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Abstract: This paper analyzes and compares models for predicting average magnet losses in interior
permanent-magnet motors with fractional-slot concentrated windings due to harmonics in the
armature reaction (assuming sinusoidal phase currents). Particularly, loss models adopting different
formulations and solutions to the Helmholtz equation to solve for the eddy currents are compared
to a simpler model relying on an assumed eddy-current distribution. Boundaries in terms of
magnet dimensions and angular frequency are identified (numerically and using an identified
approximate analytical expression) to aid the machine designer whether the more simple loss model
is applicable or not. The assumption of a uniform flux-density variation (used in the loss models) is
also investigated for the case of V-shaped and straight interior permanent magnets. Finally, predicted
volumetric loss densities are exemplified for combinations of slot and pole numbers common in
automotive applications.

Keywords: automotive applications; concentrated windings; eddy current losses; fractional-slot
windings; interior permanent-magnet motors

1. Introduction

In interior permanent-magnet motors (IPMs), the permanent magnets (PMs) are embedded into
the rotor. Compared to rotors with surface-mounted PMs, the resulting flux concentration effect
in IPMs significantly reduces the induced PM eddy-current losses caused by the changing air-gap
permeance due to the slot openings. Further, a not insignificant magnetic saliency can be realized,
which contributes with a reluctance torque component and thereby increases the torque density.
These are two main reasons why the IPM is a common machine topology when targeting automotive
applications, with recent examples including [1–7].

A fractional-slot concentrated winding (FSCW) enables very short end-winding lengths and,
thereby, potential improvements in terms of torque density. However, depending on the combination of
the number of stator slots Qs and poles p, the resulting harmonic content in the air-gap magnetomotive
force (MMF) caused by the stator currents can be substantial. During the last decade, efforts were put
into identifying suitable combinations of Qs and p where the impact of the stator MMF harmonics is
as small as possible [8–10]. Particularly, for rotors with surface-mounted PMs, a number of models to
quantify the induced eddy-current losses in the PMs based on the harmonic content in the stator MMF
were developed [11–14]. Today, the combinations of Qs and p with the lowest harmonic content have
been identified, and FSCWs are adopted in automotive applications (see, e.g., [15] and the references
in [16]).
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However, while the above loss models indeed are useful, they are most suitable for comparing
the relative change in eddy-current losses for different combinations of Qs and p rather than accurately
predicting the losses for given PM dimensions. Particularly, the effect of segmentation of the magnets
and the impact of the skin effect is challenging. Additionally, these models target surface-mounted
PMs rather than IPMs (a typical FSCW-IPM motor with Qs = 12 slots and p = 8 poles is depicted
in Figure 1). Having a good approximation of the resulting PM losses is important for the machine
designer since relatively small losses in the PMs can result in excessive temperatures due to the
difficulty of transferring the resulting heat across the air gap.

Figure 1. Sample fractional-slot concentrated winding (FSCW)-interior permanent-magnet motor (IPM)
with Qs =12 slots and p=8 poles.

Essentially, predicting the losses in the PMs can be done accurately using three-dimensional (3D)
finite-element (FEM)-based simulations (as demonstrated in [17]). However, the approach must still be
considered relatively time consuming, although efforts have been made to reduce the computation
times [18]. Recently, the relatively simple analytical loss model in [19] was proposed considering
FSCWs with surface-mounted PMs and including the effect of both axial and tangential segmentation
of the PMs. This model uses the stator MMF harmonic content as input, but neglects the impact of the
skin effect. A more advanced model, incorporating the effect of axial and tangential segmentation, as
well as the skin effect, is adopted in [20] where analytical solutions of the Helmholtz equation with
an imposed source term are adopted. A different model (also accounting for segmentation and the
skin effect) is adopted in [21], where solutions to the Helmholtz equation with a prescribed boundary
surface current are used.

Contributions and Outline of the Paper

An overall aim of this work is to provide a link between models describing the harmonic content in
FSCWs due to the stator MMF with corresponding, sufficiently accurate PM eddy-current loss models
for IPMs. Particularly, the loss models in [20] (here designated Model B) and [21] (here designated
Model C), adopting solutions to different formulations of the Helmholtz equation to solve for the
eddy currents, are compared to the considerably less complex loss model in [19] (here adapted to
IPMs and designated Model A). It is demonstrated that Model B and Model C, though considerably
different in terms of implementation complexity, predict very similar results (in good agreement with
corresponding 3D-FEM simulations) for the PM dimension and rotor speed intervals typically found
in automotive applications. Further, limits (in terms of frequency and PM dimensions) where Model A
(the least complex loss model) is applicable are identified numerically and using an approximate
analytical expression. This limit is not straight forward since the rectangular shape of the PM segments
results in complex eddy-current reaction fields. Key concepts regarding FSCWs are included as an
Appendix representing a complete description of how the uniform variation of the flux density in
the PMs can be analytically predicted. The assumption of a uniform flux-density variation (used
in the loss models) is also investigated for the case of V-shaped and straight interior permanent
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magnets. An extensive numerical evaluation using 3D-FEM-based simulations is carried out to verify
model assumptions and and the conclusions made regarding whether each loss model is applicable or
not. The comparison with 3D-FEM results represents a solid evaluation metric since 3D-FEM-based
models of PM eddy-current losses previously have been demonstrated to yield good agreement
with corresponding experimental results (see, e.g., [17,21]). Further, the extent of a corresponding
experimental evaluation would be extremely expensive in order for a realization where a sufficiently
large number of parameters (including PM, stator and rotor dimensions) would be varied.

The paper is outlined as follows. In Section 2, the loss models considered are briefly reviewed
where the loss model in [19] (here designated Model A), but adapted to IPMs, is presented. In Section 3
(being the major part of this paper), model constraints when applied to IPM rotor geometries and the
model limitations for Model A due to eddy-current reaction fields are identified. These constraints
and limitations are also verified with presented 3D-FEM-based models. Finally, predicted magnet
losses and temperature risk indicators are tabulated for combinations of Qs and p that are commonly
considered in automotive applications in Section 4, and concluding remarks are given in Section 5.

2. Review of Eddy-Current Loss Models

For axially short PMs and assuming a sinusoidal flux-density variation, the predicted volumetric
loss density pm (W/m3) (presented in textbooks, e.g., [22,23]) can be expressed as:

pm =
σmω2

νm l2
mB2

νm

24
(1)

where σm is the conductivity of the PMs, lm the axial length of the PM and ωνm and Bνm are the angular
frequency and magnitude of the imposed flux density, respectively.

However, the assumption of axially short PMs is not valid for practical axial segmentation lengths,
and (1) cannot be directly applied. Generally, assuming constant µr and neglecting displacement
currents (i.e., ∂D/d∂t≈0), the magnetic field in the PMs follows the Helmholtz equation, which can be
expressed as:

∇2H = jσmµ0µrωνm H. (2)

Once a solution to (2) is determined, the current density (and associated losses) can be found from:

J = ∇×H. (3)

In both (2) and (3), bold symbols denote vector fields, and the bar above denotes a phasor
(complex) quantity. Solutions to (2) are used for loss Model B and Model C reviewed below.

2.1. Model A: Assumed Eddy-Current Paths

The loss model presented in [19] is developed for surface-mounted rotors where the air-gap
flux-density harmonics passes over each permanent magnet segment depending on the rotor speed
and wavelength of each harmonic. For IPMs, however, the flux concentration assumed in (A11) results
only in a time-dependent variation of the flux density in the PMs. In [19], this corresponds to the case
of an infinite wavelength where the assumed eddy-current paths are illustrated in Figure 2.

From Figure 2, the flux in the assumed eddy-current path φ can be expressed as:

φ =
∫ y′

−y′

∫ x′

−x′
Bνm sin (ωνm t) dxdy. (4)

The losses in the specific eddy-current path dPm can then be expressed as:
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dPm =
(∂φ/∂t)2

REC
(5)

where REC is the resistance of the eddy-current path found as:

REC =
4y′

σmhmdx′
+

4x′

σmhmdy′
. (6)

Figure 2. Assumed eddy-current paths adopted in Model A (redrawn from [19]).

The average magnet losses for an elementary current path dPm,ave (which is a function of x′ and
y′) is now found by integrating (5) as:

dPm,ave =
ωνm

2π

∫ 2π/ωνm

0
dPmdt. (7)

Finally, an expression for the total average magnet losses for a magnet segment is now found as:

Pm =
∫ wm/2

0
dPm,avedx′ =

σmhm (lmwm)
3 (Bνm ωνm)

2

32 (l2
m + w2

m)
(8)

where y′= lmx′/wm is used when evaluating the integral.

Remark 1. Note that for axially short PMs (lm�wm), the volumetric loss density pm using (8) is found as:

pm =
Pm

hmlmwm
→ σmω2

νm l2
mB2

νm

32
(9)

which is not in agreement with (1). From (9), it can, hence, be expected that Model A will underestimate the
eddy current losses if the PMs are axially short.

Remark 2. Similar loss models also adopting prescribed eddy-current paths are presented in [24].

2.2. Model B: Solving the Helmholtz Equation with the Imposed Source Term

In [25], the Helmholtz equation is solved where the source field due to the armature reaction
is added explicitly rather than as an imposed boundary condition. With this source term added,
(2) becomes:

∂2Hz

∂x2 +
∂2Hz

∂y2 = jσmµ0µrωνm

(
Hz +

Bνm

µ0µr

)
(10)
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Similar solutions are reported in [20,26] where in [20], the solution is applied on two IPMs with
distributed windings. The resulting average eddy-current losses for a magnet segment become [20]:

Pm =
32σmω2

νm hmlmwmB2
νm

π2

∞

∑
n′=1

∞

∑
m′=1

{num
den

}
(11)

num =
1

l2
m(2n′ − 1)2 +

1
w2

m(2m′ − 1)2 (12)

den = π4
[
(2n′ − 1)2

w2
m

+
(2m′ − 1)2

l2
m

]2

+

(
µ0µrσmωνm hm

δ + hm

)2

≈ π4
[
(2n′ − 1)2

w2
m

+
(2m′ − 1)2

l2
m

]2

+(µ0µrσmωνm)
2 (13)

where hm�δ was assumed in the approximation used in (13).

Remark 3. For axially short PMs; using (11), the volumetric loss density pm is found as:

pm =
Pm

hmlmwm

=
32σmω2

νm l2
mB2

νm

π6

∞

∑
n′=1

∞

∑
m′=1

{
1

(2n′ − 1)2(2m′ − 1)4

}
. (14)

Now, the double sum in (14) equals π6/768 (obtained using Mathematica (Mathematica is a
registered trademark of Wolfram Research, Inc., Champaign, IL, USA), which yields an expression for
pm identical to (1).

2.3. Model C: Solving the Helmholtz Equation Prescribing Boundary Surface Currents

As is well known, the magnetization of a PM can be represented using a surface-current density
with a magnitude corresponding to the remanent flux density divided by the permeability (see,
e.g., [23]). Therefore, each flux density harmonic caused by the armature reaction can, approximately,
be modeled assuming the surface current:

Js =
Bνm

µ0µr
cos (jωνm t) (15)

on the outer boundaries of the magnet segment whose normals are in the xy-plane (the xy-coordinate
system is depicted in Figure A1). Equation (2) simplifies to:

∂2Hz

∂x2 +
∂2Hz

∂y2 = jσmµ0µrωνm Hz (16)

with the boundary condition Hz =Bνm /(µ0µr) on the prescribed outer boundaries.
A general solution to (16) with the given boundary condition is presented in [21,27] where in [27],

also the displacement currents are accounted for. From the solution Hz(x, y), the current density is
then found as:

J = ∇×H =
∂Hz

∂y
x̂− ∂Hz

∂x
ŷ = Jx x̂ + Jyŷ. (17)

The resulting expression for the average eddy-current losses for a magnet segment becomes:
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Pm =
8hmwmωνm B2

νm

π2µ0µr

∞

∑
p′=1{ ={α} sinh (<{α}lm)−<{α} sin (={α}lm)

m′2(<{α}2+={α}2)[cosh(<{α}lm)+cos(={α}lm)]

}

+
8hmlmωνm B2

νm

π2µ0µr

∞

∑
q′=1{ ={β} sinh (<{β}wm)−<{β} sin (={β}wm)

n′2(<{β}2+={β}2)[cosh(<{β}wm)+cos(={β}wm)]

}
(18)

where m′=2p′ − 1, n′=2q′ − 1, and:

α =

√(
m′π
wm

)2

+ jσmµ0µrωνm (19)

β =

√(
n′π
lm

)2

+ jσmµ0µrωνm (20)

Remark 4. It is further shown in [27] that using (18), the resulting volumetric loss density pm for axially short
PMs is identical to the classical expression (1).

3. Analysis and Evaluation

3.1. Loss-Model Constraints When Applied to IPMs

An analytical approach for approximating the flux-density variation Bm(θr) in the PMs as
a function of rotor position θr is outlined in Section A.4 in the Appendix A. From Bm(θr), the
corresponding harmonics (of order νm and with a magnitude Bνm ) can then be identified (in this
paper, this identification has been done using the fft function in MATLAB (MATLAB is a registered
trademark of The Mathworks Inc., Natick, MA, USA). However, if required, more accurate predictions
of Bνm can rapidly be obtained using two-dimensional static FEM simulations.

The three eddy-current loss models reviewed in Section 2 all assume that the flux density variation
in the PMs is uniform. For surface-mounted PMs, it is pointed out in [19] that such an assumption
holds provided that the PM width wm is significantly lower than half of the wavelength λν of the
harmonic order of most interest ν.

With the pole-cap coefficient αp as defined in Figure A1, for IPMs, the corresponding condition
can be expressed as αp/(Cp)≤1/ν where C=1 and C=1/2 for V-shaped and straight interior PMs,
respectively. For many combinations of Qs and p, the harmonic order ν that dominates the PM losses
is less than or equal to p (i.e., ν≤ p). Further, αp≈3/4 is not uncommon in order to realize a certain
reluctance-torque component. Thereby, we obtain:

3
4
≤ Cp

ν
(21)

and it can be concluded that for V-shaped PMs, a uniform flux-density variation in the PMs can often
be assumed, whereas for straight interior PMs, this assumption is valid only if the harmonic order ν

that dominates the PM losses fulfills ν� p.

3.2. Limits for Model A Due to Eddy-Current Reaction Fields

As seen, the expressions for the volumetric loss density pm given by Model A, Model B and
Model C are of increasing complexity. An interesting issue is therefore to determine the boundaries
when the simplest model (Model A) is applicable. Since Model A does not incorporate the effect of
eddy-current reaction fields, it may risk overestimating the eddy-current losses at higher frequencies.
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However, as pointed out in (9), Model A will underestimate the eddy-current losses if either lm�wm or
wm� lm (where both Model B and Model C simplify to (1), as shown by (14) and in [27], respectively).

To compare Model B and Model C to Model A for typical PM dimensions lm and wm, the relative
errors εA|B and εA|C are therefore introduced as:

εA|B =
pm(Model A)− pm(Model B)

pm(Model B)
(22)

εA|C =
pm(Model A)− pm(Model C)

pm(Model C)
. (23)

In Figure 3, contours when εA|B = 0.2 (representing a modest deviation) have been plotted for
ωνm /(2π)=300 Hz to ωνm /(2π)=3000 Hz in steps of 300 Hz assuming µr =1.04 and σm =694 kS/m
(typical values for PMs of the NdFeB-type). The regions representing lm�wm or wm� lm are patched
as black in Figure 3. It is further found that the contours for εA|C=0.2 are essentially identical. Hence,
Model B should predict very similar results to (the somewhat more complex) Model C. How Figure 3
(or its approximation Figure 4 (see below)) can be used by the machine designer to determine the
validity of the different loss models is exemplified in Section 3.3.
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Figure 3. Contours corresponding to εA|B = 0.2 (red curves) for ωνm /(2π) = 300 Hz to ωνm /(2π) =

3000 Hz in steps of 300 Hz assuming µr =1.04 and σm =694 kS/m. The arrow denotes the direction of
increasing ωνm . Note that the contours εA|C =0.2 are essentially identical.

Approximation of εA|B

Figure 3 can be useful for a machine designer since it provides boundaries in terms of magnet
dimensions lm and wm and excitation frequencies ωνm when the simplest loss model (Model A) predicts
the resulting eddy-current losses with sufficient accuracy. In [27], a number of approximations to (18)
(Model C) are presented. However, when applying these approximation using typical PM dimensions
(lm and wm) and a conductivity σm valid for NdFeB-type PMs, it is found that none of the resulting
approximations to εA|C reproduce the contours in Figure 3 sufficiently accurately.

In order to investigate whether εA|B can be approximated, the dimensional ratios ξ and κ are
introduced as:

ξ =
max(lm, wm)

min(lm, wm)
(24)

κ =
min(lm, wm)

δskin
(25)
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where δskin =
√

2/(σmµ0µrωνm) is the classical expression for skin depth. Now, by considering only
n′=m′=1 in (11), εA|B can be approximated as:

εA|B ≈
[

π2

256

(
ξ2κ2

1 + ξ2

)2

+
π6

1024

]
− 1. (26)

The contours for εA|B = 0.2 using the approximation (26) are plotted in Figure 4. Comparing
Figures 3 and 4, it can be seen that (26) represents the model prediction error reasonably well.
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3.3. 3DFEM-Evaluation

In order to verify the boundary constraints identified in Sections 3.1 and 3.2, comparisons with
corresponding 3D-FEM-based models, implemented using JMAG (JMAG is a registered trademark of
the JSOL Corporation, Tokyo, Japan), are now presented. In the 3D-FEM-based model, the eddy-current
losses have been obtained by computing the average value of the Ohmic losses in a PM segment
(caused by the resulting current density distribution).

A three-phase IPM with Qs =12 slots and p=8 poles with additional key parameters reported in
Table A1 in Appendix B is used initially for evaluation. The machine geometry is depicted in Figure 5a;
the PM width is wm =15 mm, and the axial length of the PM is varied so that lm =10, 30 and 100 mm,
respectively. The rotor speed is varied up to 9000 rpm.
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Figure 5. IPM 3D-FEM models: (a) V-shaped interior PMs (wm = 15 mm); (b) V-shaped interior PMs

(wm=30 mm); (c) Straight interior PMs (wm =40 mm).

could be present in the air gap due to the armature reaction (assuming sinusoidal phase currents)148

are ν = 4, 8, 12, 16, 20, . . .. However, from (34), kν = 0 for harmonics that are multiples of 12. The149

magnitude of the corresponding harmonics can be obtained using (31)–(37). Hence, in the air gap,150

the three first harmonic orders are ν= 4, 8, and 16. For the considered rotor structures, αp ≈ 0.77 and151

using (33) and (40), the first harmonic order present in a PM is νm =12 (higher order harmonics exist152

but are of significantly lower magnitude and contribute only minor to the total eddy-current losses).153

Hence, at 9000 rpm, ωνm/(2π)=12 · 9000/60=1800 Hz.154

Remark: Since the PMs are mounted in the interior of the rotor, the resulting eddy-current losses155

due to the slot-opening effect is negligible compared to the eddy-current losses due to the armature156

reaction.157

3.3.1. Negligible Eddy-Current Reaction Fields158

The considered three PM dimensions are indicated in Figure 3 as black diamonds (⋄). As seen,159

for 1800 Hz, all three PM dimensions fall within the set of lm and wm for which Model A should160

provide an accurate prediction (i.e., a deviation of at most 20 %). This is verified in Figure 6 where161

it can be seen that Model A predicts similar results as Model B (red lines) and Model C (green lines)162

in V-shaped interior PMs (wm = 15 mm) with different magnet lengths lm, and also agrees with the163

corresponding 3D-FEM results.164

3.3.2. Non-Negligible Eddy-Current Reaction Fields165

With a wider magnet width wm =30 mm (see Figure 5 (b)), it can be seen from Figure 3 (depicted166

as a blue circle (◦)) that Model A will overestimate the eddy-current losses for frequencies above167

around 1700 Hz (corresponding to rotor speeds around 8500 rpm). This is verified in Figure 7168

where the losses are substantially overestimated at speeds above (around) 8500 rpm. Compensating169

Model A as Pm/
(

εA|B + 1
)

using the approximation of εA|B given by (26) yields a significantly better170

agreement with the corresponding 3D-FEM results. Model B and Model C predict similar results,171

both agreeing well the corresponding 3D-FEM results at all rotor speeds considered.172

Figure 5. Cont.
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Figure 5. IPM 3D-FEM models: (a) V-shaped interior PMs (wm =15 mm); (b) V-shaped interior PMs
(wm =30 mm); and (c) Straight interior PMs (wm =40 mm).

A brief review of the fundamentals of the resulting harmonic content is provided in Appendix A.
From (A1), the winding periodicity is found as tper=4. Therefore, from (A4), the harmonic orders that
could be present in the air gap due to the armature reaction (assuming sinusoidal phase currents) are
ν=4, 8, 12, 16, 20, . . .. However, from (A6), kν =0 for harmonics that are multiples of 12. The magnitude
of the corresponding harmonics can be obtained using (A3)–(A9). Hence, in the air gap, the three
first harmonic orders are ν=4, 8 and 16. For the considered rotor structures, αp≈0.77 and using (A5)
and (A12), the first harmonic order present in a PM is νm =12 (higher order harmonics exist, but are of
significantly lower magnitude and contribute only minorly to the total eddy-current losses). Hence, at
9000 rpm, ωνm /(2π)=12 · 9000/60=1800 Hz.

Remark 5. Since the PMs are mounted in the interior of the rotor, the resulting eddy-current losses due to the
slot-opening effect are negligible compared to the eddy-current losses due to the armature reaction.

3.3.1. Negligible Eddy-Current Reaction Fields

The considered three PM dimensions are indicated in Figure 3 as black diamonds (�). As seen, for
1800 Hz, all three PM dimensions fall within the set of lm and wm for which Model A should provide
an accurate prediction (i.e., a deviation of at most 20%). This is verified in Figure 6, where it can be
seen that Model A predicts similar results as Model B (red lines) and Model C (green lines) in V-shaped
interior PMs (wm =15 mm) with different magnet lengths lm and also agrees with the corresponding
3D-FEM results.
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Figure 6. Predicted losses per magnet segment Pm as function of rotor speed and for different magnet

lengths lm in V-shaped interior PMs (wm=15 mm) for Model A (blue line), Model B (red line), Model C

(green line), and corresponding 3D-FEM results (diamonds “⋄"): (a) lm = 10 mm; (b) lm = 30 mm; (c)

lm=100 mm.

Remark: Since the PMs are buried very deep into the rotor structure, (39) represents an overly173

simplistic approach for predicting the flux-density variation (while still being relatively uniform).174

Therefore, for this case only, the actual flux density Bm(θr) is extracted from static 2D-FEM models.175

3.3.3. Impact of Non-Uniform Flux-Density Variation176

Following the discussion in Section 3.1, the magnet width wm for the straight IPM depicted in177

Figure 5 (c) (PM dimensions marked as the red square (�) in Figure 3) is wider than half of the178

dominant harmonic’s wavelength λν. Therefore, the flux-density variation is not uniform and the179

loss prediction accuracy for all three models worsens. This is verified in Figure 8 where neither of the180

models are in agreement with the corresponding 3D-FEM results.181

3.4. Visualization of Resulting Eddy-Current Distribution182

As is well known, the time-dependent currents densities found from the time-harmonic

(complex) formulations used in Model B and Model C can be determined as

Jx(t) = ℜ {
Jx

}
cos (ωνmt)−ℑ {

Jx

}
sin (ωνmt) (27)

Jy(t) = ℜ
{

Jy

}
cos (ωνmt)−ℑ

{
Jy

}
sin (ωνmt) . (28)

Figure 9 shows the resulting eddy-current distributions in a PM segment of the IPM depicted in183

Figure 5 (b) for two different speeds (1000 and 15000 rpm) with a PM segment length lm = 60 mm.184

Figure 6. Cont.
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lm=100 mm.
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Figure 6. Predicted losses per magnet segment Pm as a function of rotor speed and for different magnet
lengths lm in V-shaped interior PMs (wm =15 mm) for Model A (blue line), Model B (red line), Model C
(green line) and corresponding 3D-FEM results (diamonds “�"): (a) lm =10 mm; (b) lm =30 mm; and
(c) lm =100 mm.

3.3.2. Non-Negligible Eddy-Current Reaction Fields

With a wider magnet width wm =30 mm (see Figure 5b), it can be seen from Figure 3 (depicted as
a blue circle (◦)) that Model A will overestimate the eddy-current losses for frequencies above around
1700 Hz (corresponding to rotor speeds around 8500 rpm). This is verified in Figure 7 where the
losses are substantially overestimated at speeds above (around) 8500 rpm. Compensating Model A as
Pm/

(
εA|B + 1

)
using the approximation of εA|B given by (26) yields a significantly better agreement

with the corresponding 3D-FEM results. Model B and Model C predict similar results, both agreeing
well with the corresponding 3D-FEM results at all rotor speeds considered.
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Figure 7. Predicted losses per magnet segment Pm as function of rotor speed and for magnet lengths

lm = 60 mm in V-shaped interior PMs (wm = 30 mm) for Model A (blue lines), Model A but
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Figure 8. Predicted losses per magnet segment Pm as function of rotor speed for lm = 60 mm for

the straight IPM depicted in Figure 5 (c)s (wm = 40 mm) for Model A (blue line), Model B (red line),

Model C (green line), and corresponding 3D-FEM results (squares “�").

Predicted distributions using Model B (red contours) and Model C (green contours). First, it is185

noted that the resulting eddy-current distributions predicted by the two models are essentially186

equal. Hence, both models can be expected to predict similar eddy-current losses. Further, at187

1000 rpm, the eddy current distribution is very similar to what is assumed in Model A (compare188

with Figure 2). However, at higher speeds, the eddy current paths during the transition between189

“clockwise" and “anti-clockwise" current paths becomes more complex with additional eddies close190

to corners. Corresponding 3D-FEM results are depicted in Figure 10 and, as seen, the eddy-current191

distributions predicted with Model B and Model C are in good agreement with the 3D-FEM results.192

In Figure 11, the predicted current densities |J|=
√

J2
x + J2

y at 15000 rpm in selected positions ’Pa’193

and ’Pb’ (see Figure 9 (b)) using Model A, Model B, Model C, and corresponding 3D-FEM results are194

reported. As seen, Model B and Model C are agreeing well with the 3D-FEM based results whereas195

Model A overestimates the eddy-currents significantly.196

4. PM Losses Automotive Applications197

4.1. Thermal Impact198

While Figure 3 or its approximation (26) provide necessary input on which loss model is suitable,199

the associated temperature increase in the PMs (due to the eddy currents) represents a key limiting200

factor for the machine designer. To investigate this thermal impact, a set of 3D-FEM thermal201

simulations of the machine described above are carried out at 9000 rpm and rated current for different202

volumetric loss densities pm in the PMs. The implemented thermal model is similar to the 3D-FEM203

Figure 7. Predicted losses per magnet segment Pm as a function of rotor speed and for magnet
lengths lm = 60 mm in V-shaped interior PMs (wm = 30 mm) for Model A (blue lines), Model A,
but compensated as Pm/(εA|B + 1) (dashed blue line), Model B (red line), Model C (green line) and
corresponding 3D-FEM results (circles “◦").

Remark 6. Since the PMs are buried very deep into the rotor structure, (A11) represents an overly simplistic
approach for predicting the flux-density variation (while still being relatively uniform). Therefore, for this case
only, the actual flux density Bm(θr) is extracted from static 2D-FEM models.

3.3.3. Impact of Non-Uniform Flux-Density Variation

Following the discussion in Section 3.1, the magnet width wm for the straight IPM depicted in
Figure 5c (PM dimensions marked as the red square (�) in Figure 3) is wider than half of the dominant
harmonic’s wavelength λν. Therefore, the flux-density variation is not uniform, and the loss prediction
accuracy for all three models worsens. This is verified in Figure 8 where neither of the models are in
agreement with the corresponding 3D-FEM results.
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Figure 7. Predicted losses per magnet segment Pm as function of rotor speed and for magnet lengths

lm = 60 mm in V-shaped interior PMs (wm = 30 mm) for Model A (blue lines), Model A but
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Figure 8. Predicted losses per magnet segment Pm as function of rotor speed for lm = 60 mm for

the straight IPM depicted in Figure 5 (c)s (wm = 40 mm) for Model A (blue line), Model B (red line),

Model C (green line), and corresponding 3D-FEM results (squares “�").

Predicted distributions using Model B (red contours) and Model C (green contours). First, it is185

noted that the resulting eddy-current distributions predicted by the two models are essentially186

equal. Hence, both models can be expected to predict similar eddy-current losses. Further, at187

1000 rpm, the eddy current distribution is very similar to what is assumed in Model A (compare188

with Figure 2). However, at higher speeds, the eddy current paths during the transition between189

“clockwise" and “anti-clockwise" current paths becomes more complex with additional eddies close190

to corners. Corresponding 3D-FEM results are depicted in Figure 10 and, as seen, the eddy-current191

distributions predicted with Model B and Model C are in good agreement with the 3D-FEM results.192

In Figure 11, the predicted current densities |J|=
√

J2
x + J2

y at 15000 rpm in selected positions ’Pa’193

and ’Pb’ (see Figure 9 (b)) using Model A, Model B, Model C, and corresponding 3D-FEM results are194

reported. As seen, Model B and Model C are agreeing well with the 3D-FEM based results whereas195

Model A overestimates the eddy-currents significantly.196

4. PM Losses Automotive Applications197

4.1. Thermal Impact198

While Figure 3 or its approximation (26) provide necessary input on which loss model is suitable,199

the associated temperature increase in the PMs (due to the eddy currents) represents a key limiting200

factor for the machine designer. To investigate this thermal impact, a set of 3D-FEM thermal201

simulations of the machine described above are carried out at 9000 rpm and rated current for different202

volumetric loss densities pm in the PMs. The implemented thermal model is similar to the 3D-FEM203

Figure 8. Predicted losses per magnet segment Pm as a function of rotor speed for lm =60 mm for the
straight IPM depicted in Figure 5c (wm =40 mm) for Model A (blue line), Model B (red line), Model C
(green line) and corresponding 3D-FEM results (squares “�”).

3.4. Visualization of the Resulting Eddy-Current Distribution

As is well known, the time-dependent currents densities found from the time-harmonic (complex)
formulations used in Model B and Model C can be determined as:

Jx(t) = <
{

Jx
}

cos (ωνm t)−=
{

Jx
}

sin (ωνm t) (27)

Jy(t) = <
{

Jy

}
cos (ωνm t)−=

{
Jy

}
sin (ωνm t) . (28)

Figure 9 shows the resulting eddy-current distributions in a PM segment of the IPM depicted
in Figure 5b for two different speeds (1000 and 15,000 rpm) with a PM segment length lm =60 mm;
predicted distributions using Model B (red contours) and Model C (green contours). First, it is noted
that the resulting eddy-current distributions predicted by the two models are essentially equal. Hence,
both models can be expected to predict similar eddy-current losses. Further, at 1000 rpm, the eddy
current distribution is very similar to what is assumed in Model A (compare with Figure 2). However,
at higher speeds, the eddy current paths during the transition between “clockwise” and “anti-clockwise”
current paths becomes more complex with additional eddies close to corners. Corresponding 3D-FEM
results are depicted in Figure 10, and as seen, the eddy-current distributions predicted with Model B
and Model C are in good agreement with the 3D-FEM results.
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Figure 9. Resulting eddy current distribution using Model B (red contours) and Model C (green

contours) evaluated at ωνm t = π/4 with a magnet length lm = 60 mm at two different speeds: (a)

1000 rpm; (b) 15000 rpm. Note that the green contours are almost completely covered by the red

contours which indicates that the two models predict essentially the same eddy current distribution.
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Figure 10. Resulting eddy current distribution from the 3D-FEM model evaluated at ωνm t=π/4 with

a magnet length lm =60 mm at two different speeds: (a) 1000 rpm; (b) 15000 rpm.

thermal model described in [28] and the intention is to determine approximately how different values204

of pm correspond to resulting magnet temperatures. The iron losses in the stator and rotor laminations205

are computed using the in-built loss model in JMAG. The winding, including the end-winding part,206

is impregnated in Epoxy with an assumed effective thermal conductivity of 0.68 W/(m·K). The207

outer surface of the stator lamination is fixed to 60◦ C representing a water cooling jacket with a208

coolant temperature typical to what found in automotive applications. A sample result from the209

3D-FEM thermal simulation is depicted in Figure 12 and the resulting PM temperatures are reported210

in Figure 13. The results in Figure 13 will be used below in order to provide approximate intervals of211

pm which potentially can result in excessive PM temperatures in an automotive application.212

4.2. Losses for p and Qs Common in Automotive Applications213

Now, resulting PM eddy-current losses for combinations of p and Qs often considered in214

automotive applications are considered. The harmonic content from double-layer FSCWs are215

considered in this paper. For single-layer FSCWs, the harmonic content is described in [8,12,14]. The216

rotor radius rr and air-gap length δ are selected identical to what reported in Table B.1 and the main217

harmonic stator MMF (the ampere-turns and winding factor kν=p/2 product) is also kept the same218

Figure 9. Resulting eddy current distribution using Model B (red contours) and Model C (green
contours) evaluated at ωνm t = π/4 with a magnet length lm = 60 mm at two different speeds:
(a) 1000 rpm; (b) 15,000 rpm. Note that the green contours are almost completely covered by the red
contours, which indicates that the two models predict essentially the same eddy current distribution.
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Figure 10. Resulting eddy current distribution from the 3D-FEM model evaluated at ωνm t=π/4 with

a magnet length lm =60 mm at two different speeds: (a) 1000 rpm; (b) 15000 rpm.
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are computed using the in-built loss model in JMAG. The winding, including the end-winding part,206

is impregnated in Epoxy with an assumed effective thermal conductivity of 0.68 W/(m·K). The207
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Now, resulting PM eddy-current losses for combinations of p and Qs often considered in214
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Figure 10. Resulting eddy current distribution from the 3D-FEM model evaluated at ωνm t=π/4 with
a magnet length lm =60 mm at two different speeds: (a) 1000 rpm; (b) 15,000 rpm.

In Figure 11, the predicted current densities |J|=
√

J2
x + J2

y at 15, 000 rpm in selected positions ‘Pa’
and ‘Pb’ (see Figure 9b) using Model A, Model B, Model C and the corresponding 3D-FEM results are
reported. As seen, Model B and Model C are agreeing well with the 3D-FEM based results, whereas
Model A overestimates the eddy-currents significantly.

Version February 26, 2017 submitted to Energies 13 of 20

0 90 180 270 360
0

0.6

1.2

1.8

2.4

0 90 180 270 360
0

0.9

1.8

2.7

3.6

(a)

(b)

|J|
(A

/
m

m
2
)

|J|
(A

/
m

m
2
)

ωνmt (o)

Figure 11. |J| evaluated at 15000 rpm for Model A (blue lines), Model B (red lines), Model C (green

lines), and 3D-FEM model (black lines) at selected points: (a) ’Pa’; (b) ’Pb’.

meaning that each resulting machine design results in a similar output torque (the harmonic content219

will be different, however, for each combination of p and Qs). The pole-cap coefficient is selected to220

αp =3/4 to yield a rotor saliency and the PM height is selected to hm =5 mm. Further, the PM width221

wm is selected so that the no-load flux density in the air gap is 0.75 T. For p = 8, 10, 12, and 14, this222

results in wm = 14.2, 11.3, 9.5, and 8.1 mm. Resulting rotor geometries for p = 8 and p = 14 (with223

magnetic bridges and air pockets inserted) are depicted in Figure 14.224

The resulting PM loss densities for lm = 10 mm and lm = 30 mm are reported in Table 1225

and Table 2, respectively. As seen, only a few combinations of p and Qs result in sufficiently low226

eddy-current losses so that excessive PM temperatures are avoided. Also, the increase of PM length227

from lm = 10 mm to lm = 30 mm rules out all but two combinations of p and Qs. Further, the loss228

densities reported in Table 1 and Table 2 are predictions using Model C. However, using Figure 3 or229

its approximation (26), it can be determined that Model A provides sufficient accuracy (i.e., within a230

20% deviation from Model B and Model C) for all cases considered in Table 1 and Table 2.

Table 1. pm [W/cm3] for lm=10 mm at 9000 rpm

Qs \p 8 10 12 14

6 4.0 4.7 N.F. 4.1
9 N.F. N.F. 6.3 N.F.

12 0.8 2.0 N.F. 6.2

15 N.F. 1.0 N.F. N.F.
18 0.5 0.5 1.2 4.6

21 N.F N.F. N.F. 1.3

24 qs =1 5.6 N.F. 7.7
27 N.F. 0.8 N.F.

30 qs =1 N.F. 0.9

N.F. Not feasible/unbalanced winding
Distributed windings

Low losses
Medium losses

High losses

Figure 11. |J| evaluated at 15,000 rpm for Model A (blue lines), Model B (red lines), Model C (green
lines) and 3D-FEM model (black lines) at selected points: (a) ‘Pa’; (b) ‘Pb’.

4. PM Losses in Automotive Applications

4.1. Thermal Impact

While Figure 3 or its approximation (26) provide necessary input on which loss model is suitable,
the associated temperature increase in the PMs (due to the eddy currents) represents a key limiting
factor for the machine designer. To investigate this thermal impact, a set of 3D-FEM thermal simulations
of the machine described above is carried out at 9000 rpm and rated current for different volumetric
loss densities pm in the PMs. The implemented thermal model is similar to the 3D-FEM thermal
model described in [28], and the intention is to determine approximately how different values of pm

correspond to resulting magnet temperatures. The iron losses in the stator and rotor laminations are
computed using the in-built loss model in JMAG. The winding, including the end-winding part, is
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impregnated in epoxy with an assumed effective thermal conductivity of 0.68 W/(m·K). The outer
surface of the stator lamination is fixed to 60◦ C representing a water cooling jacket with a coolant
temperature typical of what is found in automotive applications. A sample result from the 3D-FEM
thermal simulation is depicted in Figure 12, and the resulting PM temperatures are reported in
Figure 13. The results in Figure 13 will be used below in order to provide approximate intervals of pm,
which potentially can result in excessive PM temperatures in an automotive application.

Figure 12. Implemented 3D-FEM thermal model with pm =0.1 W/cm3 at rated current and 9000 rpm
(winding impregnation not shown).
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Figure 13. Resulting PM average temperature as function of PM volumetric loss density pm at rated

current and 9000 rpm. The considered low, medium and high temperature ranges have been indicated

using green, orange and red colors, respectively.

5. Conclusions231

In this paper, three models for predicting average magnet losses in IPMs with FSCWs due to232

induced eddy currents caused by the armature reaction (assuming sinusoidal phase currents) were233

analyzed and compared. Provided that the harmonic order ν that dominates the PM losses is less234

or equal to to the number of poles p, it was found that that for V-shaped PMs, a uniform flux235

density variation in the PMs can typically be assumed. Boundaries in terms of PM dimensions236
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Figure 13. Resulting PM average temperature as a function of PM volumetric loss density pm at rated
current and 9000 rpm. The considered low, medium and high temperature ranges have been indicated
using green, orange and red colors, respectively.

4.2. Losses for p and Qs Common in Automotive Applications

Now, resulting PM eddy-current losses for combinations of p and Qs often considered in
automotive applications are considered. The harmonic content from double-layer FSCWs is considered
in this paper. For single-layer FSCWs, the harmonic content is described in [8,12,14]. The rotor radius
rr and air-gap length δ are selected identical to what is reported in Table A1, and the main harmonic
stator MMF (the ampere-turns and winding factor kν=p/2 product) is also kept the same, meaning
that each resulting machine design results in a similar output torque (the harmonic content will be
different, however, for each combination of p and Qs). The pole-cap coefficient is selected as αp =3/4
to yield a rotor saliency, and the PM height is selected as hm = 5 mm. Further, the PM width wm is
selected so that the no-load flux density in the air gap is 0.75 T. For p=8, 10, 12 and 14, this results in
wm =14.2, 11.3, 9.5 and 8.1 mm. Resulting rotor geometries for p=8 and p=14 (with magnetic bridges
and air pockets inserted) are depicted in Figure 14.

The resulting PM loss densities for lm = 10 mm and lm = 30 mm are reported in Tables 1 and 2,
respectively. As seen, only a few combinations of p and Qs result in sufficiently low eddy-current
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losses so that excessive PM temperatures are avoided. Furthermore, the increase of PM length
from lm = 10 mm to lm = 30 mm rules out all but two combinations of p and Qs. Further, the loss
densities reported in Tables 1 and 2 are predictions using Model C. However, using Figure 3 or its
approximation (26), it can be determined that Model A provides sufficient accuracy (i.e., within a 20%
deviation from Model B and Model C) for all cases considered in Tables 1 and 2.
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Figure 14. Rotor geometries (shaft excluded) for (a) p = 8, αp = 3/4, hm = 5 mm, wm = 14.2 mm;

(b) p=14, αp =3/4, hm =5 mm, wm =8.1 mm.

Table 2. pm [W/cm3] for lm=30 mm at 9000 rpm

Qs \p 8 10 12 14

6 9.8 9.8 N.F. 6.7
9 N.F. N.F. 11.3 N.F.

12 1.9 4.0 N.F. 9.1

15 N.F. 2.0 N.F. N.F.
18 1.2 1.0 2.1 7.4

21 N.F N.F. N.F. 2.2

24 qs =1 11.5 N.F. 12.5
27 N.F. 1.4 N.F.

30 qs =1 N.F. 1.5

N.F. Not feasible/unbalanced winding
Distributed windings

Low losses
Medium losses

High losses
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Appendix A. FSCW Fundamentals252

How to predict the magnitudes Bνm and corresponding harmonic orders νm in FSCW-IPMs253

(compiling results from [8,10,29,30]) is, for completeness, described in this appendix.254

Appendix A.1. Preliminaries255

The winding periodicity tper can be expressed as [8]:

tper = gcd (Qs, p/2) (29)

where Qs is the number of stator slots, p the number of poles, and gcd(a, b) denotes the greatest
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√

2I cos
[ p

2

(
θr − αph(n − 1)− ϕ
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Here, θr is the (mechanical) rotor position, ϕ is the current phase angle angle, and αph the angular256

displacement of the air-gap MMF distribution due to each adjacent phase (αph=2π/(mphtper)).257

Figure 14. Rotor geometries (shaft excluded) for: (a) p = 8, αp = 3/4, hm = 5 mm, wm = 14.2 mm;
(b) p=14, αp =3/4, hm =5 mm, wm =8.1 mm.

Table 1. pm (W/cm3) for lm =10 mm at 9000 rpm.

Qs\p 8 10 12 14
6 4.0 4.7 N.F. 4.1
9 N.F. N.F. 6.3 N.F.

12 0.8 2.0 N.F. 6.2
15 N.F. 1.0 N.F. N.F.
18 0.5 0.5 1.2 4.6
21 N.F N.F. N.F. 1.3
24 qs =1 5.6 N.F. 7.7
27 N.F. 0.8 N.F.
30 qs =1 N.F. 0.9

N.F. Not feasible/unbalanced winding
Distributed windings

Low losses
Medium losses

High losses

Table 2. pm (W/cm3) for lm =30 mm at 9000 rpm.

Qs\p 8 10 12 14
6 9.8 9.8 N.F. 6.7
9 N.F. N.F. 11.3 N.F.

12 1.9 4.0 N.F. 9.1
15 N.F. 2.0 N.F. N.F.
18 1.2 1.0 2.1 7.4
21 N.F N.F. N.F. 2.2
24 qs =1 11.5 N.F. 12.5
27 N.F. 1.4 N.F.
30 qs =1 N.F. 1.5

N.F. Not feasible/unbalanced winding
Distributed windings

Low losses
Medium losses

High losses

5. Conclusions

In this paper, three models for predicting average magnet losses in IPMs with FSCWs due to
induced eddy currents caused by the armature reaction (assuming sinusoidal phase currents) were
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analyzed and compared. Provided that the harmonic order ν that dominates the PM losses is less or
equal to the number of poles p, it was found that that for V-shaped PMs, a uniform flux density variation
in the PMs can typically be assumed. Boundaries in terms of PM dimensions and angular frequency
were identified to aid the machine designer to decide whether the simplest loss model (Model A)
is applicable or not. An approximate analytical expression to these boundaries was also identified.
It was found that Model B and Model C, while relying on different formulations and solutions of the
Helmholtz equation, provide very similar loss predictions in very good agreement with corresponding
3D-FEM-based simulations. Further, tables were provided with resulting volumetric loss densities pm

for combinations of Qs and p commonly used in automotive applications. Finally, by compiling results
from previous publications, a complete description on how to analytically predict the magnitudes Bνm

and corresponding harmonic orders νm for FSCW-IPMs was provided in the Appendix.
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Appendix A. FSCW Fundamentals

How to predict the magnitudes Bνm and corresponding harmonic orders νm in FSCW-IPMs
(compiling results from [8,10,29,30]) is, for completeness, described in this Appendix.

Appendix A.1. Preliminaries

The winding periodicity tper can be expressed as [8]:

tper = gcd (Qs, p/2) (A1)

where Qs is the number of stator slots, p the number of poles and gcd(a, b) denotes the greatest
common denominator for a and b. Introducing mph as the (odd) number of phases, the (sinusoidal)
current in in phase n, n=1, 2, . . . , mph, can be expressed as:

in =
√

2I cos
[ p

2

(
θr − αph(n− 1)− ϕ

)]
. (A2)

Here, θr is the (mechanical) rotor position; ϕ is the current phase angle angle; and αph the angular
displacement of the air-gap MMF distribution due to each adjacent phase (αph=2π/(mphtper)).

Appendix A.2. Air-Gap MMF Distribution Due to Stator Current

Assuming that all coils belonging to each phase are series connected, the resulting air-gap MMF
Fδ can be expressed as [31]:

Fδ = ∑
ν

{mph

∑
n=1

nsQskνin

πmphν
cos

[
ν
(

θs − αph(n− 1)
)]}

(A3)

where ns is the number of turns per slot, kν the winding factor for harmonic ν and θs is an angle
spanning the air-gap circumference (expressed in mechanical degrees). Equation (A3) is valid if
magnetic saturation can be neglected, and it is derived assuming that the current in the stator slots can
be represented as point-like sources. The harmonic orders ν that can be present in the air gap can be
expressed as [8]:
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ν =

{
(2k− 1)tper, if Qs/tper is even
ktper, if Qs/tper is odd

(A4)

where k is an integer. Now, sgn(ν) is introduced to denote the direction of rotation of each MMF
harmonic ν with respect to the rotor. Following from (A3) (see [29] for further details), sgn(ν) can be
expressed as:

sgn(ν) =





+1, if rem
( p

2
− ν, mphtper

)

−1, if rem
( p

2
+ ν, mphtper

) (A5)

Note that (A5) is applicable only to harmonics ν that can be present in the air gap (defined
by (A4)).

Appendix A.3. Winding Factor for Harmonic ν

The winding factor for harmonic ν kν can be expressed as [8,29]:

kν =





sin
( qphαph,ν

2

)
sin
(

πν

Qs

)

qph sin
(

αph,ν

2

) , if qph is odd

sin
( qphαph,ν

4

)
sin
(

πν

Qs

)

qph

2
sin
(

αph,ν

2

) , if qph is even

(A6)

where the electrical angle between the electromotive force of two adjacent coils αph and the number of
spokes per phase in the star of slot qph are given as:

αph,ν = π − 2πν

Qs
round (Qs/p) (A7)

qph = Qs/
(

mphtper

)
. (A8)

A sufficient condition for (A6) to be valid is [29]:

round (Qs/p) =





round
(Qsqph

p

)

qph
, if qph is odd

round
(Qsqph

2p

)

qph

2

, if qph is even

(A9)

If (A9) is not fulfilled, the winding factor can then be computed by numerically computing the
harmonic content of Fδ as in [10,30].

Appendix A.4. PM Flux Density Variations

The pole-cap coefficient αp defined in Figure A1 is an approximate measure of how much flux
occurs across a complete pole pitch that is concentrated through the PMs.
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Remark A1. Note that the geometries depicted in Figure A1 are simplified without the presence of eventual
magnetic bridges used to fix the PMs. This simplification will render the predicted flux-density magnitudes Bνm

approximate (mainly due to flux-leakage drop the magnetic bridges). If required, more accurate predictions of
Bνm can rapidly be obtained using two-dimensional static FEM simulations.

Now, ψm(θr) (a function of the rotor position θr) is introduced to denote the flux in a PM pole due
to Fδ. From the geometries depicted in Figure A1, it follows that ψm(θr) can be approximated as:

ψm(θr) =
µ0lmrr

(δ + hm)

∫ (θr+αp)π/p

(θr−αp)π/p
Fδdθs (A10)

where µ0 is the permeability of air. The corresponding flux density in a PM Bm(θr) can now be
approximated as:

Bm(θr) =
ψm(θr)

2Clmwm

=
µ0rr

2(δ + hm)Cwm

∫ (θr+αp)π/p

(θr−αp)π/p
Fδdθs (A11)

where C=1 and C=1/2 for V-shaped and straight interior PMs, respectively. The harmonic orders
present in Bm(θr) (of order νm and with a magnitude Bνm ) are now obtained from (A11).
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A sufficient condition for (34) to be valid is [29]:

round (Qs/p) =





round

(
Qsqph

p

)

qph
, if qph is odd

round

(
Qsqph

2p

)

qph

2

, if qph is even

(37)

If (37) is not fulfilled, the winding factor can then be computed by numerically computing the261

harmonic content of Fδ as in [10,30].262

Appendix A.4. PM Flux Density Variations263

The pole-cap coefficient αp defined in Figure A.1 is an approximate measure of how much flux264

across a complete pole pitch that is concentrated through the PMs.

Figure A.1. Magnet dimensions and definition of rotor-cap coefficient αp (note that for the coordinate

system fixed to PMs, the y-axis is directed into the paper): (a) V-shaped interior PMs; (b) Straight

interior PMs.

265

Remark: Note that the geometries depicted in Figure A.1 are simplified without the presence266

of eventual magnetic bridges used to fixate the PMs. This simplification will render the predicted267

flux-density magnitudes Bνm approximate (mainly due to flux-leakage drop the magnetic bridges). If268

required, more accurate predictions of Bνm can rapidly be obtained using two-dimensional static FEM269

simulations.270

Now, ψm(θr) (a function of the rotor position θr) is introduced to denote the flux in a PM pole

due to Fδ. From the geometries depicted in Figure A.1, it follows that ψm(θr) can be approximated as

ψm(θr) =
µ0lmrr

(δ + hm)

∫ (θr+αp)π/p

(θr−αp)π/p
Fδdθs (38)

where µ0 is the permeability of air. The corresponding flux density in a PM Bm(θr) can now be

approximated as

Bm(θr) =
ψm(θr)

2Clmwm

=
µ0rr

2(δ + hm)Cwm

∫ (θr+αp)π/p

(θr−αp)π/p
Fδdθs (39)

Figure A1. Magnet dimensions and definition of rotor-cap coefficient αp (note that for the coordinate
system fixed to PMs, the y-axis is directed in the paper): (a) V-shaped interior PMs; (b) straight
interior PMs.

Remark A2. When utilizing (A4) and (A5) when inserting (A3) into (A11), it can be verified that the harmonic
orders present in the PMs νm can be expressed as:

νm =

{
ν− p/2, if sgn(ν) = 1 and ν 6= kp/αp

ν + p/2, if sgn(ν) = −1 and ν 6= kp/αp
(A12)

where k is an integer.
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Appendix B. IPM Parameters

Table A1. IPM parameters.

Parameter Value Unit

# poles (p) 8 -
# stator slots (Qs) 12 -

# turns per slot (ns) 16 -
Rated current (I) 97 A (rms)
Rotor radius (rr) 69.25 mm

Air-gap length (δ) 0.75 mm
Magnet height (hm) 7.51 mm

Magnet conductivity (σm) 694 kS/m
Magnet relative permeability (µr) 1.04 -
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