1. Introduction
The use of ground source heat pump (GSHP) systems to provide heating and cooling in buildings has increased at a rapid rate in the last two decades or so. Stimulated by energy prices, technology advances and environmental concerns, the thermal energy utilized by these systems has increased from approximately 500 GWh in 1995 to over 91,000 GWh in 2015. During the same period, the worldwide installed capacities of these systems have increased from under 2000 MWt in 1995 to over 50,000 MWt in 2015 [
1]. Comparable growth levels are expected for the future.
A typical GSHP system consists of a heat pump, a ground heat exchanger, and auxiliary systems for storage and distribution of thermal energy. The sizing and performance of a heat pump system depends upon the coefficient of performance of the heat pump, which in turn is a function of heat source and heat sink temperatures. Compared to ambient air, ground, in general, is a far superior source or sink of thermal energy because of its relatively stable temperature levels over the year. In a GSHP system, a ground heat exchanger is used to transfer heat to or from the ground. The ground heat exchanger can be of open or closed type. In an open system groundwater is directly used as the heat carrier fluid, whereas in a closed system the heat carrier fluid is circulated in a closed loop, which can be horizontal or vertical. Various heat exchanger configurations can be used in closed-loop vertical systems, including single or double U-tubes, and simple or complex coaxial pipes. Among all types, a borehole heat exchanger with a single U-tube is by far the most commonly used ground heat exchanger in practice because of its low cost, small space requirements, and ease of installation. The scope of this paper is also limited to the application of single U-tubes in borehole heat exchangers.
Ground thermal conductivity (
λ) and borehole thermal resistance (
Rb) are the two principal parameters that govern the heat transfer mechanism of a borehole heat exchanger, and thus influence the sizing and performance of the overall GSHP system [
2]. The heat transfer outside the borehole boundary is dictated by the thermal conductivity of the ground, whereas the heat transfer inside the borehole is characterized by the borehole thermal resistance between the heat carrier fluid and the borehole wall. A high ground thermal conductivity is beneficial for the ground heat transfer. However, being an intrinsic property of the ground, ground thermal conductivity cannot be controlled in practice. On the other hand, a low borehole thermal resistance is desirable for better heat transfer inside the borehole heat exchanger. The borehole thermal resistance depends upon the physical arrangement and the thermal properties of borehole components including grouting, heat exchanger pipes, and the heat carrier fluid. Its value can be engineered to a certain extent by optimizing the geometry and layout of the borehole heat exchanger and by choosing appropriate materials for the borehole components.
For any given borehole configuration, the borehole thermal resistance can either be estimated theoretically [
3] or measured experimentally [
4]. The theoretical methods to estimate borehole thermal resistance include analytical [
5,
6,
7] or empirical [
8,
9,
10,
11] formulas based on one-dimensional or two-dimensional steady-state conductive heat transfer in the borehole. As demonstrated by [
12,
13], there exists a great disparity between borehole thermal resistance values calculated from different theoretical methods. Many of the simplified methods work well in certain situations and poorly in others.
The multipole method is an analytical method to determine thermal resistances for any number of arbitrarily placed pipes in a composite region. It is based on two-dimensional steady-state conductive heat transfer in a borehole, and uses a combination of line heat sources and so-called multipoles to determine thermal resistances for any number of arbitrarily placed pipes in a composite region. The method was originally developed by [
14,
15], and was later revised by [
16]. The main difference between the versions of [
14] and [
16] was in regards to prescribing a constant temperature condition at a suitable radial distance outside the borehole. In the later version, this condition was replaced by a condition on the mean temperature around the borehole wall, which simplified the algorithm.
The multipole method has been compared to and tested against several numerical methods. Young [
17] compared the tenth-order multipole method with a boundary-fitted coordinates finite volume methods for 18 combinations of shank spacing and grout conductivities, and observed a maximum difference of 0.26% between the two methods. Lamarche et al. [
12] calculated a root-mean-square difference of 0.003 between the first-order multipole method and a finite element numerical model for 72 studied cases with varying grout and soil conductivities, and pipe sizes and positing. He [
18] studied four cases of different borehole diameters and grout conductivities using a three-dimensional numerical model and the multipole method, and reported a maximum difference of 0.19%. Liao et al. [
11] compared the first-order multipole method with a two-dimensional numerical method and noted a maximum relative difference of 0.2% for 18 combinations of shank spacing and grout conductivities. Al-Chalabi [
19] studied 12 different cases of pipe positioning, and grout and soil conductivities, using the first-order multipole method and a two-dimensional finite element method, and observed a maximum difference of 1.3% between the two methods.
The accuracy and the complexity of the multipole method increases with the number of multipoles used for the calculation. When implemented in a computer program, the order of the multipoles to be used for a calculation is typically prescribed to ten, which was the maximum possible order in the original implementation [
14] of the multipole method. Popular ground heat exchanger programs Earth Energy Designer (EED, v3.2. BLOCON: Lund, Sweden) [
20] and Ground Loop Heat Exchanger Professional (GLHEPro) [
21] also use tenth-order multipoles when calculating the borehole thermal resistance. The tenth-order multipole calculations have an accuracy of over eight decimal digits [
22].
On the adverse side, the actual multipole method has a quite rigorous mathematical formulation and a fairly complex algorithm. Its implementation in computer programs requires a considerable amount of coding (the original implementation [
14] in FORTRAN was nearly 600 lines in length). However, it is possible to simplify the multipole method to explicit closed-form formulas assuming that heat exchanger pipes are placed symmetrically about the center of the borehole. In reality, heat exchanger pipes may be located anywhere in the borehole as long as they do not overlap each other. The position of pipes also varies along the depth of the borehole. However, in the absence of any a priori knowledge of the pipe positions, it is reasonable to assume that the heat exchanger pipes are symmetrically placed about the center of the borehole. So far, closed-form multipole formulas for zeroth-order and first-order have been developed for the case of a single U-tube with symmetrical pipes [
23].
In this paper, we present derivation and solutions of new second-order and higher-order multipole formulas for calculating borehole thermal resistance of single U-tube ground heat exchangers with symmetric pipes. The presented formulas are tested against the original multipole method (i.e., the tenth-order multipole calculation) as well as previously-derived zeroth-order and first-order multipole formulas.
2. Borehole Thermal Resistance
The borehole thermal resistance (
Rb) is the ratio of the temperature difference between the heat carrier fluid and the borehole wall to the heat transfer rate per unit length of the borehole. It is defined locally at a specific depth in the borehole as represented in Equation (1), where
Tf,loc is the local mean fluid temperature,
Tb is the average borehole wall temperature and
qb is the heat transfer rate per unit length of the borehole.
Borehole thermal resistance is sometimes treated as a sum of resistances in series. The total borehole resistance (
Rb) i.e., fluid-to-ground resistance is considered to be made up of two major parts: pipe resistance (
Rp) and grout resistance (
Rg). The pipe resistance includes both conductive resistance of the pipe (
Rpc) and convective resistance of the fluid (
Rpic). The grout resistance constitutes the thermal resistance between the outer pipe wall of the U-tube and the borehole wall. Its value depends on the pipe resistance and the ground thermal conductivity [
13]. As the individual pipe resistances are in parallel with each other, the pipe resistance is generally calculated for a single pipe and is then divided by the total number (
N) of pipes.
Nevertheless, in order to fully understand the concept of borehole thermal resistance, it is helpful to use a resistance network.
Figure 1 shows an example of such a network for a single U-tube borehole. Other networks forms can also be formulated, e.g., see [
11,
24] but any such representation is an approximation to reality under network-specific assumptions and restrictions.
The three resistance Δ network of
Figure 1 is based on the following relations between heat flows
q1 and
q2 and fluid temperatures
Tf1 and
Tf2.
In the above equations
R1b and
R2b are thermal resistances between pipe 1 or 2 and the borehole wall, respectively, and
R12 is the fluid-to-fluid thermal resistance between pipes 1 and 2. These resistances include the thermal resistances of the fluid and the pipe. Using the Δ network of
Figure 1, the total borehole resistance,
Rb, can be determined by setting the fluid temperatures
Tf1 =
Tf2 and solving for two parallel resistances
R1b and
R2b:
The Δ network can also be used to determine resistance
Ra by setting the heat flows
q1 = −
q2. The resistance,
Ra, is the total internal resistance between the upward and downward flowing legs of the U-tube when there is no net heat flow from the borehole. It is related to the fluid-to-fluid internal resistance
R12 by the thermal network of
Figure 1. The resistance
R12, which is sometimes also referred to as the direct coupling resistance, is the effect of the network representation and is not a directly measurable physical resistance. Resistance
R12 is in parallel with the series resistances
R1b and
R2b.
The concept of total internal resistance
Ra is critical to the understanding of the effective borehole thermal resistance
, which is the thermal resistance between the heat carrier fluid, characterized by a simple mean
Tf of the inlet and outlet temperatures, and the average borehole wall temperature
Tb. The effective borehole thermal resistance is mathematically expressed as Equation (7).
The difference between borehole thermal resistance Rb, defined by Equation (1), and effective borehole thermal resistance , defined by Equation (7), is that the borehole thermal resistance applies locally at a specific depth in the borehole, whereas effective borehole thermal resistance applies to the entire borehole. The effective borehole thermal resistance is what is measured in an experiment, for example an in-situ thermal response test. The experimental measurements of mean fluid temperature taken at the top of the borehole include the effects of thermal short-circuiting between the upward and downward flows in the U-tube. Consequently, the effective borehole thermal resistance is often higher than the borehole thermal resistance due to the higher fluid temperature caused by the thermal short-circuiting between the U-tube pipes.
It is possible to calculate the effective borehole thermal resistance from the borehole thermal resistance [
23,
25,
26]. Equations (8) and (9), developed by [
23], are commonly used for this purpose. These equations correspond to two distinct boundary conditions of uniform borehole wall temperature and uniform heat flux along the borehole, respectively. Both these are limiting conditions and the real situation falls somewhere in between. Therefore, the effective borehole thermal resistance is commonly determined as the mean value between these two equations. Calculation of the effective borehole thermal resistance from Equations (8) and (9) requires knowledge of total internal thermal resistance
Ra and direct coupling resistance
R12 between the two U-tube legs, respectively, in addition to the borehole thermal resistance
Rb.
3. Multipole Method for N Pipes in a Borehole
The general multipole method may be applied for any number,
N, of pipes in the borehole as shown in
Figure 2. The center of pipe
n lies at (
xn,
yn). The thermal conductivity of the grout region outside the pipes is
λb (W/m-K), and of the ground outside the boreholes is
λ. The borehole radius is
rb and the outer radius of the pipes is
rp. The thermal resistance from the fluid in the pipe to the grout adjacent to the pipe is
Rp (m-K/W).
The (steady-state) temperature field
T(
x,
y) is to be determined for any set of prescribed heat fluxes
qn,
n = 1, …,
N, and any prescribed average temperature
Tb,av around the borehole wall. The fluid temperature in pipe
n is T
fn,
n = 1, …,
N. From this the borehole thermal resistances are determined. The temperature field consists of a linear combination of line heat source solutions and so-called multipole solutions at the center of each pipe:
The following complex notations are used:
The real part of the function
W0 (
z,
zn) gives the temperature field for a line heat source at
z =
zn with the strength
(W/m):
The upper expression of Equation (12) is valid in the borehole outside the pipes and the lower one in the ground outside the borehole. The first top logarithm represents an ordinary line heat source, while the second term represents a line source at the mirror point . The two expressions, and the ensuing radial heat flux at the grout and ground side, are constructed to become equal at the borehole radius . This means that the solution satisfies the internal boundary conditions at the borehole wall. The average temperature Tb,av around the borehole wall is zero.
The last term in Equation (10) for the temperature field involves a multipole solution of order
j at
z = zn:
The above solutions satisfy the internal boundary conditions of continuous temperature and radial heat flux at the borehole wall. The average temperature at the borehole wall is zero. Multipoles up to order
j =
J are used. The first top term in the above expressions, in local polar coordinates around the outer periphery of pipe
n, becomes:
The multipole strength factors Pn,j are complex-valued numbers. This means the expression (10) can account for a Fourier expansion of any temperatures around the pipes with Cosine and Sine terms up to order j = J.
The boundary condition at the periphery of pipe
n involves a balance between the radial heat flux and the temperature difference between fluid temperature
Tfn and the temperature outside the pipe, which varies around the pipe. Let as in Equation (14),
be the radial distance from the center of pipe
n and
ψ the polar angle. The temperature in the grout at the pipe wall and the radial heat flux multiplied by the pipe resistance per unit pipe area are given by the two left-hand terms below:
The left-hand expression will depend on the polar angle ψ. The exact boundary condition is that the expression becomes constant and equal to the required fluid temperature Tfn to obtain the prescribed heat fluxes qn.
The temperature field of Equation (10), taken for any set of multipole factors
Pn,j, is inserted in Equation (15). It is possible by quite lengthy calculation involving complex-valued formulations and Taylor expansions to separate the expressions in Fourier exponentials of any order
j. The Fourier coefficient of order
j for any pipe
n depends on the heat fluxes and multipole factors:
Here, the vector
q represents the
N prescribed heat fluxes
qn, and the matrix
P represents the
N·J complex-valued multipole factors
Pn,j. The multipole factors are now chosen so that the Fourier coefficients up to order
J become zero. This gives
N·J equations for the multipole factors:
The equations are complex-valued with a real and an imaginary part. This means that the number of unknowns and equations are 2·
N·J for the general case. The zero-order term in Equation (16) determines the required fluid temperature
Tfn, and the terms above
j = J represent the error for the heat balance over the pipe wall as a function of the polar angle
ψ:
4. Two Symmetrically Placed Pipes in a Borehole
Figure 3 shows the case that is considered in this study. There are two symmetrically placed pipes in a grouted borehole. The center of the two pipes lie at (
xp,0) and (−
xp,0), respectively. The prescribed heat fluxes from the pipes are
q1 and
q2 (W/m). The corresponding fluid temperatures are
Tf1 and
Tf2. The main objective is to present a very precise method to calculate the relations between heat flows and fluid temperatures.
The primary input data are:
The thermal resistance may be represented by a dimensionless parameter
β and the ratio between the two conductivities by the parameter
σ. The circles of the pipes and the borehole should not intersect. This gives:
The number of equations and unknowns for multipole factors for two pipes are in general 2·2·J. But in the considered symmetrical case, the multipole factors Pn,j turn out to be real-valued numbers. The number of unknowns and equations are reduced to 2·J for the two sets of multipoles P1,j and P2,j.
4.1. Multipole Relations for Even and Odd Solutions
The multipoles for the two pipes depend on the prescribed heat fluxes. The temperature field is symmetric in
x for equal heat fluxes:
The temperature field is odd in
x for antisymmetric heat fluxes:
The average temperature at the borehole wall is chosen to be zero in both cases: Tb,av = 0.
There is a set of multipole factors for the even case and another one for the odd case. It is found for these two cases of high symmetry that the multipoles of pipe 2 are closely related to the multipoles of pipe 1 in the even and odd cases. The following relations are valid for the even case
s = +1 and for the odd case
s = −1:
The upper index + represents the even temperature solution and s = +1, while the upper index − represents the odd solution and s = −1. With these notational conventions, the formulas below for the even and odd cases can be presented in the same formulas, where s = ±1 becomes a parameter.
The temperature solutions for the even and odd cases determine the required fluid temperatures, which define an even and an odd thermal resistance
and
, respectively, in the following way:
These even and odd thermal resistances are obtained from the multipole solutions. They are the required fluid temperatures for unit heat flux. These thermal resistances depend on the choice of the number of multipoles J. It will be shown below that the accuracy increases rapidly with increasing J.
4.2. Formulas for Even and Odd Thermal Resistances
The temperature field of Equation (10) may be used without the right-hand sum of multipoles. In this case
J = 0, and only the sum of line sources are used. The thermal resistances for the two symmetrically placed pipes then become:
The correction to the zero-order resistance for any positive
J is given by a formula of the type:
The quantities
and
are obtained from the even and odd solutions for the considered multipole order
J. In the formulas below the following auxiliary (dimensionless) parameters are used:
The
B-values for any positive
J are obtained from the formula:
The larger dot indicates a matrix/vector multiplication. The formula involves two vectors
VJ and
VbJ, and a matrix
MJ for the even case
s = +1 and the odd case
s = −1:
Note that inverses of the
M matrices appear in Equation (30). The components of the vectors
VJ and
VbJ are given by:
The
M matrices are given by:
Here, the two matrices
A+ and
A−, which account for various interactions between line sources and multipoles in the boundary conditions at the two pipes, are fairly complicated:
It may be noted that the A matrices are symmetric.
The matrix formula, Equation (30), becomes a sum over all components of the inverse of the
M matrix:
4.3. Explicit Multipole Formulas for First, Second and Third-Order
The zero-order resistances and are given by the explicit formulas of Equations (26) and (27), respectively. Explicit formulas may also be derived for J = 1 and J = 2.
The first-order
corrections are given by Equation (35) for
J = 1, in which case the inverse of the matrix is equal the inverse of the single matrix component:
The quantities in this formula are defined in Equations (32)–(34):
The final formula is then:
Here, the five dimensionless parameters are defined by Equations (20) and (29).
The second-order
corrections are given by Equation (35) for
J = 2:
The
M matrices and their inverses are:
The first-order components in Equation (37) for
J = 1 are still valid. The second-order components of the symmetric
A matrices and
V vectors are from Equations (32) and (34):
A more explicit formula can now be obtained from Equations (35), (39) and (40):
The third-order
corrections for
J = 3 involve the inversion of the 3 × 3
M matrices. A more explicit formula cannot be given. The third-order
corrections are given by Equation (30) for
J = 3:
Here,
and
are given by Equation (31) for
J = 3. The
M matrices have the form:
Here,
is from Equation (34) for indices
k or
j equal to three. The third-order
corrections of Equation (43) are given by Equation (45) for
J = 3:
The formula contains all 9 components of the inverse matrix to .
4.4. Thermal Resistances R1b, R12, Rb and Ra
Final formulas for thermal resistances
R1b,
R12,
Rb and
Ra can now be obtained by again considering the Δ network of
Figure 1. For the case of equal pipes in symmetric positions, the thermal resistances
R1b is equal to
R2b, and thus the heat fluxes of Equations (3) and (4) become:
Using Equations (24), (25) and (46), the thermal networks for even (
q2 =
q1) and odd (
q2 = −
q1) cases can be drawn as shown in
Figure 4.
As seen from the even case of
Figure 4, the borehole thermal resistance
Rb between the fluid in pipes and the borehole wall consists of two parallel equal resistances, each of value
R1b. On the other hand, from the odd case of
Figure 4, it can be noticed that the total internal resistance
Ra between the two pipes consists of a pair of equal series resistances, each of value 0.5
R12. Hence, Equations (5) and (6) can now be simplified to:
Final formulas for network resistances
R1b and
R12 are obtained in the form of even and odd thermal resistance
and
using
Figure 4 and Equations (24) and (25).
Similarly, final formulas for thermal resistances
Rb and
Ra are obtained in the form of even and odd thermal resistance
and
using Equations (47) and (48).
For Equations (48) and (49), the values of thermal resistance and are obtained from Equations (28) and (38) for the first-order multipoles, from Equations (28) and (42) for the second-order multipoles, and from Equations (28) and (45) for the third-order multipoles.
5. Comparison with Existing Multipole Solutions
In this section, the new higher-order multipole formulas for borehole thermal resistance and total internal thermal resistance are compared with previously published results. The comparison is made using a reference dataset provided by [
13], who compared and benchmarked the borehole thermal resistance estimations from ten different analytical methods against the tenth-order multipole method for 216 different cases. The authors showed that compared to other methods, the zeroth-order and first-order multipole formulas provide better accuracies over the entire range of studied parameters. In this paper, we will also benchmark the newly developed second-order and third-order multipole formulas against the tenth-order multipole method. The second-order and third-order multipole formulas will also be compared to each other and to the zeroth-order and first-order multipole formulas to demonstrate improvements in the accuracy of the calculated results.
Table 1 provides the detailed summary of the 216 comparison cases provided by the reference dataset used in this paper for the comparison of the second-order and third-order multipole formulas. The cases cover three different borehole diameters of 96 mm, 192 mm, and 288 mm. The U-tube outer pipe diameter value is held fixed at 32 mm for all cases. The total pipe resistance
Rp also remains constant at 0.05 m-K/W. For each borehole diameter, three shank spacing configurations, i.e., close, moderate and wide, corresponding, respectively, to Paul’s [
8] Configuration A, Configuration B and Configuration C, are considered. Four levels of ground thermal conductivity ranging from 1–4 W/m-K, and six levels of grout thermal conductivity ranging from 0.6–3.6 W/m-K are used. Given the existing and reasonably foreseeable values of design parameters, the 216 cases used for the comparison bracket almost all real-world single U-tube borehole heat exchangers.
Results of the second-order and third-order multipole formulas for calculating the grout thermal resistance and the total internal thermal resistance are summarized in
Table 2 and
Table 3, respectively. Each entry in these two tables represents the mean or maximum error in percentage for a sample containing two three values of grout thermal conductivity, three values of borehole diameter, and four values of ground thermal conductivity. The errors have been determined by comparing the results of multipole formulas to the tenth-order multipole method.
Table 2 shows that the grout thermal resistance (
Rg) values obtained from the second-order and third-order multipole formulas are, respectively, within 0.5% and 0.2% of the tenth-order multipole method for all 216 cases. Also, the mean absolute percentage error of the results obtained from the second-order and third-order multipole formula are, respectively, smaller than 0.2% and 0.1%. In comparison, the mean and maximum absolute percentage errors for the zeroth-order multipole formula are as high as 9% and 30%, respectively. The first-order multipole formula has smaller errors than the zeroth-order formula. The mean and maximum absolute percentage errors for the first-order multipole formula are 0.7% and 2.2%, respectively.
Table 3 shows that the total internal thermal resistance (
Ra) values calculated from the second order and third-order multipole formulas are, respectively, within 1% and 0.1% of the tenth-order multipole method for all 216 cases. The mean absolute percentage error of the results obtained from the second-order and third-order multipole formulas never exceed 0.4% and 0.1%, respectively. In comparison, the zeroth-order and the first-order multipole formulas give maximum absolute percentage errors of approximately 38% and 6%, respectively. The mean absolute percentage errors of the zeroth-order and the first-order multipole expressions are as high as 23% and 3%, respectively.
As shown and discussed above, compared to the zeroth-order and first-order multipole formulas, the accuracy of the newly developed second-order and third-order multipole formulas to calculate borehole thermal resistance and total internal thermal resistance is higher by several orders of magnitude. Even though the second-order and third-order multipole formulas presented in this paper are more complicated than other analytical expressions including the zeroth-order and first-order formulas, they are still simple enough to apply for computation purposes. The implementation of the second-order multipole formulas involves approximately ten lines of coding of rather compact and simple algebraic expressions. Whereas, the implementation of third-order multipole formulas requires programing of a more complex set of equations involving vector and matrix algebra.
Although, both second-order and third-order multipole formulas offer a significant improvement over the original implementation of the multipole method, which required about 600 lines of FORTRAN coding, but the second-order multipole formulas are intrinsically more straightforward to implement, while providing almost similar levels of accuracy as third-order multipole formulas.
Figure 5,
Figure 6 and
Figure 7 present a selection of representative comparison results of second-order multiple formulas against zeroth-order, first-order and tenth-order multipoles. The results shown in these figures are for a single ground thermal conductivity of 4.0 W/m-K. The left-side figures show the grout thermal resistance
Rg values, and the right-side ones show the total internal thermal resistance
Ra values, plotted against the grout thermal conductivity. Each figure presents three curves corresponding to close, moderate and wide shank spacings, shown in black, blue and red colors, respectively. The exact value of the shank spacing for each case is provided in
Table 1. It must be pointed out that multipole formulas presented in the previous section, calculate the borehole thermal resistance and not the grout thermal resistance. However, in order to be consistent with the dataset provided by [
13], the values of grout thermal resistance have been calculated and presented in
Figure 5,
Figure 6 and
Figure 7. The grout thermal resistance values have been determined from Equation (2), by subtracting half of the fixed pipe resistance of 0.05 m-K/W from the corresponding borehole thermal resistance values obtained from the multipole formulas. Computing the grout thermal resistance directly by disregarding the pipe resistance gives erroneous results for all but zeroth-order multipole calculations.
Figure 5,
Figure 6 and
Figure 7 further demonstrate the ability of second-order multiple formulas to calculate the grout thermal resistance
Rg and the total internal thermal resistance
Ra. The thermal resistance values calculated from the second-order multiple formulas are always within 1% of the original tenth-order multipole method over the entire range of parameters. Hence, it can be concluded that due to their excellent accuracy and relative ease of implementation, the second-order multipole formulas are recommended for calculation of borehole thermal resistance and total internal thermal resistance for all cases where the two legs of the U-tube are placed symmetrically in the borehole.