Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models
Abstract
:1. Introduction
2. Methods
2.1. Flow and Heat-Transport in Porous Media
2.2. Model Setup
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Comparison with Simplified Models
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Glossary
Acronyms | |
ASHP | Air Source Heat pump |
ATES | Aquifer Thermal Energy Storage |
BC | Boundary condition |
COP | Coefficient of Performance |
GED | Groundwater Energy Designer |
GSHP | Ground Source Heat Pump |
GWHP | Groundwater Heat Pump |
SI | Sensitivity Index |
Latin Letters | |
b | saturated thickness of the aquifer (m) |
, , | thermal dispersion coefficient, respectively in the , , direction (m2/s) |
d | thickness of the vadose zone—water table depth (m) |
, | annual heat exchanged with the aquifer for heating and cooling, respectively (MWh·y−1) |
total annual heat exchanged with the aquifer (MWh·y−1) | |
H | heat source/sink (W·m−3) |
h | hydraulic head (m) |
i | hydraulic gradient (dimensionless) |
, , | hydraulic conductivity of the aquifer, respectively in the , , direction (m·s−1) |
L | well spacing (m) |
effective porosity (dimensionless) | |
P | thermal power exchanged with the ground—negative for extraction, positive for injection (W) |
Q | abstracted/injected water flow rate (m3·s−1) |
max. annual abstracted/injected water flow rate (m3·s−1) | |
fraction of max. annual abstracted/injected water flow rate traveling down-gradient (m3·s−1) | |
thermal retardation factor (dimensionless) | |
T | temperature (K) |
temperature of water at the abstraction well (K) | |
temperature of water at the injection well (K) | |
t | time (s) |
Darcy velocity of groundwater flow (m·s−1) | |
effective velocity of groundwater (m·s−1) | |
thermal velocity (m·s−1) | |
X | thermal short-circuit parameter (dimensionless) |
, | maximum and minimum value, respectively, of the output variable considered in the sensitivity analysis |
Greek Letters | |
longitudinal thermal dispersivity (m) | |
transverse thermal dispersivity (m) | |
thermal conductivity of the porous medium (W·m−1·K−1) | |
thermal conductivity of the solid phase (W·m−1·K−1) | |
thermal conductivity of water (W·m−1·K−1) | |
thermal capacity of the porous medium (J·kg−1·K−1) | |
thermal capacity of the solid phase (J·kg−1·K−1) | |
thermal capacity of water (J·kg−1·K−1) |
References
- Ouzzane, M.; Eslami-Nejad, P.; Badache, M.; Aidoun, Z. New correlations for the prediction of the undisturbed ground temperature. Geothermics 2015, 53, 379–384. [Google Scholar] [CrossRef]
- Omer, A.M. Ground-source heat pumps systems and applications. Renew. Sustain. Energy Rev. 2008, 12, 344–371. [Google Scholar] [CrossRef]
- Bayer, P.; Saner, D.; Bolay, S.; Rybach, L.; Blum, P. Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renew. Sustain. Energy Rev. 2012, 16, 1256–1267. [Google Scholar] [CrossRef]
- Chung, J.T.; Choi, J.M. Design and performance study of the ground-coupled heat pump system with an operating parameter. Renew. Energy 2012, 42, 118–124. [Google Scholar] [CrossRef]
- Dehkordi, S.E.; Schincariol, R. Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems. Hydrogeol. J. 2014, 22, 189–203. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. G.POT: A quantitative method for the assessment and mapping of the shallow geothermal potential. Energy 2016, 106, 765–773. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Sensitivity Analysis on the Performance of a Ground Source Heat Pump Equipped with a Double U-pipe Borehole Heat Exchanger. Energy Procedia 2014, 59, 301–308. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Territorial Analysis for the Implementation of Geothermal Heat Pumps in the Province of Cuneo (NW Italy). Energy Procedia 2015, 78, 1159–1164. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Modelling thermal recycling occurring in groundwater heat pumps (GWHPs). Renew. Energy 2015, 77, 86–93. [Google Scholar] [CrossRef]
- Galgaro, A.; Cultrera, M. Thermal short circuit on groundwater heat pump. Appl. Therm. Eng. 2013, 57, 107–115. [Google Scholar] [CrossRef]
- Stauffer, F.; Bayer, P.; Blum, P.; Molina-Giraldo, N.; Kinzelbach, W. Thermal Use of Shallow Groundwater; CRC Press—Taylor and Francis Group: Boca Raton, FL, USA, 2013; p. 250. [Google Scholar]
- Di Molfetta, A.; Sethi, R. Ingegneria Degli Acquiferi; Springer: Berlin, Germany, 2012; p. 370. [Google Scholar]
- Ampofo, F.; Maidment, G.G.; Missenden, J.F. Review of groundwater cooling systems in London. Appl. Therm. Eng. 2006, 26, 2055–2062. [Google Scholar] [CrossRef]
- Beretta, G.P.; Coppola, G.; Pona, L.D. Solute and heat transport in groundwater similarity: Model application of a high capacity open-loop heat pump. Geothermics 2014, 51, 63–70. [Google Scholar] [CrossRef]
- De Santoli, L.; Mancini, F.; Rossetti, S. The energy sustainability of Palazzo Italia at EXPO 2015: Analysis of an nZEB building. Energy Build. 2014, 82, 534–539. [Google Scholar] [CrossRef]
- Piemonte, C.; Porro, A. Palazzo Lombardia—Geothermal Heat Pump Capacity World Record for a Single Building Conditioning. In Proceedings of the European Geothermal Conference, Pisa, Italy, 3–7 June 2013; pp. 1–4. [Google Scholar]
- Bouwer, H. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Banks, D. Thermogeological assessment of open-loop well-doublet schemes: A review and synthesis of analytical approaches. Hydrogeol. J. 2009, 17, 1149–1155. [Google Scholar] [CrossRef]
- Banks, D. An Introduction to Thermogeology: Ground Source Heating and Cooling; John Wiley & Sons: Hoboken, NJ, USA, 2012; p. 526. [Google Scholar]
- Gringarten, A.C.; Sauty, J.P. A theoretical study of heat extraction from aquifers with uniform regional flow. J. Geophys. Res. 1975, 80, 4956–4962. [Google Scholar] [CrossRef]
- Lippmann, M.J.; Tsang, C.F. Ground-Water Use for Cooling: Associated Aquifer Temperature Changes. Ground Water 1980, 18, 452–458. [Google Scholar] [CrossRef]
- Banks, D. The application of analytical solutions to the thermal plume from a well doublet ground source heating or cooling scheme. Q. J. Eng. Geol. Hydrogeol. 2011, 44, 191–197. [Google Scholar] [CrossRef]
- Shan, C. An analytical solution for the capture zone of two arbitrarily located wells. J. Hydrol. 1999, 222, 123–128. [Google Scholar] [CrossRef]
- Luo, J.; Kitanidis, P.K. Fluid residence times within a recirculation zone created by an extraction–injection well pair. J. Hydrol. 2004, 295, 149–162. [Google Scholar] [CrossRef]
- Milnes, E.; Perrochet, P. Assessing the impact of thermal feedback and recycling in open-loop groundwater heat pump (GWHP) systems: A complementary design tool. Hydrogeol. J. 2013, 21, 505–514. [Google Scholar] [CrossRef]
- Bridger, D.W.; Allen, D.M. Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES). Can. Geotech. J. 2010, 47, 96–115. [Google Scholar] [CrossRef]
- Bridger, D.W.; Allen, D.M. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system. Hydrogeol. J. 2014, 22, 233–250. [Google Scholar] [CrossRef]
- Nam, Y.; Ooka, R. Numerical simulation of ground heat and water transfer for groundwater heat pump system based on real-scale experiment. Energy Build. 2010, 42, 69–75. [Google Scholar] [CrossRef]
- Ferguson, G.; Woodbury, A.D. Observed thermal pollution and post-development simulations of low-temperature geothermal systems in Winnipeg, Canada. Hydrogeol. J. 2006, 14, 1206–1215. [Google Scholar] [CrossRef]
- Fry, V.A. Lessons from London: Regulation of open-loop ground source heat pumps in central London. Q. J. Eng. Geol. Hydrogeol. 2009, 42, 325–334. [Google Scholar] [CrossRef]
- García-Gil, A.; Vázquez-Suñe, E.; Schneider, E.G.; Sánchez-Navarro, J.Á.; Mateo-Lázaro, J. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. Sci. Total Environ. 2014, 485–486, 575–587. [Google Scholar]
- Lo Russo, S.; Gnavi, L.; Roccia, E.; Taddia, G.; Verda, V. Groundwater Heat Pump (GWHP) system modeling and Thermal Affected Zone (TAZ) prediction reliability: Influence of temporal variations in flow discharge and injection temperature. Geothermics 2014, 51, 103–112. [Google Scholar] [CrossRef]
- Poppei, J.; Mayer, G.; Schwarz, R. Groundwater Energy Designer (GED)—Computergestütztes Auslegungstool zur Wärme und Kältenutzung von Grundwasser [Computer Assisted Design Tool for the Use of Heat and Cold from Groundwater]; Bundesamt für Energie BFE: Ittigen, Switzerland, 2006; pp. 1–71. [Google Scholar]
- Diersch, H.J.G. FEFLOW. Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2014; p. 996. [Google Scholar]
- Epting, J.; Huggenberger, P. Unraveling the heat island effect observed in urban groundwater bodies—Definition of a potential natural state. J. Hydrol. 2013, 501, 193–204. [Google Scholar] [CrossRef]
- Kim, K.Y.; Chon, C.M.; Park, K.H.; Park, Y.S.; Woo, N.C. Multi-depth monitoring of electrical conductivity and temperature of groundwater at a multilayered coastal aquifer: Jeju Island, Korea. Hydrol. Process. 2008, 22, 3724–3733. [Google Scholar] [CrossRef]
- Lee, J.-Y. Characteristics of ground and groundwater temperatures in a metropolitan city, Korea: Considerations for geothermal heat pumps. Geosci. J. 2006, 10, 165–175. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Hahn, J.-S. Characterization of groundwater temperature obtained from the Korean national groundwater monitoring stations: Implications for heat pumps. J. Hydrol. 2006, 329, 514–526. [Google Scholar] [CrossRef]
- Bense, V.; Kooi, H. Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow. J. Geophys. Res. Solid Earth 2004, 109, B4. [Google Scholar] [CrossRef]
- Heiselberg, P.; Brohus, H.; Hesselholt, A.; Rasmussen, H.; Seinre, E.; Thomas, S. Application of sensitivity analysis in design of sustainable buildings. Renew. Energy 2009, 34, 2030–2036. [Google Scholar] [CrossRef]
- De Marsily, G. Quantitative Hydrogeology; Academic Press: San Diego, CA, USA, 1986; p. 464. [Google Scholar]
- Schulze-Makuch, D. Longitudinal dispersivity data and implications for scaling behavior. Ground Water 2005, 43, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Molina-Giraldo, N.; Blum, P.; Zhu, K.; Bayer, P.; Fang, Z. A moving finite line source model to simulate borehole heat exchangers with groundwater advection. Int. J. Therm. Sci. 2011, 50, 2506–2513. [Google Scholar] [CrossRef]
- Lo Russo, S.; Taddia, G.; Verda, V. Development of the thermally affected zone (TAZ) around a groundwater heat pump (GWHP) system: A sensitivity analysis. Geothermics 2012, 43, 66–74. [Google Scholar] [CrossRef]
- Böttcher, F. Estimation of Characteristic Heat Flow Current Extents in the North of Münchener Schotterebene; TUM: Munich, Germany, 2014. [Google Scholar]
- Park, B.-H.; Bae, G.-O.; Lee, K.-K. Importance of thermal dispersivity in designing groundwater heat pump (GWHP) system: Field and numerical study. Renew. Energy 2015, 83, 270–279. [Google Scholar] [CrossRef]
- Angelotti, A.; Alberti, L.; La Licata, I.; Antelmi, M. Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity. Energy Convers. Manag. 2014, 77, 700–708. [Google Scholar] [CrossRef]
- Butler, J.J., Jr.; Healey, J.M. Relationship between pumping-test and slug-test parameters: Scale effect or artifact? Ground Water 1998, 36, 305–313. [Google Scholar] [CrossRef]
- Vandenbohede, A.; Lebbe, L. Parameter estimation based on vertical heat transport in the surficial zone. Hydrogeol. J. 2010, 18, 931–943. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Ferguson, G. Heterogeneity and thermal modeling of ground water. Groundwater 2007, 45, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Barends, F. Complete solution for transient heat transport in porous media, following Lauwerier. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010. [Google Scholar]
- Tan, H.; Cheng, X.; Guo, H. Closed Solutions for Transient Heat Transport in Geological Media: New Development, Comparisons, and Validations. Transp. Porous Media 2012, 93, 737–752. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Adopted Values | Default Value |
---|---|---|---|---|
Aquifer hydraulic conductivity | m·s−1 | 5 × 10−4, 10−3, 5 × 10−3, 10−2 | 10−3 | |
5 × 10−5, 10−4, 5 × 10−4, 10−3 | 10−4 | |||
Hydraulic gradient | 10−3 | 1, 2, 4, 6, 10 | 2 | |
Darcy velocity | m·s−1 | 10−6, 2 × 10−6, 5 × 10−6, 10−5, 2 × 10−6 | 2 × 10−6 | |
Effective porosity | - | 0.1, 0.2, 0.3 | 0.2 | |
Thermal dispersivity | m | 0.5, 2, 10, 50 | 10 | |
0.05, 0.2, 1, 5 | ||||
Solid phase thermal conductivity | s | W·m−1·K−1 | 1.5, 2, 2.5, 3 | 3 |
Solid phase volumetric heat capacity | 106·J·m−3·K−1 | 1.5, 2, 2.5 | 2 | |
Aquifer thickness | m | 10, 20, 40 | 20 | |
Vadose zone thickness | m | 10, 20, 30 | 10 | |
Well distance | m | 20, 50, 100 | 50 | |
Annual maximum injected water flow rate | l/s | 50, 25, 12, 5 | 25 | |
Ratio of heating over total energy demand | - | 0.6, 0.7, 0.75, 0.8, 0.9, 1 | 0.75 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piga, B.; Casasso, A.; Pace, F.; Godio, A.; Sethi, R. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models. Energies 2017, 10, 1385. https://doi.org/10.3390/en10091385
Piga B, Casasso A, Pace F, Godio A, Sethi R. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models. Energies. 2017; 10(9):1385. https://doi.org/10.3390/en10091385
Chicago/Turabian StylePiga, Bruno, Alessandro Casasso, Francesca Pace, Alberto Godio, and Rajandrea Sethi. 2017. "Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models" Energies 10, no. 9: 1385. https://doi.org/10.3390/en10091385
APA StylePiga, B., Casasso, A., Pace, F., Godio, A., & Sethi, R. (2017). Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models. Energies, 10(9), 1385. https://doi.org/10.3390/en10091385