Daylight Spectrum Index: A New Metric to Assess the Affinity of Light Sources with Daylighting
Abstract
:1. Introduction and Objectives
1.1. State of the Art
1.2. Aim and Objectives
- Both the color rendering and the affinity to daylighting are assessed by means of the results observed in the surveys as well as the color saturation of the samples.
- The new metric is contrasted with the results obtained using other color rendering metrics, such as the Color Rendering Index, the Color Quality Scale, the Gamut Area, and TM-30-15.
2. Calculation Procedure of Daylight Spectrum Index
2.1. Metric Definition
2.2. Calculation Procedure
2.2.1. Definition of Daylight Spectral Distribution
2.2.2. Color Perception of the Sky
2.2.3. Normalization of the Resulting SPD of the Sky
- The specific total perceived power (Ts) is calculated by the integration of the area under the resulting function.
- A scalar (P) is calculated according to the following Equation (4):
- Each value of the wavelength axis is multiplied by the scalar P in order to generate a normalized dataset.
2.2.4. Color Perception of the Studied Light Source
2.2.5. Normalization of the Resulting SPD of the Studied Light Source
2.2.6. Ratio of the Resulting Areas
3. Assessment of the Accuracy of DSI
3.1. Light Source Testing Box
3.2. Light Sources Analyzed
3.3. Samples Assessed
4. Analysis of Results
4.1. Color Rendering of the Light Sources
4.2. Color Saturation of the Light Sources
4.3. Daylight Affinity of the Light Sources
4.4. Accuracy of the Color Rendering Metrics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Glossary | |
CRI | Color Rendering Index |
CQS | Color Quality Scale |
DSI | Daylight Spectrum Index |
SPD | Spectral Power Distribution |
Appendix A. Survey Form
References
- Sandor, N.; Schanda, J. Visual colour rendering based on colour difference evaluations. Light. Res. Technol. 2006, 38, 225–239. [Google Scholar] [CrossRef]
- Barbrow, L.E. International lighting vocabulary. J. SMPTE 1964, 73, 331–332. [Google Scholar] [CrossRef]
- MacAdam, D.L. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am. 1942, 32, 247–274. [Google Scholar] [CrossRef]
- Schanda, J. A combined colour preference-colour rendering index. Light. Res. Technol. 1985, 17, 31–34. [Google Scholar] [CrossRef]
- Royer, M.P. What Is the Reference? An Examination of Alternatives to the Reference Sources Used in IES TM-30-15. J. Illum. Eng. Soc. 2016, 13, 71–89. [Google Scholar] [CrossRef]
- CIE TC1. Colour Rendering (TC1-33 Closing Remarks); Technical Report for Commission Internationale de l’Éclairage (CIE): Vienna, Austria, 1999. [Google Scholar]
- Rea, M.S.; Freyssinier, J.P. Color rendering: A tale of two metrics. Color Res. Appl. 2008, 33, 192–202. [Google Scholar] [CrossRef]
- Rea, M.S.; Freyssinier, J.P. Color rendering: Beyond pride and prejudice. Color Res. Appl. 2010, 35, 401–409. [Google Scholar] [CrossRef]
- Davis, W.; Ohno, Y. Color quality scale. Opt. Eng. 2010, 49, 1–16. [Google Scholar] [CrossRef]
- Smet, K.A.G.; Schanda, J.; Whitehead, L.; Luo, R.M. CRI2012: A proposal for updating the CIE colour rendering index. Light. Res. Technol. 2013, 45, 689–709. [Google Scholar] [CrossRef]
- Li, C.; Luo, R.M.; Li, C.; Cui, G. The CRI-CAM02UCS colour rendering index. Color Res. Appl. 2012, 37, 160–167. [Google Scholar] [CrossRef]
- IES Method for Evaluating Light Source Color Rendition; Illuminating Engineering Society: New York, NY, USA, 2015.
- Royer, M.P. IES TM-30-15 Is Approved—Now What? Moving Forward with New Color Rendition Measures. J. Illum. Eng. Soc. 2015, 12, 3–5. [Google Scholar]
- Yaguchi, H.; David, A.; Fuchida, T.; Hashimoto, K.; Heidel, G.; Jordan, W.; Jost-Boissard, S.; Kobayashi, S.; Kotani, T.; Luo, R.; et al. CIE 2017 Colour Fidelity Index for Accurate Scientific Use; Technical Report for Commission Internationale de l’Éclairage (CIE): Vienna, Austria, 2017. [Google Scholar]
- Royer, M.P.; Wei, M. The Role of Presented Objects in Deriving Color Preference Criteria from Psychophysical Studies. J. Illum. Eng. Soc. 2017, 13, 143–157. [Google Scholar] [CrossRef]
- Schanda, J.; Csuti, P.; Szabo, F. Colour fidelity for picture gallery illumination, Part 1: Determining the optimum light-emitting diode spectrum. Light. Res. Technol. 2015, 47, 513–521. [Google Scholar] [CrossRef]
- Lin, Y.; Wei, M.; Smet, K.A.G.; Tsukitani, A.; Bodrogi, P.; Khanh, T.Q. Colour preference varies with lighting application. Light. Res. Technol. 2017, 49, 316–328. [Google Scholar] [CrossRef]
- Hegde, A.L.; Bishop, N. Saturation based color appearance of objects: A comparison between healthy elderly, young adults, and young adults wearing goggles simulating cataract. Build. Environ. 2018, 127, 148–156. [Google Scholar] [CrossRef]
- Houser, K.W.; Wei, M.; David, A.; Krames, M.R. Whiteness Perception under LED Illumination. J. Illum. Eng. Soc. 2014, 10, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Jost-Boissard, S.; Avouac, P.; Fontoynont, M. Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference. Light. Res. Technol. 2014, 47, 769–794. [Google Scholar] [CrossRef]
- Dangol, R.; Bhusal, P.; Halonen, L. Performance of colour fidelity metrics. Light. Res. Technol. 2014, 47, 897–908. [Google Scholar] [CrossRef]
- Chen, L.Y.; Dai, S.J.; Kuo, C.T.; Wang, H.C. Spectral design and evaluation of OLEDs as light sources. Org. Electron. 2014, 15, 2194–2209. [Google Scholar] [CrossRef]
- Gu, H.T.; Luo, M.R.; Liu, X.Y. Testing different colour rendering metrics using colour difference data. Light. Res. Technol. 2017, 49, 539–560. [Google Scholar] [CrossRef]
- Kim, I.T.; Choi, A.S.; Sung, M.K. Development of a Colour Quality Assessment Tool for indoor luminous environments affecting the circadian rhythm of occupants. Build. Environ. 2017, 126, 252–265. [Google Scholar] [CrossRef]
- Acosta, I.; Leslie, R.P.; Figueiro, M.G. Analysis of circadian stimulus allowed by daylighting in hospital rooms. Light. Res. Technol. 2017, 49, 49–61. [Google Scholar] [CrossRef]
- Beer, E.; Burgt, P.; Kemenade, J. Another Color Rendering Metric: Do We Really Need It, Can We Live without It? J. Illum. Eng. Soc. 2016, 12, 51–59. [Google Scholar]
- Islam, M.S.; Dangol, R.; Hyvarinen, M.; Bhusal, P.; Puolakka, M.; Halonen, L. User preferences for LED lighting in terms of light spectrum. Light. Res. Technol. 2013, 45, 641–665. [Google Scholar] [CrossRef]
- Smet, K.A.G.; Ryckaert, W.R.; Pointer, M.R.; Deconinck, G.; Hanselaer, P. A memory colour quality metric for white light sources. Energy Build. 2012, 49, 216–225. [Google Scholar] [CrossRef]
- Leslie, R.P.; Radetsky, L.C.; Smith, A.M. Conceptual design metrics for daylighting. Light. Res. Technol. 2012, 44, 277–290. [Google Scholar] [CrossRef]
- Katunský, D.; Dolníková, E.; Dolník, B. Daytime Lighting Assessment in Textile Factories Using Connected Windows in Slovakia: A Case Study. Sustainability 2018, 10, 655. [Google Scholar] [CrossRef]
- Allen, E.; Alman, D.H.; McCamy, C.S.; Nayatani, Y.; Ohta, N.; Schanda, J.; Simon, F.T.; Strocka, D.; Terstiege, H. A Method for Assessing the Quality of Daylight Simulators for Colorimetry; Technical Report for Commission Internationale de l’Éclairage (CIE): Vienna, Austria, 1999. [Google Scholar]
- Acosta, I.; Campano, M.A.; Molina, J.F. Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces. Appl. Energy 2016, 168, 493–506. [Google Scholar] [CrossRef]
- Kaminska, A.; Ożadowicz, A. Lighting Control Including Daylight and Energy Efficiency Improvements Analysis. Energies 2018, 11, 2166. [Google Scholar] [CrossRef]
- Acosta, I. Daylight Spectrum Index: Development of a new metric to determine the color rendering of light sources. In Proceedings of the International Conference on Civil and Urban Engineering, Prague, Czech Republic, 14 March 2017. [Google Scholar]
- CIE Division 2. Colorimetry—Part 2: Standard Illuminants for Colorimetry; Technical Report for Commission Internationale de l’Éclairage (CIE): Vienna, Austria, 2006. [Google Scholar]
- Kaiser, P.K. CIE 1988 2° Spectral Luminous Efficiency Function for Photopic Vision; Technical Report for Commission Internationale de l’Éclairage (CIE): Vienna, Austria, 1990. [Google Scholar]
- Birch, J. Efficiency of the Ishihara test for identifying red–green colour deficiency. Ophthal. Physiol. Opt. 1997, 17, 403–408. [Google Scholar] [CrossRef]
Source | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Abbreviation | DL | L27 | L40 | L65 | IN | FL65 | FL25 |
Description | Daylight CIE D65 | LED 2700 K | LED 4000 K | LED 6500 K | Incandescent | Fluorescent 6500 K | Fluorescent 2500 K |
CCT | 6500 K | 2754 K | 4199 K | 5692 K | 2538 K | 6307 K | 2406 K |
CRI Ra | 100 | 83 | 84 | 83 | 99 | 87 | 84 |
GAI CRI | 100 | 91 | 86 | 87 | 97 | 106 | 112 |
CQS | 100 | 84 | 84 | 81 | 99 | 86 | 78 |
TM-30-15 Rf | 100 | 83 | 82 | 81 | 99 | 84 | 68 |
DSI | 100 | 80 | 85 | 84 | 83 | 72 | 55 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, I.; León, J.; Bustamante, P. Daylight Spectrum Index: A New Metric to Assess the Affinity of Light Sources with Daylighting. Energies 2018, 11, 2545. https://doi.org/10.3390/en11102545
Acosta I, León J, Bustamante P. Daylight Spectrum Index: A New Metric to Assess the Affinity of Light Sources with Daylighting. Energies. 2018; 11(10):2545. https://doi.org/10.3390/en11102545
Chicago/Turabian StyleAcosta, Ignacio, Jesús León, and Pedro Bustamante. 2018. "Daylight Spectrum Index: A New Metric to Assess the Affinity of Light Sources with Daylighting" Energies 11, no. 10: 2545. https://doi.org/10.3390/en11102545
APA StyleAcosta, I., León, J., & Bustamante, P. (2018). Daylight Spectrum Index: A New Metric to Assess the Affinity of Light Sources with Daylighting. Energies, 11(10), 2545. https://doi.org/10.3390/en11102545