOx), the
FC is improved by 0.72 and 5.49 mi/gal for the NEDC and FTP, respectively. The HC emission is
reduced by 0.10, 0.03, and 0.02 g/mi for the NEDC, FTP, and ECE + EUDC, respectively. The CO
emission is substantially reduced by 5.12, 7.62, 0.16, and 1.92 g/mi for the NEDC, FTP, ECE + EUDC,
and UDDS, respectively. The NOx emission is a reduced by 0.16 and 0.15 g/mi for the NEDC and
ECE + EUDC, respectively. With regard to the dynamic performance, all the optimal values of the
control strategy satisfy the seven PNGV dynamic performance constraints. The acceleration time is
reduced by 4.98, 2.96, and 13.29 s for 0–60 mph, 40–60 mph, and 0–85 mph, respectively; the maximum
speed is increased by 0.003 mi/s; and the distance traveled in 5 s is increased by 0.005 mi for the NEDC.
The acceleration time is respectively reduced in 3.12, 1.94, and 8.56 s for 0–60 mph, 40–60 mph, and
0–85 mph; the maximum speed is increased in 0.002 mi/s; the distance traveled in 5 s is increased
in 0.003 mi for the FTP. The acceleration time is reduced by 3.79, 2.35, and 10.31 s for 0–60 mph,
40–60 mph, and 0–85 mph, respectively; the maximum speed is increased by 0.003 mi/s; and the
distance traveled in 5 s is increased by 0.004 mi for the ECE + EUDC. The acceleration time is reduced
by 5.61, 3.27, and 15.08 s for 0–60 mph, 40–60 mph, and 0–85 mph, respectively; the maximum speed
is increased by 0.003 mi/s; and the distance traveled in 5 s is increased by 0.006 mi for the UDDS.
Furthermore, the maximum acceleration is maintained at 0.003 mi/s2 and the gradeability reached a
value of 6.5% in all the considered driving cycles. The results indicate that the proposed MA method is
capable of determining the optimal parameters of the control strategy for parallel HEVs. It helps to
improve the fuel consumption and reduce the emissions, as well as guarantee vehicle performance.
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Abbreviation

Acronym Term Description

ADVISOR advanced vehicle simulator A simulator for vehicles uses MATLAB/Simulink.

BA bees algorithm
An evolutionary computation method that based on
bees foraging.

BCS baseline control strategy A point of reference for control strategy in vehicles.

CO carbon monoxide The exhaust gas from vehicles.

DP dynamic programming
An algorithmic method that applies solutions to
larger and larger cases to inductively solve a
computational problem for a given instance.

EACS electric assist control strategy
A rule-based strategy for power distribution between
power sources.

ECE + EUDC
Economic Commission for
Europe + Extra-Urban Driving Cycle

A driving cycle.

EM electric motor
An electric motor is a machine that converts electrical
energy into mechanical energy.
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Acronym Term Description

FTP Federal Test Procedure
A driving cycle is used for regulatory emission
testing of heavy-duty on-road engines in the
United States.

GA genetic algorithm
An evolutionary computation method inspired by
the mechanisms of genetics.

HC hydrocarbons The exhaust gas from vehicles.

HEV hybrid electric vehicle
HEVs have both a petrol- or diesel-powered
combustion engine and an electric engine.

ICE internal combustion engine
An engine of one or more working cylinders in
which the process of combustion takes place within
the cylinders.

MA memetic algorithm

An evolutionary computation method inspired by
Dawkins’ notion of a meme. MA is similar to GA yet
superior to GA. The mechanism of local search is one
of its main features.

NEDC new European driving cycle
A driving cycle eliminates the idling period that
makes engine starts at 0s and the emission sampling
begins at the same time as the entire cycle.

NOx nitrogen oxides The exhaust gas from vehicles.

PMP Pontryagin’s minimum principle

The principle is used in optimal control theory to
find the best possible control for taking a dynamical
system from one state to another, especially in the
presence of constraints for the state or input controls.

PNGV
Partnership for a New Generation of
Vehicles

A cooperative research program between the U.S.
government and major auto corporations, aimed at
bringing extremely fuel-efficient (up to 80 mpg)
vehicles to market by 2003.

PSO particle swarm optimization
An evolutionary computation method based on
swarm behavior of animals, like bird flocking.

SOC state of charge
The equivalent of a fuel gauge for the battery pack in
a battery electric vehicle (BEV), hybrid vehicle (HV),
or plug-in hybrid electric vehicle (PHEV).

UDDS
Urban Dynamometer Driving
Schedule

A driving cycle used for light duty vehicle testing.
It simulates an urban route of 7.5 mile with
frequent stops.
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