Photovoltaic Array Fault Detection by Automatic Reconfiguration
Abstract
:1. Introduction
2. Preliminaries
2.1. Fault Types and Corresponding I-V Curves
2.2. Series and Parallel Connections of PV Arrays
3. System Model
3.1. Photovoltaic System
3.2. Reconfiguration System
3.3. Control System
4. Diagnostic Methodology
4.1. The Fault Detected Process
Algorithm 1 Fault Detected |
Input: the whole as argument passed to function, M is the number of groups of this array |
Output: array with only one type of fault |
1: function DIVIDE() |
2: |
3: if then |
4: |
5: |
6: else if then |
7: |
8: else |
9: |
10: end if |
11: while do |
12: |
13: |
14: DIVIDE() recursive call the function |
15: |
16: DIVIDE() recursive call the function |
17: end while |
18: |
19: return |
20: end function |
4.2. I-V Curve Analysis Process
4.2.1. Analysis of Open Circuit Faults
4.2.2. Analysis of Mismatch Faults
4.2.3. Analysis of Short Circuit Faults
Algorithm 2 IV Curve |
Input: from Algorithm 1 |
Output: type of fault |
1: M |
2: if then more than one group |
3: if then |
4: . |
5: else if then |
6: . |
7: else if then |
8: if then |
9: . |
10: else |
11: . |
12: end if |
13: else |
14: end if |
15: else only one group |
16: if then |
17: . |
18: else |
19: . |
20: end if |
21: end if |
Algorithm 3 Location |
Input: from Algorithm 1 |
Output: with only one group |
1: |
2: while do |
3: |
4: |
5: if then part2 without fault, part1 is the finally target subarray |
6: |
7: else |
8: |
9: end if |
10: end while while loop could locate the fault in a group |
11: return |
5. Case Study
5.1. Simulation Platform
5.2. Simulation Results and Analysis
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van der Hoeven, M. Technology Roadmap-Solar Photovoltaic Energy; International Energy Agency: Köln, Germany, 2014. [Google Scholar]
- Köntges, M.; Kurtz, S.; Jahn, U.; Berger, K.; Kato, K.; Friesen, T.; Van Iseghem, M. Review of Failures of Photovoltaic Modules. In International Energy Agency (IEA) PVPS Task 13; IEA: Köln, Germany, 2014. [Google Scholar]
- Cooper Bussmann Inc. Complete and Reliable Solar Circuit Protection. Eaton, 2014. Available online: http://www.eaton.fr/ecm/groups/public/@pub/@electrical/documents/content/10191.pdf (accessed on 9 May 2017).
- Togami Electric Mfg.Co.,Ltd. (Saga, Japan). Photovoltaic Module Fault Detectors. June 2014. Available online: https://www.togami-elec.co.jp/english/pdf/pv.pdf (accessed on 9 May 2017).
- Asea Brown Boveri Ltd. (Zurich, Switzerland). Symphony Plus for Solar Integrated Automation and Services for Photovoltaic Plants. 2015. Available online: https://library.e.abb.com/public/5963de567cb74e4282e5ecce1ece6363/2VAA005055_PV_Automation%20and%20Service_Brochure_2015.pdf (accessed on 9 May 2017).
- Chouder, A.; Silvestre, S. Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Convers. Manag. 2010, 51, 1929–1937. [Google Scholar] [CrossRef]
- Silvestrea, S.; Chouderb, A.; Karatepec, E. Automatic fault detection in grid connected PV systems. Sol. Energy 2013, 94, 119–127. [Google Scholar] [CrossRef]
- Firth, S.K.; Lomas, K.J.; Rees, S.J. A simple model of PV system performance and its use in fault detection. Sol. Energy 2010, 84, 624–635. [Google Scholar] [CrossRef]
- Alonso-Garcia, M.C.; Ruiz, J.M.; Chenlo, F. Experimental study of mismatch and shading effects in the I–V characteristic of a photovoltaic module. Sol. Energy Mater. Sol. Cells 2006, 90, 329–340. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Zhu, D.; Chang, N.; Pedram, M. Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems. In Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, USA, 5–8 November 2012; pp. 1–6. [Google Scholar]
- Serna-Garcés, S.I.; Bastidas-Rodríguez, J.D.; Ramos-Paja, C.A. Reconfiguration of Urban Photovoltaic Arrays Using Commercial Devices. Energies 2016, 9, 2. [Google Scholar] [CrossRef]
- Balato, M.; Costanzo, L.; Vitelli, M. Series-Parallel PV array re-configuration: Maximization of the extraction of energy and much more. Appl. Energy 2015, 159, 145–160. [Google Scholar] [CrossRef]
- Balato, M.; Costanzo, L.; Vitelli, M. Reconfiguration of PV modules: A tool to get the best compromise between maximization of the extracted power and minimization of localized heating phenomena. Sol. Energy 2016, 138, 105–118. [Google Scholar] [CrossRef]
- Zhao, Y. Fault detection, classification and protection in solar photovoltaic arrays. In Dissertations & Theses, Gradworks; Northeastern University: Boston, MA, USA, 2016. [Google Scholar]
- Drews, A.; Keizer, A.C.D.; Beyer, H.G.; Lorenz, E.; Betcke, J.; Van Sark, W.G.J.H.M.; Heydenreichd, W.; Wiemkend, E.; Stettlere, S.; et al. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations. Sol. Energy 2007, 81, 548–564. [Google Scholar] [CrossRef]
- Guide To Interpreting I-V Curve Measurements of PV Arrays. Available online: http://resources.solmetric.com/get/Guide%20to%20Interpreting%20I-V%20Curves.pdf (accessed on 9 May 2017).
- Petrone, G.; Ramos-Paja, C.A. Modeling of photovoltaic fields in mismatched conditions for energy yield evaluations. Electr. Power Syst. Res. 2011, 81, 1003–1013. [Google Scholar] [CrossRef]
- Kaundinya, D.P.; Balachandra, P.; Ravindranath, N.H. Grid-connected versus stand-alone energy systems for decentralized power-A review of literature. Renew. Sustain. Energy Rev. 2009, 13, 2041–2050. [Google Scholar] [CrossRef]
- Almahjoub, A.A.; Ailane, A.; Rachik, M.; Essadki, A.; Bouyaghroumni, J. Non-linear Control of a Multi-loop DC-AC Power Converter Using in Photovoltaic System Connected to the Grid. Int. J. Electr. Comput. Sci. 2012, 12, 10–16. [Google Scholar]
- Kaushika, N.D.; Gautam, N.K. Energy yield simulations of interconnected solar PV arrays. IEEE Trans. Energy Convers. 2003, 18, 127–134. [Google Scholar] [CrossRef]
- Giraud, F.; Salameh, Z. Analysis of the effects of a passing cloud on a grid-interactive photovoltaic system with battery storage using neural networks. IEEE Trans. Energy Convers. 1999, 14, 1572–1577. [Google Scholar] [CrossRef]
- Wang, Y.J.; Hsu, P.C. An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy 2011, 36, 3069–3078. [Google Scholar] [CrossRef]
- Ramaprabha, R.; Mathur, B.L. A comprehensive review and analysis of solar photovoltaic array configurations under partial shaded conditions. Int. J. Photoenergy 2012, 2012, 120214. [Google Scholar] [CrossRef]
- Belhachat, F.; Larbes, C. Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions. Sol. Energy 2015, 120, 399–418. [Google Scholar] [CrossRef]
- Alahmad, M.; Chaaban, M.A.; kit Lau, S.; Shi, J.; Neal, J. An adaptive utility interactive photovoltaic system based on a flexible switch matrix to optimize performance in real-time. Sol. Energy 2012, 86, 951–963. [Google Scholar] [CrossRef]
- Kim, H.; Shin, K.G. On dynamic reconfiguration of a large-scale battery system. Proceedings of 15th IEEE Real-Time and Embedded Technology and Applications Symposium, San Francisco, CA, USA, 13–16 April 2009; pp. 87–96. [Google Scholar]
- He, L.; Kim, E.; Shin, K.G. Resting weak cells to improve battery pack’s capacity delivery via reconfiguration. In Proceedings of the Seventh International Conference on Future Energy Systems, New York, NY, USA, 21–24 June 2016. [Google Scholar]
- Nguyen, D.; Lehman, B. An Adaptive Solar Photovoltaic Array Using Model-Based Reconfiguration Algorithm. IEEE Trans. Ind. Electron. 2008, 55, 2644–2654. [Google Scholar] [CrossRef]
- Hernday, P. Field Applications of I-V Curve Tracers in the Solar PV Industry. Proceedings of IEEE Silicon Valley Photovoltaics Society (SVPVS) Meeting, Santa Clara, CA, USA, 14 November 2012. [Google Scholar]
- Luque, A.; Hegedus, A.; Gray, J.L. The Physics of the Solar Cell. In Handbook of Photovoltaic Science and Engineering; John Wiley and Sons: New York, NY, USA, 2010; ISBN 978-0-470-72169-8. [Google Scholar]
- NREL System Advisor Model. Libraries and Databases. Available online: https://sam.nrel.gov/libraries (accessed on 9 May 2017).
- Solemtric. Solmetric PV Analyzer I-V Curve Tracer with SolSensor™ PVA-1000S, PVA-600+ User’s Guide. Available online: http://www.solmetric.net/get/PVA-SolSensor-Users-Guide-Feb19-2014.pdf (accessed on 9 May 2017).
- STMicroelectronics. STM32F030F4P6 Data Sheet. Available online: http://www.mouser.com/ds/2/389/stm32f030f4-956260.pdf (accessed on 9 May 2017).
- Nexperia. BUK7Y10-30B Data Sheet. Available online: http://assets.nexperia.com/documents/data-sheet/BUK7Y10-30B.pdf (accessed on 9 May 2017).
Coordinate Position | Type of Fault |
---|---|
(1,1) | short circuit |
(2,3) | open circuit |
(3,3) | open circuit |
(5,4) | partial shadow |
Item | Count | Unit Price (RMB) | Total Price (RMB) | |
---|---|---|---|---|
PV array system | Solar Panel | 500 | 25 | 12,500 |
Inverter | 3,000 | 4 | 12,000 | |
Accessories and Wires | 500 | 1 | 500 | |
- | - | - | 25,000 | |
Fault detection system | STM32F030F4P6 | 4 | 1 | 4 |
CPLD | 12 | 1 | 12 | |
BUK7Y10-30B | 3.5 | 75 | 262.5 | |
PCB | 10 | 1 | 10 | |
RCL | 15 | 1 | 15 | |
Accessories | 10 | 1 | 10 | |
- | - | - | 313.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, D.; Zhang, C.; Lv, M.; Ma, Y.; Guan, N. Photovoltaic Array Fault Detection by Automatic Reconfiguration. Energies 2017, 10, 699. https://doi.org/10.3390/en10050699
Ji D, Zhang C, Lv M, Ma Y, Guan N. Photovoltaic Array Fault Detection by Automatic Reconfiguration. Energies. 2017; 10(5):699. https://doi.org/10.3390/en10050699
Chicago/Turabian StyleJi, Dong, Cai Zhang, Mingsong Lv, Ye Ma, and Nan Guan. 2017. "Photovoltaic Array Fault Detection by Automatic Reconfiguration" Energies 10, no. 5: 699. https://doi.org/10.3390/en10050699
APA StyleJi, D., Zhang, C., Lv, M., Ma, Y., & Guan, N. (2017). Photovoltaic Array Fault Detection by Automatic Reconfiguration. Energies, 10(5), 699. https://doi.org/10.3390/en10050699