Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs
Abstract
:1. Introduction—The Kelvin-Source Terminal
2. Background: Reliability and Condition Monitoring of Power Semiconductors
3. Results
3.1. On-State Voltage Monitoring with Kelvin-Source Connection
3.2. Gate Driver Voltage Failure
3.3. Accelerated Aging Test with 20 A Silicon Carbide MOSFETs
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Stueckler, F.; Vecino, E. Cool MOS C7 650V Switch in a Kelvin Source Configuration; Infineon Technologies Austria AG: Villach, Austria, 2013. [Google Scholar]
- Crisafulli, V.; Antretter, M. Kelvin Source connection for High Current IGBTs. A way to get high energy efficiency. In Proceedings of the PCIM Europe 2015—International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 19–20 May 2015; pp. 1–7.
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An Industry-Based Survey of Reliability in Power Electronic Converters. IEEE Trans. Ind. Appl. 2001, 47, 1441–1451. [Google Scholar] [CrossRef]
- Wu, R.; Blaabjerg, F.; Wang, H.; Liserre, M.; Iannuzzo, F. Catastrophic failure and fault-tolerant design of IGBT power electronic converters—an overview. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON 2013), Vienna, Austria, 10–13 November 2013; pp. 507–513.
- Ciappa, M. Selected failure mechanisms of modern power modules. Microelectron. Reliab. 2002, 42, 653–667. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, D.; Bryant, A.; Mawby, P.; Ran, L.; Tavner, P. Condition Monitoring for Device Reliability in Power Electronic Converters: A Review. IEEE Trans. Power Electron. 2010, 25, 2734–2752. [Google Scholar] [CrossRef]
- Oh, H.; Han, B.; McCluskey, P.; Han, C.; Youn, B.D. Physics-of-Failure, Condition Monitoring, and Prognostics of Insulated Gate Bipolar Transistor Modules: A Review. IEEE Trans. Power Electron. 2015, 30, 2413–2426. [Google Scholar] [CrossRef]
- Avenas, Y.; Dupont, L.; Baker, N.; Zara, H.; Barruel, F. Condition Monitoring: A Decade of Proposed Techniques. IEEE Ind. Electron. Mag. 2015, 9, 22–36. [Google Scholar] [CrossRef]
- Hamidi, N.; Beck, N.; Thomas, K.; Herr, E. Reliability and lifetime evaluation of different wire bonding technologies for high power IGBT modules. Microelectron. Reliab. 1999, 39, 1153–1158. [Google Scholar] [CrossRef]
- Held, M.; Jacob, P.; Nicoletti, G.; Scacco, P.; Poech, M.-H. Fast power cycling test of IGBT modules in traction application. In Proceedings of the 1997 International Conference on Power Electronics and Drive Systems, Singapore, 26–29 May 1997; Volume 1, pp. 425–430.
- Wu, W.; Held, M.; Jacob, P.; Scacco, P.; Birolini, A. Investigation on the long term reliability of power IGBT modules. In Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs, Yokohama, Japan, 23–25 May 1995; pp. 443–448.
- Thebaud, J.; Woirgard, E.; Zardini, C.; Sommer, K. High power IGBT modules: Thermal fatigue resistance evaluation of the solder joints. In Proceedings of the IEEE International Workshop Integrated Power Packaging, Waltham, MA, USA, 14–15 July 2000; pp. 79–83.
- Xiang, D.; Ran, L.; Tavner, P.; Bryant, A.; Yang, S.; Mawby, P. Monitoring Solder Fatigue in a Power Module Using Case-Above-Ambient Temperature Rise. IEEE Trans. Ind. Appl. 2011, 47, 2578–2591. [Google Scholar] [CrossRef]
- Coquery, G.; Lallemand, R. Failure criteria for long term Accelerated Power Cycling Test linked to electrical turn off SOA on IGBT module. A 4000 hours test on 1200 A–3300 V module with AlSiC base plate. Microelectron. Reliab. 2000, 40, 1665–1670. [Google Scholar] [CrossRef]
- Ji, B.; Pickert, V.; Cao, W.; Zahawi, B. In Situ Diagnostics and Prognostics of Wire Bonding Faults in IGBT Modules for Electric Vehicle Drives. IEEE Trans. Power Electron. 2013, 28, 5568–5577. [Google Scholar] [CrossRef]
- Xiong, Y.; Cheng, X.; Shen, Z.J.; Mi, C.; Wu, H.; Garg, V.K. Prognostic and Warning System for Power-Electronic Modules in Electric, Hybrid Electric, and Fuel-Cell Vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2268–2276. [Google Scholar] [CrossRef]
- Baker, N.; Munk-Nielsen, S.; Bęczkowski, S. Test setup for long term reliability investigation of Silicon Carbide MOSFETs. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–9.
- Patil, N.; Celaya, J.; Das, D.; Goebel, K.; Pecht, M. Precursor Parameter Identification for Insulated Gate Bipolar Transistor (IGBT) Prognostics. IEEE Trans. Reliab. 2009, 58, 271–276. [Google Scholar] [CrossRef]
- Dusmez, S.; Ali, S.H.; Heydarzadeh, M.; Kamath, A.S.; Duran, H.; Akin, B. Aging Precursor Identification and Lifetime Estimation for Thermally Aged Discrete Package Silicon Power Switches. IEEE Trans. Ind. Appl. 2017, 53, 251–260. [Google Scholar] [CrossRef]
- Celaya, J.R.; Patil, N.; Saha, S.; Wysocki, P.; Goebel, K. Towards accelerated aging methodologies and health management of power MOSFETs. In Proceedings of the Annul Conference of the Prognostics and Health Management Society, San Diego, CA, USA, 27 September–1 October 2009; pp. 1–8.
- Beczkowski, S.; Ghimre, P.; de Vega, A.R.; Munk-Nielsen, S.; Rannestad, B.; Thogersen, P. Online Vce measurement method for wear-out monitoring of high power IGBT modules. In Proceedings of the 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–7.
- Farokhzad, B.; Türkes, P.; Wolfgang, E.; Goser, K. Reliability indicators for lift-off of bond wires in IGBT power-modules. Microelectron. Reliab. 1996, 36, 1863–1866. [Google Scholar] [CrossRef]
- Farokhzad, B. Method for Early Failure Recognition in Power Semiconductor Modules. U.S. Patent 6,145,107A, 7 November 2000. [Google Scholar]
Parameter | Value |
---|---|
Current | 22.5 A |
Heatsink Temperature | 75 °C |
Minimum Tj | 85 °C |
Maximum Tj | 160 °C |
Pulse Duration (on) | 2 s |
Pulse Duration (off) | 4 s |
Temperature Swing (Coolest Chip) | 60 °C |
Temperature Swing (Hottest Chip) | 75 °C |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, N.; Luo, H.; Iannuzzo, F. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs. Energies 2017, 10, 384. https://doi.org/10.3390/en10030384
Baker N, Luo H, Iannuzzo F. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs. Energies. 2017; 10(3):384. https://doi.org/10.3390/en10030384
Chicago/Turabian StyleBaker, Nick, Haoze Luo, and Francesco Iannuzzo. 2017. "Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs" Energies 10, no. 3: 384. https://doi.org/10.3390/en10030384
APA StyleBaker, N., Luo, H., & Iannuzzo, F. (2017). Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs. Energies, 10(3), 384. https://doi.org/10.3390/en10030384