A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting
Abstract
:Highlights:
- A novel hybrid model named ELM-WA-KNN is proposed for electric load forecasting in New South Wales, Australia.
- The wavelet analysis (WA) is introduced to eliminate the noise of the electric load time series.
- k-Nearest Neighbor regression (KNN) is used to get the input-output relationship in the hybrid model.
- The kernel function of KNN is established by extreme learning machine (ELM).
- The proposed ELM-WA-KNN model has the best performance among all the considered models.
1. Introduction
2. Materials and Methods
2.1. Wavelet Denoising Technique
2.2. Extreme Learning Machine (ELM)
2.3. k-Nearest Neighbor Regression (KNN)
2.4. The Proposed Hybrid Model
3. Empirical Study
3.1. Study Area Description
3.2. Data Description
3.3. ELM-KNN as a Simulation Tool
- F1: Sphere function (d = 2):
- F2: Rosenbrock function (d = 2):
- F3: Ackley function (d = 2):
3.4. Evaluation Criteria
3.5. The Process of the Proposed Hybrid Model
3.5.1. Wavelet De-noising
3.5.2. The Process of ELM-KNN
3.6. Results and Analysis
3.6.1. Results of the Proposed Model
3.6.2. Model Comparisons
4. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ANN | artificial neural network |
BAMO | binary animal migration optimization |
BPNN | back propagation neural network |
CS | cuckoo search algorithms |
DWT | discrete wavelet transform |
EEMD | ensemble empirical mode decomposition |
EEuNN framework | evolving fuzzy neural network framework |
ELM | extreme learning machine |
EMD | empirical mode decomposition |
FTS | fuzzy time series |
GHSA | global harmony search algorithm |
GM | grey model |
GPRM | grey prediction with rolling mechanism |
KNN regression | k-nearest neighbor regression |
LSSVM | least squares support vector machines |
MAE | mean absolute error |
MRE | mean relative error |
PSO | particle swarm optimization |
QPSO | quantum particle swarm optimization algorithm |
R | correlation coefficient |
SARIMA | seasonal auto-regressive integrated moving average |
SLFN | single hidden-layer feed-forward network |
SSA | singular spectrum analysis |
SVM | supporter vector machine |
SVR | support vector regression |
WT | wavelet transform |
References
- Goia, A.; May, C.; Fusai, G. Functional clustering and linear regression for peak load forecasting. Int. J. Forecast. 2010, 26, 700–711. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A trigonometric grey prediction approach to forecasting electricity demand. Energy 2006, 31, 2839–2847. [Google Scholar] [CrossRef]
- Akay, D.; Atak, M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 2007, 32, 1670–1675. [Google Scholar] [CrossRef]
- Chang, P.C.; Fan, C.Y.; Lin, J.J. Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Electr. Power Energy Syst. 2011, 33, 17–27. [Google Scholar] [CrossRef]
- Kavaklioglu, K. Modeling and prediction of Turkey’s electricity consumption using Support Vector Regression. Appl. Energy 2011, 88, 368–375. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.; Zhang, W.; Sun, D. A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand. Energy Policy 2009, 37, 4901–4909. [Google Scholar] [CrossRef]
- Kucukali, S.; Baris, K. Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 2010, 38, 2438–2445. [Google Scholar] [CrossRef]
- Dash, P.K.; Liew, A.C.; Rahman, S.; Ramakrishna, G. Building a fuzzy expert system for electric load forecasting using a hybrid neural network. Expert Syst. Appl. 1995, 9, 407–421. [Google Scholar] [CrossRef]
- Taylor, J.W. Triple seasonal methods for short-term electricity demand forecasting. Eur. J. Oper. Res. 2010, 204, 139–152. [Google Scholar] [CrossRef]
- Moghram, I.; Rahman, S. Analysis and evaluation of five short-term load forecasting techniques. IEEE Trans. Power Syst. 1989, 4, 1484–1491. [Google Scholar] [CrossRef]
- Wu, H.; Niu, D.; Song, Z. Short-term electric load forecasting based on data mining. Int. J. Eng. Technol. 2017, 8, 250–253. [Google Scholar] [CrossRef]
- Chen, H.Y.; Hong, W.-C.; Shen, W.; Huang, N.N. Electric load forecasting based on a least squares support vector machine with fuzzy time series and global harmony search algorithm. Energies 2016, 9, 70. [Google Scholar] [CrossRef]
- Huang, M.L. Hybridization of chaotic quantum particle swarm optimization with SVR in electric demand forecasting. Energies 2016, 9, 426. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, K. Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 2017, 146, 270–285. [Google Scholar] [CrossRef]
- Karlsson, M.S. Nearest Neighbor Regression Estimators in Rainfall-Runoff Forecasting. Ph.D. Thesis, University Of Arizona, Tucson, AZ, USA, 1985. [Google Scholar]
- Poloczek, J.; Andre Treiber, N.; Kramer, O. KNN regression as geo-impuation method for spatio-temporal wind data. In Proceedings of the International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, Bilbao, Spain, 25–27 June 2014; Volume 299. [Google Scholar] [CrossRef]
- Ban, T.; Zhang, R.; Pang, S.; Sarrafzadeh, A.; Inoue, D. Referential KNN regression for financial time series forecasting. In Proceedings of the International Conference on Neural Information Processing, Daegu, Korea, 3–7 November 2013; Volume 8226, pp. 601–608. [Google Scholar]
- Hu, J.; Liu, J.; Liu, Y.; Gao, C. Emd-KNN model for annual average rainfall forecasting. J. Hydrol. Eng. 2013, 18, 1450–1457. [Google Scholar] [CrossRef]
- Li, X.; Ma, S.; Wang, Y. BamoKNN: A novel computational method for predicting the apoptpsis protein locations. In Proceedings of the IEEE International Conference on Bioinformatic & Biomedicine, Shenzhen, China, 15–18 December 2016; pp. 743–746. [Google Scholar]
- Wang, Y.; Nan, Z.; Chen, H.; Wu, X. Correction of daily precipitation data of ITPCAS dataset over the Qinghai-Tibetan plateau with KNN model. In Proceedings of the IGARSS IEEE International Geoscience & Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 593–596. [Google Scholar]
- Huang, G.B.; Rong, S.; You, K. Extreme learning machine:a new learning scheme of feedforward neural networks. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [Google Scholar]
- Ma, Z.; Luo, G.; Huang, D. Short term traffic flow prediction based on on-line sequential extreme learning machine. In Proceedings of the Eighth International Conference on Advanced Computational Intelligence, Chiang Mai, Thailand, 14–16 February 2016; pp. 143–149. [Google Scholar]
- Masri, D.; Woon, W.L.; Aung, Z. Soil property prediction: An extreme learning machine approach. In Proceedings of the International Conference on Neural Information Processing: Neural Information Processing, Istanbul, Turkey, 9–12 November 2015; pp. 18–27. [Google Scholar]
- Liao, H.Y.; Wang, H.; Hu, Z.J.; Wang, K.; Li, Y.; Huang, D.S.; Ning, W.H.; Zhang, C.X. Stock price forecasting based on extreme learning machine. Comput. Mod. 2014, 12. (In Chinese) [Google Scholar]
- Zhang, Y.H.; Wang, H.; Hu, Z.J.; Wang, K.; Li, Y. A hybrid short-term wind speed forecasting model based on wavelet decomposition and extreme learning machine. Adv. Mater. Res. 2013, 860–863, 361–367. [Google Scholar]
- Shamshirband, S.; Mohammadi, K.; Yee, D.L.; Petković, D.; Mostafaeipour, A. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew. Sustain. Energy Rev. 2015, 52, 1031–1042. [Google Scholar] [CrossRef]
- Dabuechies, I. The wavelet transform, time-frequency loaclization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 6–7. [Google Scholar]
- Wang, L.P.; Shekhar, G. Neural networks and wavelet denoising for stock trading and prediction. Time Ser. Anal. Model. Appl. 2013, 47, 229–247. [Google Scholar]
- Wang, J.; Wang, J.; Li, Y.; Zhu, S.; Zhao, J. Techniques of applying wavelet denoising into a combined model for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2014, 62, 816–824. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, S.; Zhao, Q. Prediction model of chaotic time series based on wavelet denoising and LS-SVM and ITS application. J. Geod. Geodyn. 2008, 28, 96–100. [Google Scholar]
- Abbaszadeh, P. Improving hydrological process modeling using optimized threshold-based wavelet denoising technique. Water Resour. Manag. 2016, 30, 1701–1721. [Google Scholar] [CrossRef]
- Kalteh, A.M. Improving forecasting accuracy of streamflow time series using least squares support vector machine coupled with data-preprocessing techniques. Water Resour. Manag. 2016, 30, 747–766. [Google Scholar] [CrossRef]
- Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Lall, U.; Sharma, A. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour. Res. 1996, 32, 679–694. [Google Scholar] [CrossRef]
- Australian Energy Market Operator (AEMO). Available online: http://www.aemo.com.au (accessed on 12 May 2017).
- Ali, Y.M.K. Forecasting Power and Wind Speed Using Artificial and Wavelet Neural Networks for Prince Edward Island (PEI); Electrical and Computer Engineering at Dalhouse University: Halifax, NS, Canada, 2010. [Google Scholar]
Data Set | N | Min | Max | Mean | Std | S | K | ||
---|---|---|---|---|---|---|---|---|---|
Statistics | Std | Statistics | Std | ||||||
Historical data set | 17,568 | 17,568 | 5350 | 13,459 | 7978 | 1257 | 0.473 | 0.018 | 0.185 |
Train data of ELM | 2832 | 2832 | 5704 | 13,986 | 8612 | 1748 | 0.785 | 0.046 | 0.234 |
Test data of ELM | 2158 | 2158 | 5489 | 11,000 | 7768 | 1044 | 0.000 | 0.053 | −0.557 |
Function | Criteria | KNN | ELM-KNN | BPNN-KNN | SVM-KNN |
---|---|---|---|---|---|
F1 | sum_error | 26.646 | 17.941 | 18.329 | 17.806 |
time | 1.1875 | 4.7837 | 8.0738 | 6.8382 | |
F2 | sum_error | 429.717 | 378.105 | 380.040 | 378.502 |
time | 1.2615 | 4.6738 | 8.1256 | 6.9026 | |
F3 | sum_error | 19.511 | 4.685 | 4.936 | 4.824 |
time | 1.1701 | 4.8150 | 8.1373 | 6.8376 |
Model | MRE | R | MAE |
---|---|---|---|
EWKM | 0.0262 | 0.9660 | 196.7408 |
Run No. | EWKM | EKM | WNNM | ||||||
---|---|---|---|---|---|---|---|---|---|
MRE | MAE | R | MRE | MAE | R | MRE | MAE | R | |
1 | 0.0272 | 203.9354 | 0.9643 | 0.0310 | 234.7119 | 0.9559 | 0.0340 | 258.2224 | 0.9484 |
2 | 0.0254 | 191.5216 | 0.9677 | 0.0330 | 247.7988 | 0.9513 | 0.0361 | 271.3461 | 0.9431 |
3 | 0.0262 | 197.2202 | 0.9658 | 0.0306 | 232.1543 | 0.9561 | 0.0336 | 255.2362 | 0.9487 |
4 | 0.0256 | 193.3032 | 0.9668 | 0.0331 | 248.1338 | 0.9495 | 0.0361 | 271.0228 | 0.9412 |
5 | 0.0269 | 200.0946 | 0.9652 | 0.0298 | 226.2427 | 0.9578 | 0.0328 | 249.4973 | 0.9509 |
6 | 0.0255 | 190.6721 | 0.9670 | 0.0324 | 244.7448 | 0.9519 | 0.0354 | 268.0375 | 0.9439 |
7 | 0.0267 | 199.5574 | 0.9654 | 0.0308 | 234.3278 | 0.9568 | 0.0342 | 260.6011 | 0.9491 |
8 | 0.0278 | 209.6388 | 0.9622 | 0.0306 | 232.2462 | 0.9575 | 0.0337 | 255.6075 | 0.9505 |
9 | 0.0256 | 191.8692 | 0.9669 | 0.0305 | 231.0665 | 0.9563 | 0.0336 | 254.9035 | 0.9487 |
10 | 0.0258 | 193.7943 | 0.9662 | 0.0312 | 237.2551 | 0.9540 | 0.0344 | 261.8085 | 0.9459 |
11 | 0.0264 | 198.3134 | 0.9645 | 0.0328 | 245.2984 | 0.9522 | 0.0355 | 266.4726 | 0.9442 |
12 | 0.0265 | 197.8550 | 0.9654 | 0.0308 | 233.8156 | 0.9557 | 0.0338 | 256.7917 | 0.9483 |
13 | 0.0261 | 195.9784 | 0.9663 | 0.0311 | 236.2416 | 0.9545 | 0.0344 | 261.1275 | 0.9463 |
14 | 0.0265 | 198.5158 | 0.9656 | 0.0302 | 229.5213 | 0.9575 | 0.0334 | 253.4824 | 0.9501 |
15 | 0.0253 | 190.1162 | 0.9676 | 0.0336 | 255.4914 | 0.9500 | 0.0362 | 275.4577 | 0.9433 |
16 | 0.0254 | 190.7357 | 0.9674 | 0.0323 | 243.8135 | 0.9523 | 0.0349 | 263.8025 | 0.9451 |
17 | 0.0274 | 205.2306 | 0.9633 | 0.0309 | 232.5388 | 0.9557 | 0.0342 | 257.9839 | 0.9472 |
18 | 0.0271 | 200.2789 | 0.9657 | 0.0315 | 237.7104 | 0.9543 | 0.0346 | 261.7518 | 0.9460 |
19 | 0.0250 | 187.6062 | 0.9684 | 0.0330 | 246.9160 | 0.9512 | 0.0356 | 267.7434 | 0.9431 |
20 | 0.0257 | 192.4959 | 0.9671 | 0.0310 | 234.3247 | 0.9556 | 0.0342 | 258.7666 | 0.9475 |
21 | 0.0261 | 196.6063 | 0.9666 | 0.0334 | 251.6897 | 0.9493 | 0.0365 | 275.8747 | 0.9407 |
22 | 0.0256 | 193.2492 | 0.9668 | 0.0337 | 251.4458 | 0.9491 | 0.0367 | 274.8453 | 0.9409 |
23 | 0.0267 | 200.5948 | 0.9646 | 0.0315 | 237.0884 | 0.9553 | 0.0345 | 260.6253 | 0.9478 |
24 | 0.0258 | 195.8141 | 0.9664 | 0.0298 | 226.9438 | 0.9581 | 0.0329 | 250.6053 | 0.9508 |
25 | 0.0266 | 199.7260 | 0.9654 | 0.0302 | 230.2009 | 0.9572 | 0.0334 | 254.9789 | 0.9497 |
26 | 0.0253 | 191.2983 | 0.9676 | 0.0304 | 230.2200 | 0.9570 | 0.0336 | 255.1938 | 0.9493 |
27 | 0.0271 | 204.0736 | 0.9641 | 0.0306 | 232.7197 | 0.9564 | 0.0336 | 256.5639 | 0.9490 |
28 | 0.0265 | 199.2113 | 0.9654 | 0.0336 | 253.1185 | 0.9494 | 0.0365 | 276.1422 | 0.9412 |
29 | 0.0278 | 207.2988 | 0.9639 | 0.0308 | 232.1803 | 0.9559 | 0.0337 | 254.5038 | 0.9483 |
30 | 0.0265 | 196.9944 | 0.9666 | 0.0312 | 236.7581 | 0.9545 | 0.0344 | 261.5399 | 0.9468 |
31 | 0.0250 | 186.9544 | 0.9681 | 0.0319 | 241.2899 | 0.9524 | 0.0351 | 266.2253 | 0.9437 |
32 | 0.0280 | 208.4472 | 0.9630 | 0.0311 | 234.4506 | 0.9548 | 0.0343 | 258.7330 | 0.9469 |
33 | 0.0254 | 191.0999 | 0.9674 | 0.0330 | 249.9862 | 0.9509 | 0.0361 | 273.8056 | 0.9431 |
34 | 0.0255 | 191.7066 | 0.9670 | 0.0303 | 229.5405 | 0.9570 | 0.0334 | 252.9284 | 0.9495 |
35 | 0.0259 | 194.0202 | 0.9665 | 0.0305 | 231.5181 | 0.9565 | 0.0332 | 252.7351 | 0.9498 |
36 | 0.0262 | 196.7985 | 0.9661 | 0.0341 | 256.5269 | 0.9490 | 0.0370 | 279.2929 | 0.9411 |
37 | 0.0258 | 193.2783 | 0.9663 | 0.0317 | 241.1737 | 0.9530 | 0.0348 | 265.5501 | 0.9448 |
38 | 0.0265 | 199.2508 | 0.9646 | 0.0324 | 244.2265 | 0.9515 | 0.0352 | 266.1942 | 0.9442 |
39 | 0.0270 | 201.3869 | 0.9651 | 0.0306 | 232.2034 | 0.9563 | 0.0336 | 255.2785 | 0.9493 |
40 | 0.0265 | 200.2736 | 0.9652 | 0.0321 | 243.9047 | 0.9526 | 0.0352 | 267.3854 | 0.9448 |
41 | 0.0278 | 207.9120 | 0.9631 | 0.0321 | 241.4578 | 0.9526 | 0.0350 | 264.2843 | 0.9442 |
42 | 0.0251 | 188.3151 | 0.9683 | 0.0321 | 242.7873 | 0.9536 | 0.0349 | 264.5100 | 0.9462 |
43 | 0.0260 | 194.4705 | 0.9662 | 0.0313 | 238.4554 | 0.9546 | 0.0345 | 263.1648 | 0.9468 |
44 | 0.0257 | 192.4090 | 0.9678 | 0.0304 | 231.6317 | 0.9575 | 0.0336 | 256.3101 | 0.9503 |
45 | 0.0249 | 187.3678 | 0.9686 | 0.0312 | 237.9146 | 0.9538 | 0.0345 | 262.7347 | 0.9457 |
46 | 0.0273 | 205.1311 | 0.9638 | 0.0320 | 243.1807 | 0.9530 | 0.0352 | 267.2574 | 0.9451 |
47 | 0.0250 | 187.8190 | 0.9682 | 0.0306 | 231.5329 | 0.9568 | 0.0338 | 256.1022 | 0.9485 |
48 | 0.0290 | 214.2247 | 0.9622 | 0.0328 | 247.6485 | 0.9496 | 0.0359 | 272.0024 | 0.9411 |
49 | 0.0252 | 189.6822 | 0.9674 | 0.0315 | 238.6218 | 0.9527 | 0.0345 | 261.9417 | 0.9450 |
50 | 0.0256 | 192.8932 | 0.9666 | 0.0313 | 237.3966 | 0.9547 | 0.0347 | 264.2695 | 0.9465 |
Indicators | Models | Mean | Minimum | Maximum | Standard Deviation | Median | Upper Quantile | Lower Quantile |
---|---|---|---|---|---|---|---|---|
MRE | EWKM | 0.0262 | 0.0249 | 0.0290 | 0.0009 | 0.0261 | 0.0255 | 0.0267 |
EKM | 0.0316 | 0.0298 | 0.0341 | 0.0011 | 0.0313 | 0.0306 | 0.0324 | |
WNNM | 0.0346 | 0.0328 | 0.0370 | 0.0011 | 0.0345 | 0.0337 | 0.0352 | |
WKM | 0.0290 | / | / | / | / | / | / | |
MAE | EWKM | 196.7408 | 186.9544 | 214.2247 | 6.4440 | 196.2924 | 191.7473 | 200.2289 |
EKM | 238.8433 | 226.2427 | 256.5269 | 7.7976 | 237.3259 | 232.2141 | 244.1461 | |
WNNM | 262.4248 | 249.4973 | 279.2929 | 7.4146 | 261.7802 | 256.1542 | 267.0612 | |
WKM | 219.6566 | / | / | / | / | / | / | |
R | EWKM | 0.9660 | 0.9622 | 0.9686 | 0.0016 | 0.9663 | 0.9651 | 0.9671 |
EKM | 0.9540 | 0.9490 | 0.9581 | 0.0027 | 0.9545 | 0.9522 | 0.9563 | |
WNNM | 0.9463 | 0.9407 | 0.9509 | 0.0030 | 0.9464 | 0.9442 | 0.9487 | |
WKM | 0.9607 | / | / | / | / | / | / |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Kong, D.; Wu, J. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting. Energies 2017, 10, 694. https://doi.org/10.3390/en10050694
Li W, Kong D, Wu J. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting. Energies. 2017; 10(5):694. https://doi.org/10.3390/en10050694
Chicago/Turabian StyleLi, Weide, Demeng Kong, and Jinran Wu. 2017. "A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting" Energies 10, no. 5: 694. https://doi.org/10.3390/en10050694
APA StyleLi, W., Kong, D., & Wu, J. (2017). A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting. Energies, 10(5), 694. https://doi.org/10.3390/en10050694