New Adaptive Reclosing Technique in Unbalanced Distribution System
Abstract
:1. Introduction
2. Electrostatic Induction between the Neutral Line and the Distribution Line
3. Adaptive Reclosing Scheme in the Unbalanced Distribution System
4. Simulations and Discussions
4.1. System Model and Implementation of the Proposed Method
4.2. Simulation Conditions
4.3. Simulation Results and Discussions
- (1)
- Fault occurrence
- (2)
- Opening of the circuit breaker due to fault occurrence
- (3)
- Reclosing time at the proposed adaptive reclosing scheme
- (4)
- First reclosing attempt of the conventional reclosing method
- (5)
- Second reclosing attempt of the conventional reclosing method
5. Conclusions
Acknowledgments
Conflicts of Interest
Nomenclature
Neutral current | |
,, | Current flowing from the neutral line to Phases A, B and C, respectively |
Voltage at the neutral line | |
,, | Mutual capacitance between the neutral line and Phases A, B and C, respectively |
Characteristic impedance of the distribution line | |
Fault resistance | |
RMS value of the load current | |
Absolute value of the differential of the RMS | |
Present sample | |
RMS value of the load current at the present sample | |
RMS value of the load current at the previous sample | |
Time interval between two samples | |
Threshold value to detect the fault occurrence | |
Threshold value to judge the fault clearance | |
Duration threshold to finally determine the fault clearance |
References
- Seo, H.C. New Configuration and Novel Reclosing Procedure of Distribution System for Utilization of BESS as UPS in Smart Grid. Sustainability 2017, 9, 507. [Google Scholar] [CrossRef]
- Seo, H.C. New adaptive reclosing technique using second-order difference of THD in distribution system with BESS used as uninterruptible power supply. Int. J. Electr. Power Energy Syst. 2017, 90, 315–322. [Google Scholar] [CrossRef]
- Cho, G.J.; Park, J.K.; Sohn, S.H.; Chung, S.J.; Gwon, G.H.; Oh, Y.S.; Kim, C.H. Development of a Leader-End Reclosing Algorithm Considering Turbine-Generator Shaft Torque. Energies 2017, 10, 622. [Google Scholar]
- Keyvani, B.; Zadeh, M.K.; Lesani, H. Stability enhancement of multi-machine systems using adaptive reclosing of transmission lines. Int. J. Electr. Power Energy Syst. 2014, 62, 391–397. [Google Scholar] [CrossRef]
- Sadi, M.A.H.; Ali, M.H. Combined operation of SVC and optimal reclosing of circuit breakers for power system transient stability enhancement. Electr. Power Syst. Res. 2014, 106, 241–248. [Google Scholar] [CrossRef]
- Heo, J.Y.; Oh, Y.S.; Seo, H.C.; Kim, C.H. An Adaptive Autoreclosure Scheme with Reference to Transient Stability for Transmission Lines. J. Electr. Eng. Technol. 2015, 10, 795–803. [Google Scholar] [CrossRef]
- Luo, X.; Huang, C.; Jiang, Y. Improved digital algorithm for adaptive reclosing for transmission lines with shunt reactors. IET Gener. Transm. Distrib. 2016, 10, 2066–2070. [Google Scholar] [CrossRef]
- Park, J.; Kim, C.H.; Cho, G.; Sohn, S.H.; Chung, S. A Novel Reclosing Algorithm considering Turbine-Generator Shaft Torque. IEEE Trans. Power Deliv. 2017, 32, 703–712. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Liu, P.; Liu, W.; Yan, J.; Tang, Y.; He, H. Online Calculation for the Optimal Reclosing Time of Transmission Lines. Electr. Power Compon. Syst. 2016, 44, 1904–1916. [Google Scholar] [CrossRef]
- Terzija, V.V.; Radojevic, Z.M. Numerical algorithm for adaptive autoreclosure and protection of medium-voltage overhead lines. IEEE Trans. Power Deliv. 2004, 19, 554–559. [Google Scholar] [CrossRef]
- Ahn, S.P.; Kim, C.H.; Aggarwal, R.K.; Johns, A.T. An Alternative Approach to Adaptive Single Pole Auto-Reclosing in High Voltage Transmission Systems Based on Variable Dead Time Control. IEEE Trans. Power Deliv. 2001, 16, 676–686. [Google Scholar] [CrossRef]
- Vogelsang, J.; Romeis, C.; Jaeger, J. Real-Time Adaption of Dead Time for Single-Phase Autoreclosing. IEEE Trans. Power Deliv. 2016, 31, 1882–1890. [Google Scholar] [CrossRef]
- Zhalefar, F.; Zadeh, M.R.D.; Sidhu, T.S. A High-Speed Adaptive Single-Phase Reclosing Technique Based On Local Voltage Phasors. IEEE Trans. Power Deliv. 2015, 32, 1203–1211. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, H.C.; Kim, C.H.; Rhee, S.B. Development of Adaptive Reclosing Scheme Using Wavelet Transform of Neutral Line Current in Distribution System. Electr. Power Compon. Syst. 2016, 44, 426–433. [Google Scholar] [CrossRef]
- Park, K.W.; Seo, H.C.; Kim, C.H.; Jung, C.S.; Yoo, Y.P.; Lim, Y.H. Analysis of the Neutral Current for Two-Step-Type Poles in Distribution Lines. IEEE Trans. Power Deliv. 2009, 24, 1483–1489. [Google Scholar] [CrossRef]
- Elsaiah, S.; Benidris, M.; Mitra, J. Analytical Approach for Placement and Sizing of Distributed Generators on Power Distribution System. IET Gener. Transm. Distrib. 2014, 8, 1039–1049. [Google Scholar] [CrossRef]
- Daratha, N.; Das, B.; Sharma, J. Coordination between OLTC and SVC for voltage regulation in unbalanced distribution system distributed generation. IEEE Trans. Power Syst. 2014, 29, 289–299. [Google Scholar] [CrossRef]
- Ghatak, U.; Mukherjee, V. A fast and efficient load flow technique for unbalanced distribution system. Int. J. Electr. Power Energy Syst. 2017, 84, 99–110. [Google Scholar]
- Gabr, M.A.; Ibrahim, D.K.; Ahmed, E.S.; Gilany, M.I. A new impedance-based fault location scheme for overhead unbalanced radial distribution networks. Electr. Power Syst. Res. 2017, 142, 153–162. [Google Scholar] [CrossRef]
- Flaih, F.M.; Lin, X.; Abd, M.K.; Dawoud, S.M.; Li, Z.; Adio, O.S. A New Method for Distribution Network Reconfiguration Analysis under Different Load Demands. Energies 2017, 10, 455. [Google Scholar] [CrossRef]
- Weckx, S.; Driesen, J. Load balancing with EV chargers and PV inverters in unbalanced distribution grids. IEEE Trans. Sustain. Energy 2015, 6, 635–643. [Google Scholar] [CrossRef]
- Abdelaziz, A.Y.; Hegazy, Y.G.; El-Khattam, W.; Othman, M.M. Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks. Electr. Power Syst. Res. 2015, 119, 34–44. [Google Scholar] [CrossRef]
- Borghetti, A.; Napolitano, F.; Nucci, C.A. Volt/var optimization of unbalanced distribution feeders via mixed integer linear programming. Int. J. Electr. Power Energy Syst. 2015, 72, 40–47. [Google Scholar] [CrossRef]
- Dommel, H.W. EMTP Theory Book; Bonneville Power Administration: Portland, OR, USA, 1986.
- Martin-Arnedo, J.; González-Molina, F.; Martinez-Velasco, J.A.; Adabi, M.E. EMTP Model of a Bidirectional Cascaded Multilevel Solid State Transformer for Distribution System Studies. Energies 2017, 10, 521. [Google Scholar] [CrossRef]
Unbalanced Ratio | Fault Type | Fault Resistance | Fault Duration Time | Fault Location |
---|---|---|---|---|
5% | Single line-to-ground fault | 0.1 Ω | 20 cycles | 10% |
10% | Three phase-to-ground fault | 10 Ω | 40 cycles | 50% |
100 Ω | permanent | 90% |
Unbalanced Ratio (%) | Fault Type | Fault Resistance (Ω) | Fault Duration Time (Cycles) | Fault Location (%) | Reclosing Time (s) |
---|---|---|---|---|---|
5 | Single line-to-ground fault | 0.1 | 20 | 10 | 0.441 |
50 | 0.441 | ||||
90 | 0.443 | ||||
40 | 10 | 0.775 | |||
50 | 0.775 | ||||
90 | 0.776 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
10 | 20 | 10 | 0.441 | ||
50 | 0.441 | ||||
90 | 0.443 | ||||
40 | 10 | 0.775 | |||
50 | 0.775 | ||||
90 | 0.776 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
100 | 20 | 10 | 0.441 | ||
50 | 0.441 | ||||
90 | 0.443 | ||||
40 | 10 | 0.775 | |||
50 | 0.775 | ||||
90 | 0.776 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
Three phase-to-ground fault | 0.1 | 20 | 10 | 0.441 | |
50 | 0.441 | ||||
90 | 0.443 | ||||
40 | 10 | 0.775 | |||
50 | 0.775 | ||||
90 | 0.776 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
10 | 20 | 10 | 0.441 | ||
50 | 0.441 | ||||
90 | 0.443 | ||||
40 | 10 | 0.775 | |||
50 | 0.775 | ||||
90 | 0.776 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
100 | 20 | 10 | 0.441 | ||
50 | 0.441 | ||||
90 | 0.443 | ||||
40 | 10 | 0.775 | |||
50 | 0.775 | ||||
90 | 0.776 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
10 | Single line-to-ground fault | 0.1 | 20 | 10 | 0.440 |
50 | 0.440 | ||||
90 | 0.441 | ||||
40 | 10 | 0.774 | |||
50 | 0.774 | ||||
90 | 0.775 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
10 | 20 | 10 | 0.440 | ||
50 | 0.440 | ||||
90 | 0.441 | ||||
40 | 10 | 0.774 | |||
50 | 0.774 | ||||
90 | 0.775 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
100 | 20 | 10 | 0.440 | ||
50 | 0.440 | ||||
90 | 0.441 | ||||
40 | 10 | 0.773 | |||
50 | 0.773 | ||||
90 | 0.774 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
Three phase-to-ground fault | 0.1 | 20 | 10 | 0.440 | |
50 | 0.440 | ||||
90 | 0.441 | ||||
40 | 10 | 0.774 | |||
50 | 0.774 | ||||
90 | 0.775 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
10 | 20 | 10 | 0.440 | ||
50 | 0.440 | ||||
90 | 0.441 | ||||
40 | 10 | 0.774 | |||
50 | 0.774 | ||||
90 | 0.775 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - | ||||
100 | 20 | 10 | 0.440 | ||
50 | 0.440 | ||||
90 | 0.441 | ||||
40 | 10 | 0.773 | |||
50 | 0.773 | ||||
90 | 0.774 | ||||
permanent | 10 | - | |||
50 | - | ||||
90 | - |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, H.-C. New Adaptive Reclosing Technique in Unbalanced Distribution System. Energies 2017, 10, 1004. https://doi.org/10.3390/en10071004
Seo H-C. New Adaptive Reclosing Technique in Unbalanced Distribution System. Energies. 2017; 10(7):1004. https://doi.org/10.3390/en10071004
Chicago/Turabian StyleSeo, Hun-Chul. 2017. "New Adaptive Reclosing Technique in Unbalanced Distribution System" Energies 10, no. 7: 1004. https://doi.org/10.3390/en10071004
APA StyleSeo, H. -C. (2017). New Adaptive Reclosing Technique in Unbalanced Distribution System. Energies, 10(7), 1004. https://doi.org/10.3390/en10071004