1. Introduction
The process of selecting potential candidates for enhanced oil recovery (EOR) operation is a complex task involving integration of a set of rock and fluid parameters governing technical and economic performance of a reservoir. It is understood that technical evaluation of EOR techniques is crucial to the success of such projects. However, it is equally important to evaluate the economic viability of an EOR project development including environmental, commercial, political and governmental factors [
1,
2,
3]. Currently, there is no fully established technique for identifying the potential candidates for EOR operation. Operations are generally based on trial-and error; with reduced chances of success. In order to increase the chances of success and to make an informed decision, parameters obtained from either successful EOR field applications or from existing knowledge of the EOR operation could be effectively utilised. Comparison between these criteria and the reservoir of interest will provide an indication of the possibility of success for future EOR projects [
4]. However, matching the parameters from the worldwide successful EOR techniques is a challenge from data mining and screening points of view. This is particularly the case since these parameters may not necessarily be directly dependent on each other. Several methods have been developed and published for screening oil reservoirs such as data analysis by using tables and graphs [
5,
6,
7,
8] and artificial intelligence (AI) [
3,
9,
10,
11,
12,
13].
AI in oil industry has long been studied and its development has been relatively mature. Fuzzy-neural is an important approach in the area of reservoir characterisation in which knowledge of reservoir performance forecast from well logs can be derived [
9]. Chung et al. [
10] developed a fuzzy expert system for EOR risk analysis incorporating preliminary screening EOR methods, the field performance estimation and economic analysis. The system reduces the requirements of massive laboratory experiments and field data input. Kamari et al. [
3] solved both problems of selecting appropriate EOR method by using an artificial neutral network (ANN) and an economical EOR screening model for prediction of cash flows.
A lot of work has been done on the application of artificial intelligence technique in EOR projects [
14,
15,
16,
17,
18,
19,
20,
21,
22]. Morel et al. [
14] published the screening criteria of the EOR technologies using 347 successful EOR projects worldwide. The study was based on the established analysis through fuzzy-logic (FL) membership functions (triangular, Z-shaped and S-shaped) and results are promising compared to the existing commercial software (EORgui). An neuro-fuzzy (NF) approach to screening reservoir candidates was published [
15] by combining the strength of fuzzy technique in searching data with the learning capability of neural network (NN) to deduce knowledge from analogous to linguistic rules. 365 successful EOR data set were used to validate and determine the combination of fluid and rock properties which could best characterise the key parameters that control EOR success.
Kamari et al. [
16] presented an AI based on gene expression programming (GEP) for prediction of CO
—oil minimum miscibility pressure (MMP) at different reservoir temperatures and oil compositions for live oil. In their work, Chen et al. [
17], proposed two types of ANN models; back-propagation neural network (BPNN) and radial basic function neural network (RBFNN) for CO
solubility prediction in all types of amine solutions. The models were evaluated by comparing the results of experimental data with the predicted results of eight numerical models from the literature. Furthermore, Saeid et al. [
18] developed adaptive NF inference system (ANFIS) for the estimation of solubility of hydrogen in heavy oil. To validate the model, both statistical and graphical methods were used in the training and testing data sets for the developed model.
Least square support vector machine (LSSVM) technique has been developed to estimate the interfacial tension (IFT) and MMP in paraffin—CO
systems [
19], permeability of heterogeneous oil reservoirs [
20], and surfactant—polymer flooding performance [
21]. The proposed models were validated by statistical and graphical error analysis. Abouzar et al. [
22], presented an ANN by using cuckoo optimisation algorithm (COA) and teaching learning based optimisation (TLBO) to predict the pure and impure CO
MMP.
As can be seen, most researchers on EOR screening have focused on single data point or use of insufficient number of well data in the models; thereby ignoring the heterogeneity of the fields. This usually leads to non-linearity of the data for the candidate reservoirs for EOR techniques. Hence, a multi-layered genetic fuzzy perceptron approach based on ANFIS [
23] is used in this study. It is practical and easy to define constraints for the NF learning procedure, impose the rule of the fuzzy sets intersection point and minimise and stabilise the error between the training and validation data set [
15].
It is our motivation to use NF as an AI tool to identify potential reservoir for EOR candidates. The model was performed using an in-house code and is capable of generating an automatic rule-base from successful worldwide database projects, optimising the variables of the fuzzy membership functions and providing interpretation models. The NF algorithm uses a self-organising technique to learn and initialise the membership functions of the input and output variables from a set of training data [
24]. This is similar to the work of Zhou and Quek [
25] where pseudo outer-product (POP) learning algorithm was used to identify the fuzzy rules instead of competitive learning [
26] adopted in this paper. The input variables for the NF model consist of training functions (
Figure 1) where the hidden layer nodes are varied in order to obtain the lowest root mean square error (RMSE) and non-dimensional error index (NDEI). Further details about methods are provided in
Section 2.3 below. This is the first comprehensive study around the country and we believe the model can be used as an important tool on a technical field and/or reservoir selection.
With the declining production rate within Angolan oil fields, the EOR methods are the most plausible means of increasing the recovery factor of hydrocarbon left in the ground after conventional recovery methods. The application of EOR methods in Angola is very necessary but requires an extensive research, development of a cheap and efficient techniques and more expertise involvement.
The data set used in this study is from 365 multiple successful thermal, miscible gas, chemical and biological EOR projects worldwide. The field data set, consisting of 2994 Angolan oil field data are mined and analysed using box-plot technique for Block K which is made up of four (4) areas, 13 fields, 40 reservoirs and 179 wells. The area grouping is based on production allocation associated with the asset (
Figure 2 and
Table 1). The results of the NF model can be applied as a preliminary step in technically evaluating the suitability of a particular EOR technique in Angola or elsewhere.
3. Application of the Techniques in Angolan Oilfields
Angola is producing approximately 1.7 Mbbls/day under primary or secondary recovery mechanisms. The recovery factor from these mechanisms account for about 30% of the original oil in place [
29,
33] and most of the reservoir fields are maturing with production and pressure declining very rapidly as shown in
Figure 6 and
Figure 7. Observation of the production and pressure patterns across a single block (Block K) consisting of 13 major fields suggests that there is a significant decline in performance. As an example, the reservoir drawdown; which is the primary force driving the fluids into the wellbore, decreases with time with significant negative impact on the productivity index (PI) of these wells.
Figure 8 shows this trend for wells X6Y13W1 and X7Y29W4. PI for well X6Y13W1 is 61.84
from 2005 and down to 10
over a period of five years. Similarly, for well X7Y29W4, PI decreases from 2.91
to 1.29
over a period of ten (10) months in 2011. These observed trends suggest that there is a need for a mechanism for enhancement to be put in place. Hence, improving the performance of these wells is a cost-effective way to reverse the negative production decline trend, extend field life and improve oil recovery.
The term “easy oil” is vanishing in Angola due to the fact that more than 80% of oil production is from offshore fields and the production is moving towards more remote areas like deepwater and ultra-deepwater where the extraction of oil or field development is very costly. Angola can still produce the remaining oil from existing fields by applying new EOR technologies capable of increasing the recovery factor. Not much work has been published in the area of applied EOR technologies; an area which requires more research is the identification of suitable techniques that could allow further extraction of oil beyond primary and secondary recovery.
Historically, only one deep offshore field case of EOR (i.e., polymer injection) in Dalia/Camelia fields has been implemented in Angola [
14,
34,
35,
36,
37]. Considering the large number of fields and start of production activities dated as far back as 1955, Angola can be considered as a potential location for the implementation of EOR techniques. By applying the EOR recovery techniques, millions of barrels of oil will be extracted from the existing fields by increasing the recovery factor up to 60% of the oil in the reservoir [
33]. Therefore, screening oil reservoirs can be considered as the first step before an EOR project implementation in Angola. However, before stating with confidence that the selected EOR technique will likely be technically successful, additional evaluations such as core analysis, reservoir simulation and field pilots are required [
4].
3.1. Data Analysis
The successful EOR data set used in this model is from 365 worldwide successful EOR projects (
Figure 9); divided into ten (10) different EOR techniques such as steam, miscible CO
, miscible hydrocarbon gas, polymer, combustion, surfactants, nitrates, microbial, hot water and miscible acid gas. Some techniques from available data set present a number of successful projects that are considered insufficient for performing advanced statistical test. These techniques which include miscible acid gas, microbial, hot water, surfactant and nitrates will not be investigated in this current study.
Table 2 indicates that oil properties and reservoir characteristics were updated according to the available data set from the worldwide successful EOR projects and is not intended to present threshold limits since the range could be affected also by economic constraints and scientific development.
Angola data set was collected from 13 fields (, , ..., and ) consisting of reservoir rock and fluid properties including: reservoir depth, oil API gravity, oil viscosity, rock porosity, rock permeability, oil saturation, net pay thickness, reservoir temperature, reservoir pressure, formation water salinity and formation type. These data sets were collected from several reports including well test, geochemistry, fluid sampling, final well, thermodynamic, geological, Drill stem test (DST) and log interpretation reports. No carbonates formation type rock was found in the area under investigation. The area under investigation is an offshore field with water depth greater than 3500 ft and sea bottom temperature approximately 40 F.
All the mined data are carefully checked for consistency and quality in order to minimise error. The set of data which were not available are highlighted in
Table 3. The box plots were used to identify possible inconsistency and discrepancies in the data as the accuracy of the model in predicting the output may be impaired with the presence of outliers [
8,
39].
Table 4 contains the summary of the minimum, average and maximum values of the variables associated with the area under investigation (Block K).
Figure 10 shows a single box-plot for the data-set associated with the successfull EOR and Angolan field for each variable. This is aimed at providing information about the distribution and alignment of both data-sets.
Besides box-plots, Equations (
1) and (
2) can also be used for data analysis. As an example, considering steam as an EOR technique (
Table 2,
Table 3 and
Table 4 and
Figure 10a), the lower and upper limit of the variable depth for successful projects are 250 and 5740 and for Area 2 are 6318 and 12,631;
, which is an empty set. This implies that the depth range under investigation may not be suitable for steam. On the other hand, for steam as a technique and oil saturation as a variable for Area 1 (
Table 2,
Table 3 and
Table 4 and
Figure 10f),
, which means the values within the range of 20 and 90 may be suitable.
3.2. Neuro-Fuzzy Technique
The modelling process consists of three main stages: training, validation and testing. Data was grouped by variables from each EOR technique (
Table 5). The set of options which generates the least RMSE and NDEI 80% (4/5) of the data set were selected at random for the training and the remaining 20% as the validation (prediction) set. This set of data 20% (1/5); which generates the least RMSE and NDEI is used as validation data set for the testing process. 45 runs for each variable and totaling more than 1350 runs for the six variables of five EOR techniques were generated.
Figure A1,
Figure A2,
Figure A3,
Figure A4 and
Figure A5 summarise the best selected simulation results.
Figure 11 illustrates five options run out of forty five runs of Depth for steam.
The test data set (Angolan oilfield data), we used random selection and tested with the already validated data set from the training process. The results of simulation determines the EOR techniques suitable for Angolan oilfield according to the methods and variables investigated.
Figure A6,
Figure A7 and
Figure A8 summarise the results of the simulation using the Angolan oilfield data set. The sample testing simulation results for steam are illustrated in
Figure 12. However, this is not binary decision operation and hence the engineering expertise and knowledge from the previous operations in the area will be invaluable in evaluating the sensitivity of each variable for decision making.
4. Results and Discussion
The data base from the worldwide successful EOR projects was maximised by tuning the parameters (number of patterns, epochs, mean and standard deviation) of each variables associated with each five (5) different EOR techniques; steam, CO, miscible hydrocarbon gas, polymer and combustion. Based on the identified patterns reinforced by the available data set, five unique values of mean and standard deviation were computed. The weight values were added to the results and then used to predict the degree of success of different EOR projects. The sample size of the available data becomes crucial to minimise the error and optimise simulation outcome.
In this study, the values of the NDEI and overall RMSE associated with the investigated successful EOR projects of the training process with corresponding oil and reservoir properties were computed.
Figure A1 shows the NF model for steam matches the predicted depth data with NDEI ranging between 0.04 and 1.8, respectively. The RMSE varies from 40 (minimum) and 1183 (maximum). The best match (RMSE = 40, NDEI = 0.04) corresponds to option 2 (see
Figure 11 and
Figure A1). The predicted or validated data set of this option is then used as predicted set on testing process of the steam for the depth.
The training process was performed for the other parameters and EOR techniques. The best results of each training process are summarised in
Figure A1,
Figure A2,
Figure A3,
Figure A4 and
Figure A5. The error computation is critical to ensure that the NF technique is suitable for the EOR process or technique under investigation. The developed model performed satisfactorily when run with enough training, verification and testing data sets. Each of the groups must have equal number of data sets. The degree of suitability of a typical EOR project obtained from the model prior to full field implementation as well as permits to segregate more oil properties and reservoir characteristics that could impact on EOR projects. The formation type is not included the in model. However, this can be determined by screening criteria from the successful EOR worldwide field data set (
Table 2).
Data from Angola reservoir fields was tested against this trained and validated data.
Table 4 presents the data of some of the Angolan oil reservoir fields which consists mainly of sandstones formations. No carbonates reservoir was encountered in the area investigated. Six variables such as depth, API, viscosity, porosity, permeability, and oil saturation were investigated. EOR methods such as surfactants, microbial, nitrates, hot water, miscible acid gas (
Table 2) were not investigated due to the reduced number of the sample size.
Figure 12 presents a testing process for steam process resulting from Area 1 of Block K. There is a good matching results for saturation (RMSE = 0.29, NDEI = 0.018), porosity (RMSE = 0.16, NDEI = 0.053). API matches with RMSE and NDEI of 0.42 and 0.08 whilst , depth (RMSE = 363, NDEI = 0.38), viscosity (RMSE = 1875, NDEI = 0.322), and permeability (RMSE = 2.25, NDEI = 0.0007). This procedure was performed for the four areas of the Block K (Area 1, Area 2, Area 3, Area 4) of the six variables investigated (API, depth, porosity, saturation, permeability and viscosity) for five EOR techniques (miscible gas, steam, CO
, polymer and combustion) and results are summarised in
Table 6.
In order to determine the suitability of a particular technique in EOR project, variables are considered based on their degree of variance. It is understood that variables such as permeability can vary by up to 3 or 4 orders of magnitude in a geological formation [
40]. Three scenarios were investigated: (1) the least RMSE combined with 20 < NDEI ≤ 30%; (2) the least RMSE combined with 10 < NDEI ≤ 20%; (3) the least RMSE combined with NDEI ≤ 10% (
Table 6). As this is not a binary decision operation, engineering knowledge of the process is required in decision making. As an example, variables like viscosity and depth for thermal process (steam and hot water), pressure for gas and steam injection, temperature for chemical and hot water are very sensitive and critical [
13]. Permeability is not a critical variable for gas injection [
5,
6]. Based on the available data and the screening results, the summary of the main results for the investigated techniques are presented in
Table 6 and
Figure A6,
Figure A7 and
Figure A8.
Scenario 1, polymer is the most suitable EOR methods for the areas investigated. Combustion is also suitable, however, due to the reduced number of the successful EOR projects, the results obtained may need further laboratory test for confirmation before execution. Miscible gas and CO
are suitable in three out of four areas, whilst steam is suitable in one out of four areas investigated(
Table 6).
Scenarios 2 and 3, the results of polymer, miscible hydrocarbon gas, and combustion remains the same except for steam and CO
that are not good candidates, because most of the parameters investigated present more than 50% NDEI that is not within the range of the investigated variables. However, more study is recommended for CO
technique due to its importance in CO
sequestration (
Table 6).
Comparison of Simulation RMSE and NDEI Output with Analytical Method
Figure A10 and
Figure A11 show the comparison of the RMSE (Equation (
7)) and NDEI (Equation (
8)) for the variables investigated (depth, porosity, API, permeability, viscosity, and saturation). The computed values for the simulated and analytical calculation are conducted for non-regression and five different regression methods: linear, exponential, logarithmic, polynomial, and power. The same set of equations (Equations (
7) and (
8)) that was used for the model simulation was used to verify the code analytically. Expectedly, the simulated and analytical calculations matched very well (
Figure A10 and
Figure A11).
5. Conclusions
A NF model provides a powerful technical screening tool for reservoir fields within Angola or around the world. The data set of 365 successful EOR projects from 10 different EOR technologies in which five were investigated. Sixteen major oil producing countries were used in the developed model based on six different reservoir parameters and could be extended to other reservoir parameters. The model was tested using oil reservoir fields from Angola and can be used to test any data worldwide.
Box plots were used as data analysis and a quick look of technique suitability. However, use of box-plots do not reflect the degree of suitability or the behaviour of given parameter within the investigated range. The trained and validated data were used for comparison of simulation RMSE and NDEI output with five different regression methods; linear, exponential, logarithmic, polynomial, and power law. The regression models matched the simulation output to varying degrees. The caveat in the use of regression techniques is that some data points could be potentially excluded during the fitting process. The non-regression simulation approach adopted in this study, however, allows for automated error decay with the defined tolerance limit.
The Angolan field reservoirs from Block K under investigation are good candidates for polymer and combustion, followed by the miscible hydrocarbon gas. The screening methods are simply used to determine the suitability or chance of success of an EOR technique. Before stating with confidence that the selected EOR technique will likely be technically successful, additional evaluations such as core analysis, reservoir simulation and field pilots are required.