Wind Farm Wake: The 2016 Horns Rev Photo Case
Abstract
:1. Introduction
2. Horns Rev 2 Photographs
3. Data Sources
3.1. Meteorological Data at the Wind Farm
3.2. Satellite Data
4. Data Presentation
5. Weather Conditions and Meso-Scale Modelling
6. Wind Farm Data and Wake Modelling
6.1. SCADA Data and Park Wake Model
6.2. Large Eddy Simulation (LES)
7. Discussion
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ASCAT | Advanced Scatterometer |
DMI | Danish Meteorological Institute |
ECMWF | European Centre Medium-range Weather Forecast |
ERA-Interim | ECMWF Re-Analysis |
EUMETSAT | European Organization for the Exploitation of Meteorological Satellites |
EWEA | European Wind Energy Association |
EWP | Explicit Wake Parametrisation |
GHRSST | Group for High Resolution SST |
GWEC | Global Wind Energy Association |
KNMI | Royal Netherlands Meteorological Institute |
LST | Land surface temperature |
LES | Large Eddy Simulation |
Lidar | Light detection and ranging |
MYNN | Mellor-Yamada-Nakanishi-Niino |
N | North |
SCADA | Supervisory Control and Data Acquisition system |
SEVIRI | Spinning Enhanced Visible and Infrared Imager |
SST | Sea surface temperature |
SSW | South southwest |
SW | Southwest |
TKE | turbulent kinetic energy |
UTC | Coordinated Universal Time |
UTM | Universal Transverse Mercator coordinate system |
UWYO | University of Wyoming |
W | West |
WRF | Weather Research & Forecasting |
WSW | West southwest |
Appendix A
12.40 UTC | 12.50 UTC | 13.00 UTC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | U | D | TI | Q | U | D | TI | Q | U | D | TI | Q |
m | m/s | ° | % | - | m/s | ° | % | - | m/s | ° | % | - |
65.75 | 10.54 | 223.10 | 8.44 | 100.00 | 10.56 | 223.30 | 7.95 | 100.00 | 10.16 | 222.90 | 8.27 | 100.00 |
68.75 | 10.69 | 223.40 | 8.61 | 100.00 | 10.69 | 223.80 | 8.14 | 100.00 | 10.26 | 223.30 | 8.48 | 100.00 |
85.75 | 11.54 | 224.90 | 8.93 | 100.00 | 11.39 | 226.00 | 8.87 | 100.00 | 10.96 | 225.10 | 9.49 | 100.00 |
105.75 | 12.59 | 227.90 | 8.58 | 100.00 | 12.42 | 227.80 | 8.45 | 100.00 | 11.96 | 226.60 | 9.11 | 100.00 |
125.75 | 13.53 | 230.50 | 7.83 | 100.00 | 13.40 | 229.90 | 8.13 | 100.00 | 13.08 | 228.20 | 8.79 | 100.00 |
145.75 | 14.69 | 233.20 | 7.22 | 99.00 | 14.65 | 233.00 | 7.37 | 100.00 | 14.30 | 230.90 | 7.69 | 100.00 |
185.75 | 16.65 | 237.70 | 9.01 | 50.00 | 16.33 | 237.30 | 6.06 | 35.00 | 16.60 | 237.50 | 5.18 | 84.00 |
205.75 | 15.15 | 242.10 | 10.30 | 1.00 | 17.41 | 238.40 | 5.57 | 3.00 | 17.51 | 239.10 | 6.97 | 9.00 |
225.75 | N/A | N/A | N/A | 0.00 | N/A | N/A | N/A | 0.00 | N/A | N/A | N/A | 0.00 |
245.75 | N/A | N/A | N/A | 0.00 | N/A | N/A | N/A | 0.00 | N/A | N/A | N/A | 0.00 |
UTC | Pr (hPa) | T (°C) | RH (%) |
---|---|---|---|
12:40 | 1014.8 | 8.16 | 100 |
12:50 | 1014.81 | 7.97 | 100 |
13:00 | 1014.88 | 7.90 | 100 |
12.40 UTC | 12.50 UTC | 13.00 UTC | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tu | U | P | R | D | Q | U | P | R | D | Q | U | P | R | D | Q |
# | m/s | kW | RPM | ° | - | m/s | kW | RPM | ° | - | m/s | kW | RPM | ° | - |
A01 | 11.7 | 2309 | 16.0 | 219.2 | 1 | 11.3 | 2309 | 16.0 | 216.5 | 1 | 11.9 | 2311 | 16.0 | 219.1 | 1 |
A02 | 12.1 | 2310 | 15.9 | 218.7 | 1 | 11.7 | 2310 | 15.9 | 216.2 | 1 | 12.2 | 2310 | 15.9 | 219.8 | 1 |
A03 | 11.9 | 2309 | 16.0 | 218.4 | 1 | 11.6 | 2309 | 16.0 | 217.5 | 1 | 11.8 | 2309 | 16.0 | 219.1 | 1 |
A04 | 12.1 | 2309 | 16.0 | 218.0 | 1 | 11.9 | 2307 | 16.0 | 216.5 | 1 | 12.0 | 2308 | 16.0 | 218.1 | 1 |
A05 | 11.9 | 2308 | 16.0 | 217.1 | 1 | 11.9 | 2308 | 16.0 | 217.1 | 1 | 11.8 | 2308 | 16.0 | 217.8 | 1 |
A06 | 12.0 | 2310 | 16.0 | 216.9 | 1 | 12.3 | 2309 | 16.0 | 215.9 | 1 | 11.9 | 2308 | 16.0 | 217.5 | 1 |
A07 | 11.1 | −3 | 0.0 | 220.1 | 5 | 11.4 | −3 | 0.0 | 220.1 | 5 | 10.7 | −3 | 0.0 | 220.1 | 5 |
B01 | 12.0 | 2311 | 16.0 | 218.6 | 1 | 10.1 | 2195 | 15.9 | 216.5 | 1 | 11.5 | 2309 | 16.0 | 218.6 | 1 |
B02 | 12.0 | 2310 | 16.0 | 218.1 | 1 | 11.4 | 2306 | 16.0 | 215.8 | 1 | 11.7 | 2310 | 16.0 | 217.8 | 1 |
B03 | 12.0 | 2310 | 16.0 | 218.4 | 1 | 11.9 | 2310 | 16.0 | 216.8 | 1 | 12.0 | 2311 | 16.0 | 218.2 | 1 |
B04 | 11.9 | 2310 | 16.0 | 218.0 | 1 | 11.9 | 2311 | 16.0 | 216.1 | 1 | 11.9 | 2311 | 16.0 | 217.3 | 1 |
B05 | 12.3 | 2312 | 16.0 | 217.9 | 1 | 12.5 | 2313 | 16.0 | 216.3 | 1 | 12.1 | 2312 | 16.0 | 217.2 | 1 |
B06 | 12.3 | 2309 | 16.0 | 217.6 | 1 | 12.9 | 2309 | 16.0 | 217.2 | 1 | 12.2 | 2309 | 16.0 | 218.0 | 1 |
B07 | 12.3 | 2306 | 16.0 | 217.6 | 1 | 12.9 | 2309 | 16.0 | 217.1 | 1 | 12.2 | 2308 | 15.9 | 217.4 | 1 |
C01 | 10.4 | 2288 | 16.0 | 218.8 | 1 | 8.4 | 1570 | 15.7 | 216.9 | 1 | 9.5 | 1843 | 15.9 | 218.2 | 1 |
C02 | 11.1 | 2286 | 16.0 | 218.3 | 1 | 9.1 | 1884 | 15.9 | 217.5 | 1 | 10.4 | 2149 | 15.9 | 218.5 | 1 |
C03 | 12.3 | 2303 | 16.0 | −141.3 | 1 | 10.2 | 2274 | 15.9 | −143.5 | 1 | 11.5 | 2276 | 16.0 | −142.0 | 1 |
C04 | 12.0 | 2307 | 16.0 | 217.0 | 1 | 10.9 | 2303 | 16.0 | 215.7 | 1 | 11.3 | 2308 | 16.0 | 216.2 | 1 |
C05 | 11.9 | 2307 | 16.0 | 218.4 | 1 | 11.9 | 2309 | 16.0 | 216.2 | 1 | 11.7 | 2307 | 16.0 | 216.9 | 1 |
C06 | 11.8 | 2308 | 16.0 | 217.9 | 1 | 12.1 | 2310 | 16.0 | 216.3 | 1 | 11.9 | 2311 | 16.0 | 217.2 | 1 |
C07 | 12.0 | 2306 | 16.0 | 218.1 | 1 | 12.2 | 2307 | 16.0 | 217.2 | 1 | 12.2 | 2307 | 15.9 | 218.4 | 1 |
D01 | 8.9 | 1769 | 15.9 | 220.6 | 1 | 8.5 | 1514 | 15.7 | 218.9 | 1 | 8.0 | 1436 | 15.5 | 217.5 | 1 |
D02 | 9.1 | 1933 | 15.9 | 221.7 | 1 | 8.3 | 1466 | 15.6 | 217.8 | 1 | 8.0 | 1447 | 15.6 | 218.0 | 1 |
D03 | 9.0 | 2045 | 16.0 | 219.0 | 1 | 7.9 | 1553 | 15.8 | 216.8 | 1 | 7.9 | 1530 | 15.8 | 216.5 | 1 |
D04 | 9.4 | 2197 | 15.9 | 218.6 | 1 | 8.6 | 1812 | 15.9 | 216.0 | 1 | 8.4 | 1837 | 15.9 | 218.6 | 1 |
D05 | 10.9 | 2298 | 16.0 | 218.6 | 1 | 9.3 | 2009 | 16.0 | 217.4 | 1 | 10.2 | 2207 | 16.0 | 218.5 | 1 |
D06 | 11.1 | 2305 | 16.0 | 218.4 | 1 | 9.7 | 2246 | 16.0 | 216.4 | 1 | 11.0 | 2268 | 16.0 | 218.3 | 1 |
D07 | 11.8 | 2307 | 16.0 | 218.0 | 1 | 11.7 | 2309 | 16.0 | 216.8 | 1 | 11.8 | 2308 | 16.0 | 219.0 | 1 |
E01 | 9.1 | 1780 | 15.8 | 221.7 | 1 | 9.7 | 1892 | 15.9 | 220.7 | 1 | 9.5 | 1774 | 15.8 | 220.6 | 1 |
E02 | 9.1 | 1850 | 15.9 | 221.9 | 1 | 9.4 | 1905 | 15.9 | 220.8 | 1 | 9.2 | 1783 | 15.9 | 219.6 | 1 |
E03 | 9.2 | 2002 | 15.9 | 220.6 | 1 | 9.9 | 2038 | 16.0 | 219.2 | 1 | 9.6 | 1919 | 15.9 | 217.7 | 1 |
E04 | 9.2 | 2046 | 15.9 | 219.5 | 1 | 9.4 | 1956 | 15.9 | 218.8 | 1 | 8.7 | 1755 | 15.9 | 217.1 | 1 |
E05 | 9.6 | 2268 | 16.0 | 217.8 | 1 | 9.7 | 2180 | 15.9 | 217.3 | 1 | 8.8 | 1886 | 16.0 | 218.3 | 1 |
E06 | 10.2 | 2306 | 16.0 | 217.9 | 1 | 10.7 | 2306 | 16.0 | 214.9 | 1 | 9.2 | 2144 | 16.0 | 217.0 | 1 |
E07 | 11.5 | 2308 | 15.9 | 218.5 | 1 | 11.4 | 2307 | 16.0 | 216.1 | 1 | 11.7 | 2308 | 16.0 | 218.8 | 1 |
F01 | 10.3 | 2223 | 16.0 | 221.7 | 1 | 10.9 | 2301 | 16.0 | 221.1 | 1 | 10.5 | 2256 | 16.0 | 220.8 | 1 |
F02 | 10.4 | 2238 | 16.0 | 221.9 | 1 | 11.3 | 2299 | 16.0 | 220.9 | 1 | 11.2 | 2306 | 16.0 | 220.5 | 1 |
F03 | 10.5 | 2224 | 15.9 | 221.5 | 1 | 11.1 | 2297 | 16.0 | 220.0 | 1 | 10.9 | 2291 | 16.0 | 220.3 | 1 |
F04 | 10.3 | 2304 | 16.0 | 219.3 | 1 | 10.7 | 2304 | 16.0 | 219.8 | 1 | 10.4 | 2293 | 16.0 | 221.1 | 1 |
F05 | 11.1 | 2307 | 16.0 | 218.5 | 1 | 11.4 | 2305 | 16.0 | 216.7 | 1 | 10.9 | 2290 | 16.0 | 217.8 | 1 |
F06 | 12.1 | 2306 | 16.0 | 217.8 | 1 | 12.1 | 2308 | 16.0 | 216.8 | 1 | 12.2 | 2307 | 16.0 | 218.7 | 1 |
F07 | 12.1 | 2308 | 15.9 | 218.8 | 1 | 11.9 | 2308 | 16.0 | 216.9 | 1 | 12.0 | 2308 | 16.0 | 218.7 | 1 |
G01 | 10.5 | 2273 | 16.0 | 221.5 | 1 | 10.5 | 2288 | 16.0 | 221.3 | 1 | 10.4 | 2270 | 16.0 | 218.6 | 1 |
G02 | 10.8 | 2295 | 16.0 | 219.9 | 1 | 10.9 | 2300 | 16.0 | 220.0 | 1 | 10.8 | 2290 | 16.0 | 219.1 | 1 |
G03 | 11.1 | 2284 | 16.0 | 218.8 | 1 | 11.0 | 2304 | 16.0 | 218.5 | 1 | 11.7 | 2305 | 16.0 | 218.7 | 1 |
G04 | 11.2 | 2285 | 16.0 | 217.9 | 1 | 10.9 | 2300 | 16.0 | 216.7 | 1 | 12.0 | 2307 | 16.0 | 218.4 | 1 |
G05 | 11.3 | 2301 | 16.0 | 216.7 | 1 | 11.2 | 2307 | 16.0 | 215.6 | 1 | 12.2 | 2310 | 16.0 | 218.4 | 1 |
G06 | 11.6 | 2303 | 16.0 | 216.5 | 1 | 11.6 | 2309 | 16.0 | 216.3 | 1 | 11.6 | 2309 | 16.0 | 218.1 | 1 |
G07 | 12.8 | −5 | 0.6 | 111.4 | 6 | 12.6 | −5 | 0.7 | 111.4 | 6 | 12.8 | −6 | 0.7 | 111.4 | 6 |
H01 | 10.3 | 2140 | 16.0 | 223.6 | 1 | 10.2 | 2157 | 16.0 | 223.1 | 1 | 10.4 | 2205 | 16.0 | 224.0 | 1 |
H02 | 10.2 | 2122 | 16.0 | 221.4 | 1 | 10.7 | 2253 | 16.0 | 221.8 | 1 | 10.7 | 2237 | 16.0 | 222.2 | 1 |
H03 | 10.3 | 2203 | 16.0 | 220.0 | 1 | 10.6 | 2283 | 15.9 | 221.5 | 1 | 10.4 | 2241 | 16.0 | 222.3 | 1 |
H04 | 10.5 | 2263 | 16.0 | 218.5 | 1 | 10.7 | 2294 | 16.0 | 219.6 | 1 | 10.5 | 2274 | 16.0 | 219.0 | 1 |
H05 | 10.0 | 2258 | 16.0 | 216.3 | 1 | 10.1 | 2265 | 16.0 | 218.0 | 1 | 9.9 | 2245 | 16.0 | 217.6 | 1 |
H06 | 11.1 | 2307 | 16.0 | 215.9 | 1 | 10.8 | 2307 | 16.0 | 215.4 | 1 | 11.8 | 2311 | 16.0 | 217.3 | 1 |
H07 | N/A | N/A | N/A | N/A | 9 | N/A | N/A | N/A | N/A | 9 | N/A | N/A | N/A | N/A | 9 |
I01 | 9.9 | 1960 | 15.9 | 224.1 | 1 | 10.1 | 1992 | 15.9 | 223.0 | 1 | 9.9 | 2004 | 15.9 | 222.6 | 1 |
I02 | 9.7 | 1988 | 16.0 | 222.0 | 1 | 10.2 | 2138 | 16.0 | 222.7 | 1 | 10.3 | 2175 | 16.0 | 223.2 | 1 |
I03 | 10.3 | 2207 | 16.0 | 221.2 | 1 | 10.5 | 2230 | 16.0 | 222.1 | 1 | 10.4 | 2255 | 16.0 | 221.3 | 1 |
I04 | 10.3 | 2227 | 16.0 | 218.7 | 1 | 10.6 | 2279 | 16.0 | 220.5 | 1 | 10.5 | 2276 | 16.0 | 220.6 | 1 |
I05 | 10.5 | 2232 | 16.0 | 218.0 | 1 | 10.7 | 2305 | 16.0 | 219.8 | 1 | 10.5 | 2297 | 15.9 | 218.3 | 1 |
I06 | 10.9 | 2286 | 16.0 | 215.0 | 1 | 11.4 | 2310 | 16.0 | 217.3 | 1 | 11.2 | 2309 | 16.0 | 217.9 | 1 |
I07 | 11.0 | 2308 | 16.0 | 214.4 | 1 | 11.4 | 2308 | 16.0 | 217.2 | 1 | 11.6 | 2308 | 16.0 | 218.1 | 1 |
J01 | 9.6 | 1872 | 16.0 | 222.9 | 1 | 10.2 | 2082 | 16.0 | 224.3 | 1 | 10.3 | 2120 | 16.0 | 224.8 | 1 |
J02 | 10.3 | 2031 | 15.9 | 222.4 | 1 | 10.8 | 2266 | 16.0 | 224.1 | 1 | 10.7 | 2232 | 15.9 | 223.6 | 1 |
J03 | 10.5 | 2172 | 16.0 | 220.6 | 1 | 10.8 | 2295 | 16.0 | 222.6 | 1 | 10.9 | 2297 | 16.0 | 222.5 | 1 |
J04 | N/A | N/A | N/A | N/A | 9 | N/A | N/A | N/A | N/A | 9 | N/A | N/A | N/A | N/A | 9 |
J05 | 10.5 | 2227 | 16.0 | 219.0 | 1 | 10.8 | 2305 | 16.0 | 221.0 | 1 | 10.9 | 2307 | 16.0 | 219.9 | 1 |
J06 | 10.7 | 2289 | 16.0 | 215.6 | 1 | 11.6 | 2309 | 16.0 | 218.1 | 1 | 11.6 | 2308 | 16.0 | 218.0 | 1 |
J07 | 10.4 | 2274 | 15.9 | 214.6 | 1 | 11.4 | 2312 | 15.9 | 216.6 | 1 | 11.3 | 2309 | 15.9 | 216.8 | 1 |
K01 | 9.7 | 1952 | 15.9 | 221.9 | 1 | 10.5 | 2219 | 15.9 | 224.9 | 1 | 10.4 | 2153 | 15.9 | 223.5 | 1 |
K02 | 10.6 | 2048 | 15.9 | 221.6 | 1 | 11.2 | 2281 | 16.0 | 224.7 | 1 | 11.1 | 2278 | 16.0 | 223.1 | 1 |
K03 | 10.3 | 2171 | 16.0 | 221.1 | 1 | 10.7 | 2306 | 16.0 | 224.1 | 1 | 10.9 | 2306 | 16.0 | 221.4 | 1 |
K04 | 10.6 | 2274 | 16.0 | 219.4 | 1 | 10.9 | 2306 | 16.0 | 222.7 | 1 | 11.2 | 2305 | 16.0 | 220.8 | 1 |
K05 | 10.8 | 2297 | 16.0 | 218.6 | 1 | 11.0 | 2307 | 16.0 | 219.2 | 1 | 10.9 | 2305 | 16.0 | 218.4 | 1 |
K06 | 10.6 | 2261 | 16.0 | 216.9 | 1 | 10.9 | 2307 | 16.0 | 219.2 | 1 | 10.9 | 2305 | 16.0 | 218.2 | 1 |
K07 | 10.3 | 2197 | 15.9 | 213.1 | 1 | 11.9 | 2309 | 16.0 | 216.6 | 1 | 11.9 | 2309 | 16.0 | 216.2 | 1 |
L01 | 9.5 | 1826 | 15.8 | 221.7 | 1 | 10.2 | 2099 | 15.9 | 225.0 | 1 | 10.4 | 2157 | 15.9 | 224.0 | 1 |
L02 | 9.8 | 1963 | 16.0 | 220.9 | 1 | 10.6 | 2242 | 16.1 | 224.5 | 1 | 10.9 | 2267 | 16.1 | 224.2 | 1 |
L03 | 10.8 | −3 | 0.0 | 30.1 | 5 | 11.7 | −3 | 0.0 | 30.1 | 5 | 12.2 | −3 | 0.0 | 30.1 | 5 |
L04 | 10.2 | 2141 | 15.9 | 220.0 | 1 | 10.8 | 2301 | 16.0 | 221.2 | 1 | 11.2 | 2305 | 16.0 | 220.6 | 1 |
L05 | 10.6 | 2288 | 16.0 | 219.0 | 1 | 11.0 | 2308 | 16.0 | 220.1 | 1 | 11.6 | 2307 | 16.0 | 218.8 | 1 |
L06 | 10.5 | 2251 | 16.0 | 218.8 | 1 | 11.0 | 2307 | 16.0 | 218.8 | 1 | 11.3 | 2305 | 16.0 | 217.5 | 1 |
L07 | 10.1 | 2151 | 15.9 | 215.0 | 1 | 11.1 | 2308 | 16.0 | 215.1 | 1 | 11.2 | 2300 | 16.0 | 214.1 | 1 |
M01 | 8.1 | 1455 | 15.2 | 220.9 | 1 | 9.8 | 2031 | 15.9 | 223.7 | 1 | 9.8 | 2027 | 15.9 | 223.9 | 1 |
M02 | 8.8 | 1623 | 15.5 | 220.0 | 1 | 10.1 | 2097 | 15.9 | 223.3 | 1 | 10.1 | 2069 | 15.9 | 221.6 | 1 |
M03 | 9.7 | 1896 | 15.9 | 218.8 | 1 | 10.3 | 2152 | 16.0 | 220.6 | 1 | 10.4 | 2241 | 16.0 | 220.8 | 1 |
M04 | 9.4 | 1827 | 15.8 | 217.9 | 1 | 10.5 | 2258 | 15.9 | 222.0 | 1 | 10.9 | 2261 | 16.0 | 221.5 | 1 |
M05 | 10.2 | 2104 | 15.9 | 220.5 | 1 | 11.1 | 2290 | 16.0 | 221.7 | 1 | 11.4 | 2300 | 16.0 | 220.7 | 1 |
M06 | 10.1 | 2139 | 15.9 | 219.5 | 1 | 10.0 | 2183 | 15.9 | 220.1 | 1 | 10.2 | 2136 | 15.9 | 220.7 | 1 |
M07 | 9.8 | 2138 | 16.0 | 217.0 | 1 | 10.1 | 2262 | 16.0 | 218.4 | 1 | 9.3 | 2153 | 15.9 | 218.0 | 1 |
References
- Barthelmie, R.J.; Pryor, S.C.; Frandsen, S.; Hansen, K.; Schepers, G.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.E.; Neckelmann, S. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Ocean. Technol. 2010, 27, 1302–1317. [Google Scholar] [CrossRef]
- Hansen, K.; Barthelmie, R.J.; Jensen, L.E.; Sommer, A. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 2012, 15, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.M.; Barthelmie, R.J.; Pryor, S.C. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles. Environ. Res. Lett. 2013, 8, 034006. [Google Scholar] [CrossRef]
- Eriksson, O.; Mikkelsen, R.; Hansen, K.S.; Nilsson, K.; Ivanell, S. Analysis of long distance wakes of Horns Rev I using actuator disc approach. J. Phys. Conf. Ser. 2014, 555, 012032. [Google Scholar] [CrossRef]
- Gaumond, M.; Réthoré, P.-E.; Ott, S.; Peña, A.; Bechmann, A.; Hansen, K.S. Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm. Wind Energy 2014, 17, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Nygaard, N.G. Wakes in very large wind farms and the effect of neighbouring wind farms. In Proceedings of the TORQUE2014: 5. Science of Making Torque from Wind Conference, Copenhagen, Denmark, 18–20 June 2014.
- Jimenez, P.A.; Navarro, J.; Palomares, A.M.; Dudhia, J. Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: A composite-based analysis with the Weather Research and Forecasting model over Horns Rev. Wind Energy 2015, 18, 559–566. [Google Scholar] [CrossRef]
- Wu, Y.T.; Porté-Agel, F. Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm. Renew. Energy 2015, 75, 945–955. [Google Scholar] [CrossRef]
- Nygaard, N.G.; Hansen, S.D. Wake effects between two neighbouring wind farms. J. Phys. Conf. Ser. 2016, 753, 032020. [Google Scholar] [CrossRef]
- Iungo, G.V.; Porté-Agel, F. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes. J. Phys. Conf. Ser. 2014, 524, 012164. [Google Scholar] [CrossRef]
- Wang, H.; Barthelmie, R.J. Wind turbine wake detection with a single Doppler wind lidar. J. Phys. Conf. Ser. 2015, 625, 012017. [Google Scholar] [CrossRef]
- Vollmer, L.; van Dooren, M.; Trabucchi, D.; Schneemann, J.; Steinfeld, G.; Witha, B.; Trujillo, J.; Kühn, M. First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurements in a German offshore wind farm. J. Phys. Conf. Ser. 2015, 625, 012001. [Google Scholar] [CrossRef]
- Hirth, B.D.; Schroeder, J.L.; Scott Gunter, W.; Guynes, J.G. Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars. J. Atmos. Ocean. Technol. 2012, 29, 765–771. [Google Scholar] [CrossRef]
- Christiansen, M.B.; Hasager, C.B. Using airborne and satellite SAR for wake mapping offshore. Wind Energy 2006, 9, 437–455. [Google Scholar] [CrossRef]
- Hasager, C.B.; Vincent, P.; Badger, J.; Badger, M.; di Bella, A.; Pena Diaz, A.; Volker, P. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms. Energies 2015, 8, 5413–5439. [Google Scholar] [CrossRef] [Green Version]
- Emeis, S. Meteorological explanation of wake clouds at Horns Rev wind farm. DEWI Mag. 2010, 37, 52–55. [Google Scholar]
- Hasager, C.B.; Rasmussen, L.; Peña, A.; Jensen, L.E.; Réthoré, P.-E. Wind Farm Wake: The Horns Rev Photo Case. Energies 2013, 6, 696–716. [Google Scholar] [CrossRef] [Green Version]
- Bhaganagar, K.; Debnath, M. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines. Energies 2014, 7, 5740–5763. [Google Scholar] [CrossRef]
- Hancock, P.E.; Pascheke, F. Wind-tunnel simulations of the wakes of large wind turbines: Part 2, the wake flow. Bound.-Layer Meteorol. 2014, 151, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Hancock, P.E.; Zhang, S.; Pascheke, F.; Hayden, P. Wind tunnel simulation of a wind turbine wake in neutral, stable and unstable wind flow. J. Phys. Conf. Ser. 2014, 555, 01204. [Google Scholar] [CrossRef]
- Chamorro, L.P.; Porté-Agel, F. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study. Bound.-Layer Meteorol. 2010, 136, 515–533. [Google Scholar] [CrossRef]
- Hancock, P.E.; Zhang, S. A Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Weakly Unstable Boundary Layer. Bound.-Layer Meteorol. 2015, 156, 395–413. [Google Scholar] [CrossRef] [Green Version]
- EWEA. European Wind Energy Association: The European Offshore Wind Industry—Key Trends and Statistics 2015. 2016. Available online: http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2015.pdf (accessed on 1 March 2017).
- Global Wind Energy Council. Available online: http://www.gwec.net/global-figures/market-forecast-2012-2016/ (accessed on 1 March 2017).
- Courtney, M.; Wagner, R.; Lindelöw, P. Testing and comparison of lidars for profile and turbulence measurements in wind energy. IOP Conf. Ser. Earth Environ. Sci. 2008, 1, 012021. [Google Scholar] [CrossRef]
- Gottschall, J.; Courtney, M.S.; Wagner, R.; Jørgensen, H.E.; Antoniou, I. Lidar profilers in the context of wind energy—A verification procedure for traceable measurements. Wind Energy 2012, 15, 147–159. [Google Scholar] [CrossRef]
- Sathe, A.; Mann, J.; Gottschall, J.; Courtney, M. Can Wind Lidars Measure Turbulence? J. Atmos. Ocean. Technol. 2011, 28, 853–868. [Google Scholar] [CrossRef]
- Ocean and Sea Ice Satellite Application Facility. Available online: http://www.osi-saf.org (accessed on 1 March 2017).
- Høyer, J.L.; She, J. Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea. J. Mar. Syst. 2007, 65, 176–189. [Google Scholar] [CrossRef]
- Høyer, J.L.; Karagali, I. Sea surface temperature climate data record for the North Sea and Baltic Sea. J. Clim. 2016, 29, 2529–2541. [Google Scholar] [CrossRef]
- Karagali, I.; Høyer, J.L. Observations and modelling of the diurnal SST cycle in the North and Baltic Seas. J. Geophys. Res. Oceans 2013, 118, 4488–4503. [Google Scholar] [CrossRef] [Green Version]
- Karagali, I.; Høyer, J.L. Characterisation and quantification of regional diurnal cycles from SEVIRI. Ocean Sci. 2014, 10, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Kátic, I.; Højstrup, J.; Jensen, N.O. A Simple Model for Cluster Efficiency. In Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 7–9 October 1986.
- European Organization for the Exploitation of Meteorological Satellites. Available online: http://en.sat24.com/en (accessed on 1 March 2017).
- European Centre Medium-Range Weather Forecast. Available online: http://www.ecmwf.int/ (accessed on 1 March 2017).
- University of Wyoming. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 1 March 2017).
- Peña, A.; Hahmann, A.N. Atmospheric stability and turbulence fluxes at Horns Rev—An intercomparison of sonic, bulk and WRF model data. Wind Energy 2012, 15, 717–731. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk. SSSR Geophiz. Inst. 1954, 24, 163–187. [Google Scholar]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Jpn. 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Volker, P.H.J.; Badger, J.; Hahmann, A.N.; Ott, S. The Explicit Wake Parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF. Geosci. Model Dev. 2015, 8, 3715–3731. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, N.N. General Purpose Flow Solver Applied to Flow over Hills. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 1995. [Google Scholar]
- Michelsen, J.A. Basis3D—A Platform for Development of Multiblock PDE Solvers. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 1992. [Google Scholar]
- Mann, J. The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 1994, 273, 141–168. [Google Scholar] [CrossRef]
- Sørensen, J.N.; Mikkelsen, R.F.; Henningson, D.S.; Ivanell, S.; Sarmast, S.; Andersen, S.J. Simulation of wind turbine wakes using the actuator line technique. R. Soc. Lond. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373, 20140071. [Google Scholar] [CrossRef] [PubMed]
- Duynkerke, P. Turbulence, radiation and fog in Dutch stable boundary layers. Bound.-Layer Meteorol. 1998, 90, 447–477. [Google Scholar] [CrossRef]
- Van Ulden, A.P.; Holtslag, A.A.M. Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. Appl. Climatol. 1985, 24, 1196–1207. [Google Scholar] [CrossRef]
- Peña, A.; Gryning, S.-E.; Hasager, C.B. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor. Appl. Climatol. 2010, 100, 325–335. [Google Scholar] [CrossRef]
- Baidya Roy, S.; Traiteur, J.J. Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 17899–17904. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Zhu, R.; Guo, P. A Case Study of Land-Surface-Temperature Impact from Large-Scale Deployment of Wind Farms in China from Guazhou. Remote Sens. 2016, 8, 790. [Google Scholar] [CrossRef]
- Sathe, A.; Gryning, S.-E.; Peña, A. Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy 2011, 14, 767–780. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK; New York, NY, USA, 1987. [Google Scholar]
Information | 12 February 2008 | 25 January 2016 |
---|---|---|
Wind farm name | Horns Rev 1 | Horns Rev 2 |
Number of turbines | 80 | 91 |
Rated production (kW) | 2000 | 2300 |
Actual production (kW) | ~80 | ~2300 |
Wind turbine status | Few turbines at cut-in | Most turbines at rated |
Wind speed (m/s) | ~4 | ~13 |
Wind direction (degrees) | ~181 | ~223 |
Air temperature (°C) | ~3.5 | ~8.0 |
Sea surface temperature (°C) | ~5.0 | ~5.2 |
Turbulence intensity (%) | ~17 | ~3 |
Atmospheric stability | Unstable | Stable |
Wake expansion | Wide, looping | Narrow, fanning |
Type of fog upstream | Warm water advection fog | Cold water advection fog |
Near wake process | Condensation in high TKE | Saturation dew-point at low height |
Far wake process | None | Dispersion due to mixing air aloft |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasager, C.B.; Nygaard, N.G.; Volker, P.J.H.; Karagali, I.; Andersen, S.J.; Badger, J. Wind Farm Wake: The 2016 Horns Rev Photo Case. Energies 2017, 10, 317. https://doi.org/10.3390/en10030317
Hasager CB, Nygaard NG, Volker PJH, Karagali I, Andersen SJ, Badger J. Wind Farm Wake: The 2016 Horns Rev Photo Case. Energies. 2017; 10(3):317. https://doi.org/10.3390/en10030317
Chicago/Turabian StyleHasager, Charlotte Bay, Nicolai Gayle Nygaard, Patrick J. H. Volker, Ioanna Karagali, Søren Juhl Andersen, and Jake Badger. 2017. "Wind Farm Wake: The 2016 Horns Rev Photo Case" Energies 10, no. 3: 317. https://doi.org/10.3390/en10030317
APA StyleHasager, C. B., Nygaard, N. G., Volker, P. J. H., Karagali, I., Andersen, S. J., & Badger, J. (2017). Wind Farm Wake: The 2016 Horns Rev Photo Case. Energies, 10(3), 317. https://doi.org/10.3390/en10030317