Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Preparation
2.2. Coal Heating Reactor
2.3. Numerical Methods for Kinetics
3. Results and Discussion
3.1. Combustion Temperature and Reaction Time
3.2. Reaction Kinetics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Aint | intrinsic pre-exponential factor (g/cm2·s) |
C | reaction rate constant (1/s) |
D | diffusion constant (cm2/s) |
DAB | molecular diffusion coefficient (cm2/s) |
Deff,O2 | effective O2 diffusion coefficient (cm2/s) |
dp | diameter (cm) |
dpore | pore diameter (cm) |
Eint | intrinsic activation energy (kJ/mol) |
kapp | apparent rate constant (1/s) |
kint | Intrinsic rate constant (g/cm2·s·atm) |
m | mass (g) |
mash | ash mass (g) |
m0 | initial mass of char (g) |
mt | mass of char at the time (g) |
M | molecular mass (g/mol) |
MAB | mixed molar mass of A and B (g/mol) |
n | Reaction order |
P | pressure (atm) |
PO2,S | partial pressure of with at the external particle surface (atm) |
PO2,∞ | partial pressure of in the ambient atmosphere (atm) |
Rapp | apparent reaction rate (1/s) |
Rint | intrinsic reaction rate (1/s) |
Ru | gas constant ( KJ/(mol·K) = 82.057 atm/(cm3·mol·K)) |
Sg | surface area (cm2/g) |
Tp | particle temperature (K) |
x | carbon conversion (g/g) |
Greek Symbols
ε | char particle porosity |
Φ | Thiele modulus |
ηex | external effectiveness factor for gas transport in the boundary layer |
ηin | internal effectiveness factor |
ν | stoichiometric coefficient |
τ | tortuosity factor of the pore (=1.414) |
ρp | apparent density (g/cm3) |
References
- Tchapda, A.H.; Pisupati, S.V. A Review of Thermal Co-Conversion of Coal and Biomass/Waste. Energies 2014, 7, 1098–1148. [Google Scholar] [CrossRef]
- Wang, P.; Means, N.; Shekhawat, D.; Berry, D.; Massoudi, M. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review. Energies 2015, 8, 10605–10635. [Google Scholar] [CrossRef]
- Rao, Z.; Zhao, Y.; Huang, C.; Duan, C. Recent developments in drying and dewatering for low rank coals. Prog. Energy Combust. Sci. 2015, 46, 1–11. [Google Scholar] [CrossRef]
- Hwang, M.; Song, E.; Song, J. One-Dimensional Modeling of an Entrained Coal Gasification Process Using Kinetic Parameters. Energies 2016, 9, 99. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Wang, G.; Zhao, D.; Guo, J.; Song, T. Research on the Combustion Characteristics and Kinetic Analysis of the Recycling Dust for a COREX Furnace. Energies 2017, 10, 255. [Google Scholar] [CrossRef]
- Kim, R.G.; Jeon, C.H. Intrinsic reaction kinetics of coal char combustion by direct measurement of ignition temperature. Appl. Therm. Eng. 2014, 63, 565–576. [Google Scholar] [CrossRef]
- Kim, R.G.; Hwang, C.W.; Jeon, C.H. Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure. Appl. Energy 2014, 129, 299–307. [Google Scholar] [CrossRef]
- Zhang, D.K.; Poeze, A. Variation of sodium forms and char reactivity during gasification of a South Australian low-rank coal. Proc. Combust. Inst. 2000, 28, 2337–2344. [Google Scholar] [CrossRef]
- Yin, C.; Yan, J. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Appl. Energy 2016, 162, 742–762. [Google Scholar] [CrossRef]
- Kim, D.H.; Choi, S.M.; Shaddix, C.R.; Geier, M. Effect of CO2 gasification reaction on char particle combustion in oxy-fuel conditions. Fuel 2014, 120, 130–140. [Google Scholar] [CrossRef]
- Daood, S.S.; Javed, M.T.; Gibbs, B.M.; Nimmo, W. NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR. Fuel 2013, 105, 283–292. [Google Scholar] [CrossRef]
- Boushaki, T.; Merlo, N.; Chauveau, C.; Gökalp, I. Study of pollutant emissions and dynamics of non-premixed turbulent oxygen enriched flames from a swirl burner. Prog. Combust. Inst. 2017, 36, 3959–3968. [Google Scholar] [CrossRef]
- Aziz, M.; Budianto, D.; Oda, T. Computational Fluid Dynamic Analysis of Co-Firing of Palm Kernel Shell and Coal. Energies 2016, 9, 137. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Huhetaoli; Osaka, Y.; Bai, Y.; Kobayashi, N.; Chen, Y. Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition. Energies 2017, 10, 1200. [Google Scholar] [CrossRef]
- Murphy, J.J.; Shaddix, C.R. Combustion kinetics of coal chars in oxygen-enriched environments. Combust. Flame 2006, 144, 710–729. [Google Scholar] [CrossRef]
- Wu, K.K.; Chang, Y.C.; Chen, C.H.; Chen, Y.D. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 2010, 89, 2455–2462. [Google Scholar] [CrossRef]
- Thornock, J.; Tovar, D.; Tree, D.R.; Xue, Y.; Tsiava, R. Radiative intensity, no emissions, and burnout for oxygen enriched biomass combustion. Proc. Combust. Inst. 2015, 35, 2777–2784. [Google Scholar] [CrossRef]
- Pawlak-Kruczek, H.; Ostrycharczyk, M.; Czerep, M.; Baranowski, M.; Zgora, J. Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere). Energy 2015, 92, 40–46. [Google Scholar] [CrossRef]
- Gavalas, G.R. A random capillary model with application to char gasification at chemically controlled rates. AIChE J. 1980, 26, 577–585. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Perlmutter, D.D. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 1980, 26, 379–386. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Perlmutter, D.D. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 1981, 27, 247–254. [Google Scholar] [CrossRef]
- Lisandy, K.Y.; Kim, G.M.; Kim, J.H.; Kim, G.B.; Jeon, C.H. Enhanced Accuracy of the Reaction Rate Prediction Model for Carbonaceous Solid Fuel Combustion. Energy Fuels 2017, 31, 5135–5144. [Google Scholar] [CrossRef]
- Lisandy, K.Y.; Kim, J.W.; Lim, H.; Kim, S.M.; Jeon, C.H. Prediction of unburned carbon and NO formation from low-rank coal during pulverized coal combustion: Experiments and numerical simulation. Fuel 2016, 185, 478–490. [Google Scholar] [CrossRef]
- Lisandy, K.Y.; Kim, R.G.; Hwang, C.W.; Jeon, C.H. Sensitivity test of low rank Indonesian coal utilization using steady state and dynamic simulations of entrained-type gasifier. Appl. Therm. Eng. 2016, 102, 1433–1450. [Google Scholar] [CrossRef]
- Smoot, L.D.; Smith, P.J. Coal Combustion and Gasification; Plenum Press: New York, NY, USA, 1979. [Google Scholar]
- Guizani, C.; Jeguirim, M.; Valin, S.; Limousy, L.; Salvador, S. Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies 2017, 10, 796. [Google Scholar] [CrossRef]
- Anthony, D.B.; Howard, J.B.; Hottel, H.C.; Meissner, H.P. Rapid devolatilization of pulverized coal. Symp. Int. Combust. Proc. 1975, 15, 1303–1317. [Google Scholar] [CrossRef]
- Song, J.H.; Jeon, C.H.; Boehman, A.L. Impacts of Oxygen Diffusion on the Combustion Rate of In-Bed Soot Particles. Energy Fuels 2010, 24, 2418–2428. [Google Scholar] [CrossRef]
- Liu, G.; Wu, H.; Gupta, R.P.; Lucas, J.A.; Tate, A.G.; Wall, T.F. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel 2000, 79, 627–633. [Google Scholar] [CrossRef]
- Kajitani, S.; Suzuki, N.; Ashizawa, M.; Hara, S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 2006, 85, 163–169. [Google Scholar] [CrossRef]
- Laurendeau, N.M. Heterogeneous kinetics of coal char gasification and combustion. Prog. Energy Combust. Sci. 1978, 4, 221–270. [Google Scholar] [CrossRef]
Samples | Proximate Analysis (wt %, ad) | Ultimate Analysis (wt %, daf) | |||||||
---|---|---|---|---|---|---|---|---|---|
Moisture | Volatile Matter (daf) | Ash (dry) | Fixed Carbon (daf) | C | H | N | O | S | |
Raw low-rank coal | 14.55 | 37.20 | 6.51 | 41.74 | 65.45 | 5.35 | 0.46 | 27.07 | 1.67 |
Low-rank coal char | 1.84 | 2.16 | 9.15 | 86.85 | 93.26 | 0.23 | 0.42 | 5.78 | 0.31 |
Graphite | 0.05 | 1.74 | 0.0 | 98.21 | 99.12 | 0.81 | 0.0 | 0.0 | 0.06 |
Samples | Low-Rank Coal Char | Graphite | ||||||
---|---|---|---|---|---|---|---|---|
O2 21% (N2 Balance) | O2 30% (N2 Balance) | O2 21% (N2 Balance) | O2 30% (N2 Balance) | |||||
Setup Temperature (K) | Maximum Temperature (K) | Reaction Time (s) | Maximum Temperature (K) | Reaction Time (s) | Maximum Temperature (K) | Reaction Time (s) | Maximum Temperature (K) | Reaction Time (s) |
1373 | 1411.34 | 2.6 | 1420.37 | 1.6 | 1393.71 | 4.4 | 1415.30 | 2.88 |
1473 | 1514.68 | 1.98 | 1532.83 | 1.35 | 1525.65 | 2.5 | 1539.83 | 1.68 |
1573 | 1619.17 | 1.7 | 1658.47 | 1.15 | 1616.79 | 1.8 | 1654.08 | 1.25 |
1673 | 1721.69 | 1.43 | 1769.41 | 1 | 1705.29 | 1.37 | 1764.35 | 0.98 |
Samples | Low-Rank Coal Char | Graphite |
---|---|---|
Structural parameter () | 23.63 | 32.99 |
Structural parameter () | 6.81 | 17.43 |
FERPM parameter () | 0.38 | 0.46 |
FERPM parameter () | 2.40 | 6.63 |
FERPM parameter () | 5.53 | 12.34 |
Initial particle surface area () (BET Ar adsorption, ) | 113.4201 | 12.8004 |
Samples | Low-Rank Coal Char | Graphite | |||
---|---|---|---|---|---|
O2 21% (N2 Balance) | O2 30% (N2 Balance) | O2 21% (N2 Balance) | O2 30% (N2 Balance) | ||
Reaction order, (-) | 0.5081 | 0.7295 | |||
Apparent kinetics | () | 38.1 | 27.9 | 74.1 | 63.7 |
A (1/s∙atmn) | 1.031 × 10−5 | 6.81 × 10−6 | 1.363 × 10−3 | 8.105 × 10−4 | |
Intrinsic kinetics | () | 85.5 | 71.4 | 136.6 | 121.7 |
A (g/cm2∙s∙atmn) | 8.956 × 10−4 | 4.186 × 10−4 | 5.954 × 10−1 | 2.315 × 10−1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-M.; Kim, J.-P.; Lisandy, K.Y.; Jeon, C.-H. Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite. Energies 2017, 10, 1436. https://doi.org/10.3390/en10091436
Kim G-M, Kim J-P, Lisandy KY, Jeon C-H. Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite. Energies. 2017; 10(9):1436. https://doi.org/10.3390/en10091436
Chicago/Turabian StyleKim, Gyeong-Min, Jong-Pil Kim, Kevin Yohanes Lisandy, and Chung-Hwan Jeon. 2017. "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite" Energies 10, no. 9: 1436. https://doi.org/10.3390/en10091436
APA StyleKim, G. -M., Kim, J. -P., Lisandy, K. Y., & Jeon, C. -H. (2017). Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite. Energies, 10(9), 1436. https://doi.org/10.3390/en10091436