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Abstract: The Kalina flash cycle (KFC) is a novel, recently proposed modification of the Kalina cycle
(KC) equipped with a flash vessel. This study performs a comparative analysis of the thermodynamic
performance of KC and KFC utilizing low-grade heat sources. How separator pressure, flash pressure,
and ammonia mass fraction affect the system performance is systematically and parametrically
investigated. Dependences of net power and cycle efficiencies on these parameters as well as the
mass flow rate, heat transfer rate and power production at the cycle components are analyzed. For a
given set of separator pressure and ammonia mass fraction, there exists an optimum flash pressure
making exergy efficiency locally maximal. For these pressures, which are higher for higher separator
pressure and lower ammonia mass fraction, KFC shows better performance than KC both in net
power and cycle efficiencies. At higher ammonia mass fraction, however, the difference is smaller.
While the maximum power production increases with separator pressure, the dependence is quite
weak for the maximum values of both efficiencies.

Keywords: exergy efficiency; Kalina flash cycle; low-grade heat source; optimal flash pressure;
thermal efficiency

1. Introduction

The Kalina cycle (KC) is a novel power cycle proposed in the early 1980s by Kalina [1] which
replaces water of the steam cycle by an ammonia-water mixture and is equipped with a vapor-liquid
separator. These days, it is considered to have significantly improved the design of thermal power
plants and to be competitive against the organic Rankine cycle (ORC) [2–6]. For a review on its features
and applications, readers may refer to Zhang et al. [7]. As the isobaric phase change of ammonia-water
mixture occurs at varying temperature, the thermal mismatch between fluids is alleviated to some
extent or more, so that the irreversibility of the KC generated at the evaporator and condenser is kept
low, resulting in a higher efficiency and an improvement in the cycle performance [8–11].

Aslan [12,13] performed a case study for the electricity generation system using a KC driven by
geothermal resources from an exergo-economic viewpoint. He also tried to optimize the operating
conditions of the system by using the artificial neural network method. Sun et al. [14,15] carried out
an energy-exergy analysis for a solar boosted KC with an auxiliary superheater to utilize low-grade
heat sources. They also reported a parametric optimization result for a pilot system that the generated
power, exergy and energy efficiencies reaching up to 491 kW, 35.6%, and 6.48%, respectively. Varga and
Palotai [16] compared the waste heat recovery performance of ORC and KC which partially substitute
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an air cooler used to cool down a hydrocarbon stream. At the expense of higher pressure, KC is
shown to generate more power with higher efficiency. In an off-design performance study of KC,
Wang et al. [17] proposed a method to keep the cycle with good performance. Prananto et al. [18]
investigated the electricity generating performance of a KC by recovering the heat of the unused brine
discharged from a geothermal power plant. For an optimized condition, 48 kg/s of unused brine is
shown to be capable of generating up to 1.66 MW of electricity.

In order to simultaneously produce refrigeration and power, Ghaebi et al. [19] proposed combining
KC with an ejector refrigeration cycle. The cycle was shown to have a potential to produce 2.3 MW
of net power and 1.1 MW of refrigeration under the optimized conditions. Zare and Palideh [20]
proposed a KC integrated with thermoelectric generators to directly convert heat into electricity.
They reported an enhancement of 7.3% in net power with efficiencies comparable to the conventional
KCs. Ghorbani et al. [21] developed and analyzed an integrated structure in which solar flat plate
collectors provide thermal energy, KC generates power, and desalination process produces freshwater.
The system was shown to be capable of producing 65.2 MW of heating, 1.87 MW of power, and 83.2 kg/s
of freshwater.

In KC, however, the ammonia-poor solution is underutilized in spite of its high temperature and
high pressure, while the ammonia-rich vapor produces power by expanding in the turbine. The Kalina
flash cycle (KFC) is a very recent modification of KC equipped with a flash vessel, which was proposed
by Cao et al. [22] and investigated for two configurations. By using single and multiple objective
optimizations, they obtained optimal conditions for exergy efficiency and specific investment cost
for KC and KFCs. Both configurations of KFC are shown to achieve better performances than KC.
However, considering the rather small differences in the optimal performances, the suggested optimal
separator pressures seem high, and there still remain some aspects to be resolved. This study carries
out a comparative analysis of the thermodynamic performance of KC and KFC utilizing low-grade
heat sources. It is systematically investigated how flash pressure and other system parameters affect
their thermodynamic performance. Not only the dependences of mass flow rates, heat transfer rates
and power production at the appropriate components but also the dependences of net power and
efficiencies of the systems on these parameters are analyzed.

2. System Analysis

The systems of (a) KC and (b) KFC under consideration are schematically shown in Figure 1.
In both systems a heat recovery vapor generator (HRVG) is used to heat working fluid through heat
transfer from a low-grade heat source. KFC is additionally equipped with a flash vessel and second
turbine. The remaining components of the systems are separator, main turbine, mixer, condenser,
pump, regenerator, and throttle valve. In KFC, the working fluid leaves HRVG with pressure PH

and temperature TH (state 1). Its separation into vapor (state 2) and liquid (state 3) phases takes
place in the separator. The saturated liquid from separator is flashed in flash vessel at pressure Pf
into vapor and liquid. The saturated vapors from separator and flash vessel (state 4) expand and
generate power at turbines 1 and 2, respectively. Vapors leaving turbines (states 6 and 7) mix at mixer
(state 10). The saturated liquid from flash vessel (state 5) preheats the working fluid at regenerator.
Throttling process (states 8 to 9) are followed by a mixing process with the vapor from the mixer
(state 11). The working fluid condensed in condenser (state 12) is compressed at pump (state 13),
preheated at regenerator (state 14), and enters HRVG, completing a cycle. Inlet temperature (state
17) of the coolant at condenser is Tc. KFC reduces to KC when both flash vessel and turbine 2 are
removed. Accordingly line 4 to 7 disappears and pairs of points 3 and 5, and 6 and 10 in KFC merge
into single points. Except these simplifications, cycle operation of KC is the same as KFC. In this study,
the following simplifications are assumed in order to alleviate the burden of complicated simulation:

(1) The process of cycle operation is steady.
(2) The kinetic and potential energies have negligible effects.
(3) The pump and turbines have constant isentropic efficiency.
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(4) Both vapor and liquid leaving out of separator or flash vessel (in KFC) are saturated.
(5) Throttling occurs as an isenthalpic process.
(6) The liquid leaving out of condenser is saturated.
(7) The pinch point temperature differences in HRVG and regenerator are set at the prescribed values

of ∆Tpp1 and ∆Tpp2, respectively.

Figure 1. Systems under consideration: (a) Kalina cycle (KC) and (b) Kalina flash cycle (KFC).

From the laws of conservation of mass and energy, mass flow rates from m1 to m5 are obtained in
terms of the source temperature Ts and the specific enthalpy of the working fluid hi as follows:

m1 = mscps
Ts − Tsout

h1 − h14
(1)

m2 = m1
h1 − h3

h2 − h3
(2)

m3 = m1 − m2 (3)

m4 = m3
h3 − h5

h4 − h5
(4)

m5 = m3 − m4 (5)

Here ms, cps, and Tsout are the mass flow rate, isobaric specific heat, and HRVG outlet temperature
of the source fluid. The last of these is obtained from the pinch point condition.

In KFC, heat transfer rates at HRVG, regenerator, and condenser, Qs, Qr, and Qc, and power
productions at turbine 1 and turbine 2, pump power, and net power, Wt1, Wt2, Wp, and Wnet,
respectively, can be obtained as follows:

Qs = m1(h1 − h14) (6)

Qr = m5(h5 − h8) (7)

Qc = m11(h11 − h12) (8)

Wt1 = m2(h2 − h6) (9)

Wt2 = m4(h4 − h7) (10)

Wp = m12(h13 − h12) (11)
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Wnet = Wt1 + Wt2 − Wp (12)

Since KC is without second turbine, Wt2 has to be set zero in KC. The rate of exergy flow of the
working fluid, Ei, is evaluated in terms of the mass flow rate and the differences of specific enthalpy
and specific entropy si as:

Ei = mi[hi − h0 − T0(si − s0)] (13)

with subscript 0 referring to the reference equilibrium state. Furthermore, the rate of exergy flow of
the source fluid and the coolant is approximated as:

Ei = micp

[
Ti − T0 − T0 ln

(
Ti

T0

)]
(14)

where cp is its specific heat at constant pressure.
Based on the net power, three kinds of efficiencies are used to quantitatively investigate the

performance of the system by dividing it by the rate of heat input, or rate of exergy supply, or rate of
exergy input. They are called the thermal efficiency ηth, the exergy efficiency ηex, and the inner exergy
efficiency ηexi, respectively, and calculated as follows:

ηth =
Wnet

Qs
(15)

ηex =
Wnet

E15 − E16
(16)

ηexi =
Wnet

E1 − E14
(17)

The evaluation of the thermodynamic properties of ammonia-water mixture is based on the
method of [23], except for the calculation of the equilibrium conditions which are determined by
equating the chemical potentials of each phase for each element as [8]:

µL
a =

(
∂GL

m
∂Na

)
T,P,Nw

=

(
∂Gg

m
∂Na

)
T,P,Nw

= µ
g
a (18)

µL
w =

(
∂GL

m
∂Nw

)
T,P,Na

=

(
∂Gg

m
∂Nw

)
T,P,Na

= µ
g
w (19)

Here, Na, Nw, and N are numbers of moles of ammonia, water, and the mixture, respectively,
and the Gibbs free energy of Gm for liquid or gas phase is denoted as

Gm = Na[Ga + RT ln x] + Nw[Gw + RT ln(1 − x)] + NGE (20)

where R is the universal gas constant.

3. Results and Discussion

For comparison purposes, the basic simulation conditions in this study are taken similar to those
of [22]. The source fluid is considered as air with Ts = 150 ◦C and ms = 1 kg/s, while the latter in [22]
is 20 kg/s. The basic simulation conditions are as follows: separator pressure PH = 24 bar; separator
temperature TH = 139.9 ◦C; condensation temperature TL = 40 ◦C; coolant temperature Tc = 25 ◦C; dead
state temperature T0 = 25 ◦C; pinch point temperature differences at heat recovery vapor generator
(HRVG) ∆Tpp1 = 10 ◦C and at regenerator ∆Tpp2 = 5 ◦C; isentropic efficiencies of pump ηp = 0.60 and
of turbines ηt = 0.75.
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3.1. Effects of Flash Pressure in KFC

In order to compare the thermodynamic performance of the Kalina flash cycle (KFC) with that
of the Kalina cycle (KC), the performance of KFC is analyzed first. This approach is reasonable
since the KC does not have a flash vessel and its effect should be resolved for a direct comparison.
In this section, the effects of flash pressure on the mass flow rates, heat transfer rates, pump and
turbine powers, and cycle efficiencies are investigated for the representative separator pressure (PH) of
24 bar and ammonia mass fractions (xb) of 40%, 45%, and 50%. Then, the dependence of the optimal
flash pressure, based on the exergy efficiency, on separator pressure and ammonia mass fraction is
investigated. An investigation of the effects of separator pressure and ammonia mass fraction on the
power of the second turbine of KFC for optimal flash pressure concludes this section.

Figure 2 shows the effect of flash pressure on the mass flow rates at HRVG of m1, at turbines 1
and 2 of m2 and m4, and at regenerator of m5 for the separator pressure of 24 bar and ammonia mass
fractions of 40%, 45% in KFC. Since the states at the inlet and outlets of the separator are completely
determined by the separator pressure, separator temperature, and ammonia mass fraction, the mass
flow rates at HRVG (m1), turbine 1 (m2), and flash vessel (m3) do not change with the flash pressure.
Hence the curves for m1 and m2 are horizontal lines for a constant value of separator pressure. Raising
flash pressure makes the mass flow rate at turbine 2 (m4) diminish because the reduced pressure
difference between the separator and flash vessel reduces the degree of expansion during flash process.
On the contrary mass flow at regenerator (m5) increases since the sum of the mass flow rates to turbine
2 and to regenerator remains constant. As ammonia gets richer for the same flash pressure, m1 and m4

decrease slightly but increase of m2 and decrease of m5 are appreciable. The reason is as follows: m1

is proportional to (Ts − Tsout)/(h1 − h14). Since the bubble point of the mixture is lower for higher
ammonia concentrations, both (Ts − Tsout) and (h1 − h14) increase, leading to a slight decrease of m1.
As ammonia concentration increases, dryness factor becomes higher in separator and lower in flash
vessel, which result in an increase of m2 and a decrease of m5. However, m4 decreases slightly, since it
has both increasing factor and decreasing factor.

Figure 2. Effect of flash pressure on the mass flow rates in KFC.

Figure 3 shows the effect of flash pressure on the rates of heat transfer at HRVG of Qs,
at regenerator of Qr, and at condenser of Qc for the separator pressure of 24 bar and ammonia
mass fractions of 40%, 45%, 50% in KFC. Here, rate of heat transfer at HRVG is equal to the rate of
heat input to the cycle from the source fluid. If the flash pressure is raised for the fixed separator
pressure, then the pressure drop during the flash process diminishes and the liquid from flash vessel
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enters the regenerator with higher temperature. This brings about enhancement of heat transfer at the
regenerator and elevation of the temperature of the mixture entering HRVG. Hence the heat transfers
at regenerator and HRVG are monotonically increasing and decreasing functions of flash pressure,
respectively. The heat transfer at condenser decreases with the increase of flash pressure since the
temperature of the mixture entering condenser gets lower. On the other hand, if the concentration of
ammonia-water mixture gets higher, then its temperature gets lower at HRVG inlet and consequently
the temperature of source exhaust also drops. In addition condensation pressure rises and consequently
the temperature of the mixture entering condenser rises. These factors make heat transfers at HRVG
and condenser larger for the higher ammonia concentration. Ammonia richer mixture makes heat
transfers at regenerator smaller, since the flow rate of mixture at regenerator is lower for higher
ammonia concentration.

Figure 3. Effect of flash pressure on the rates of heat transfer in KFC.

Figure 4 shows the effect of flash pressure on the powers produced by turbines 1 and 2 of Wt1

and Wt2, consumed power at pump of Wp, and net power production of the cycle of Wnet, for the
separator pressure of 24 bar and ammonia mass fractions of 40%, 45% in KFC. Powers of turbine 1
and pump are constant with respect to flash pressure, since they are completely determined by the
thermodynamic states in the separator. Power of turbine 2 exhibits an increasing-decreasing behavior
respect to flash pressure and has an extremum for each ammonia mass fraction. This behavior results
from a competition between the positive effect of increased enthalpy drop across turbine 2 and the
negative effect of decreased flow rate through turbine 2. As net power is equal to the difference of the
sum of turbine powers and pump power, and powers of turbine 1 and pump do not change with flash
pressure, net power shows the same topological behavior as power of turbine 2. When ammonia mass
fraction is raised from 40% to 45%, mass flow rate increases at turbine 1 but decreases at turbine 2.
On the other hand, specific works of both turbines decrease. Therefore, power of turbine 1 increases
because of the dominant mass effect, while power of pump decreases very slightly such that two
graphs are nearly indistinguishable. Power of turbine 2 naturally decreases but net power increases.
This means that the positive effect of the difference of the powers of turbine 1 and pump is larger than
the negative effect of the power of turbine 2.
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Figure 4. Effect of flash pressure on the powers of turbines and pump, and net power production
in KFC.

Figure 5 shows the effect of flash pressure on the thermal efficiency, exergy efficiency, and inner
exergy efficiency, for the separator pressure of 24 bar and ammonia mass fractions of 40%, 45%,
and 50% in KFC. For any of 40%, 45%, and 50%, each of three efficiencies has an extremum in the
considered range of flash pressures. For the same pair of separator pressure and ammonia mass
fraction, the optimizing flash pressures for the peak points of cycle efficiencies are much higher than
that of the net power. This is because all terms in the denominator, i.e., supplied heat, supplied exergy,
and exergy input, decrease with the increase of flash pressure. For example, when the separator
pressure is 24 bar and ammonia mass fraction is 45%, net power has a maximum value of 3.60 kW
at the optimizing flash pressure of 11 bar, and thermal efficiency, exergy efficiency, and inner exergy
efficiency have maxima of 11.0%, 40.6%, and 45.0%, respectively, at the optimizing flash pressures of
22 bar, 20 bar, and 20 bar, respectively. If the flash pressure is high enough, all of three efficiencies are
higher for lower ammonia mass fraction. However this trend is reversed at the flash pressures of about
9 bar and lower.

Figure 5. Effect of flash pressure on the cycle efficiencies in KFC.
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The next consideration is to investigate the dependence of the exergy efficiency based optimal
flash pressure on the separator pressure and ammonia mass fraction. This pressure will be used as the
value of flash pressure of KFC to directly compare with KC in the next section. The exergy efficiency of
KFC for fixed values of separator pressure and ammonia mass fraction shows a similar behavior to
Figure 5 and it always has one peak point with respect to the change of flash pressure. Figure 6 shows
the dependence of this optimal flash pressure on ammonia mass fraction for various values of separator
pressure from 16 bar to 48 bar with an increment of 8 bar. The exergy efficiency- based optimal flash
pressure is a monotonically increasing function of ammonia mass fraction and approaches to separator
pressure at high enough values of ammonia mass fraction. The gap between separator pressure and
optimal flash pressure widens as separator pressure is raised. A little surprisingly, optimal flash
pressure decreases with the increase of separator pressure at low ammonia concentrations.

Figure 6. Dependence of the optimal flash pressure on ammonia mass fraction and separator pressure
in KFC.

Figure 7 shows the effects of ammonia mass fraction and separator pressure on the power of
turbine 2 in KFC operating at the optimal flash pressure based on the cycle exergy efficiency. Since
optimal flash pressure increases with ammonia mass fraction and the mass flow rate at turbine 2
decreases with ammonia mass fraction, power of turbine 2 is a monotonically decreasing function
of ammonia mass fraction for each value of separator pressure. As expected, power of turbine 2 is
strongly dependent on separator pressure and rapidly increases with the rise of separator pressure.
The main reason of this behavior is that the pressure ratio across the turbine 2 increases with the rise of
separator pressure.

3.2. Comparison of KFC Operating at Optimal Flash Pressure with KC

In this section, the thermodynamic performances of KFC and KC are comparatively investigated.
As the flash vessel is integrated only in KFC, KFC is considered to be operated at the exergy
efficiency-based optimal flash pressure for the purpose of definite comparison with KC. These optimal
values were presented in the previous section.

Figure 8 shows the effects of ammonia mass fraction and separator pressure on the rate of heat
transfer at regenerator in KC and KFC. In KC, the rate of heat transfer at regenerator declines almost
linearly with ammonia concentration but gets higher as separator pressure is raised. This behavior
results from the simultaneous reduction effect of the rate of mass flow and the heat transfer per kg of
mixture at regenerator for higher ammonia concentrations and at lower separator pressures. When
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ammonia concentration is high enough or separator pressure is low (16 to 24 bar), the overall behavior
of heat transfer at regenerator in KFC is qualitatively same as in KC. However, a hill with gentle slope
is formed in each heat transfer vs. ammonia concentration curve in the relatively low concentration
region for high separator pressures (32–48 bar). In addition the heat transfer for higher separator
pressure can be larger than that for lower separator pressure in this region. Comparing the results for
KC and KFC, the heat transfer at regenerator of KC is seen to be larger than in KFC. This is consistent
with the expectation because a part of liquid from the separator is used for additional power generation
at turbine 2 in KFC instead of preheating the working fluid to HRVG. The difference of heat transfer
between KC and KFC diminishes as ammonia mass fraction increases while it grows as separator
pressure increases.

Figure 7. Effects of ammonia mass fraction and separator pressure on the power of turbine 2 in KFC.

Figure 8. Effects of ammonia mass fraction and separator pressure on the heat transfer at regenerator
in KC and KFC.

Figure 9 shows the effects of ammonia mass fraction and separator pressure on the rate of heat
transfer at HRVG in KC and KFC. KC and KFC show the qualitatively same behavior in heat transfer
at HRVG with respect to the changes of ammonia concentration and separator pressure. Moreover the
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discrepancy in numerical value is not so big; it becomes more significant as ammonia concentration
decreases and as separator pressure increases. In both cycles heat transfer at HRVG is an almost linearly
increasing function of ammonia concentration. This is because the specific heat transfer increases
owing to the drop of mixture temperature entering HRVG. However, the effect of separator pressure
on heat transfer at HRVG is a little complicated. If the separator pressure is high enough (32–48 bar) or
ammonia concentration is low enough (below about 60%), then the heat transfer at HRVG decreases
with the increase of separator pressure. When the separator pressure is low (16–24 bar) and ammonia
concentration is high, it begins to increase with the separator pressure. This implies that there exists a
peak point in the heat transfer vs. separator pressure curve for ammonia concentrations above 63%.

Figure 9. Effects of ammonia mass fraction and separator pressure on the heat transfer at HRVG in KC
and KFC.

Figure 10 shows the effects of ammonia mass fraction and separator pressure on the net power
produced in KC and KFC. As a whole, there is no qualitative difference in the characteristics of the
change of net power with respect to the changes of ammonia concentration and separator pressure
for two cycles. Only a quantitative difference exits between them. KFC produces more power than
KC for any combination of ammonia concentration and separator pressure. The superiority of KFC in
power production becomes clearer at higher separator pressure and at lower ammonia concentration.
In the considered range of ammonia mass fraction, there exists a peak point in the net power vs.
ammonia concentration curve for relatively low separator pressure from 16 to 24 bar in both KC and
KFC. This point shifts to the upper-right direction as separator pressure increases. However, for high
separator pressures from 32 to 48 bar and ammonia mass fractions below 80%, net power is a simply
increasing function of ammonia concentration and its maximum value is attained at the right limit.
Maximum net powers and the corresponding ammonia mass fractions of KFC are summarized as
follows in an increasing order of separator pressures of 16, 24, 32, 40, and 48 bar: 3.62 kW at 46%,
4.41 kW at 64%, 4.91 kW at 80%, 5.05 kW at 80%, and 4.76 kW at 80%. Maximum net power of KC is to
a certain degree lower than that of KFC having the same separator pressure.
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Figure 10. Effects of ammonia mass fraction and separator pressure on the net power production in
KC and KFC.

Figure 11 shows the effects of ammonia mass fraction and separator pressure on the thermal
efficiencies of KC and KFC. As seen in Figures 9 and 10, the net power production and the rate of heat
transfer at HRVG show the same qualitative behaviors for KC and KFC. The ratio of the former to the
latter corresponding to the rate of heat supply to the cycle defines thermal efficiency. Therefore the
same trend of thermal efficiency for KC and KFC appearing in Figure 11 results naturally. For low
separator pressures (16–24 bar) thermal efficiency simply decreases with the increase of ammonia
concentration because of the dominant negative effect of rapidly growing heat transfer. On the other
hand for high separator pressures (32–48 bar), both positive effect and negative effect increase with
the increase of ammonia concentration and make thermal efficiency show an increasing-decreasing
behavior with a peak value. The value of ammonia mass fraction at the peak of thermal efficiency is
lower than that of net power corresponding to the same separator pressure, and is higher at higher
separator pressure. However, the value of maximum thermal efficiency declines very gradually with
respect to the increasing of separator pressure. Thermal efficiency of KFC is higher to a certain degree
than that of KC for any same pair of ammonia mass fraction and separator pressure; The difference
shrinks at high ammonia concentration and at low separator pressures.

Figure 12 shows the effects of ammonia mass fraction and separator pressure on the exergy
efficiencies of KC and KFC. Except for the high ceiling values around 40% which is more than three
times of that of thermal efficiency, the dependencies of exergy efficiency on ammonia mass fraction
and separator pressure are similar to thermal efficiency. Although the gap shrinks at high ammonia
concentrations or at low separator pressures, KFC exhibits a better performance in exergy efficiency
than KC operating at the same condition. Over the considered ammonia concentration range, the values
of maximum exergy efficiency and the corresponding ammonia mass fraction in KFC attainable at
separator pressures of 16, 24, 32, 40, and 48 bar are 38.6% at 40%, 41.5% at 40%, 40.2% at 50%, 39.6%
at 59%, and 39.9% at 70%, respectively. As is clear from Figure 12, the maximum values of exergy
efficiency sought by varying ammonia concentration are weakly dependent on separator pressure.
Therefore, a straightforward optimization by merely extending the range of separator pressure to
high pressure region is apt to result in an insignificant gain at the expense of additional facility and
operation costs. According to the thermodynamic optimization results of [22], the KC has an optimum
exergy efficiency of 38.04% at the separator pressure of 43.0 bar and ammonia mass fraction of 79.2%;
while the KFC has an optimum exergy efficiency of 38.90% at the very high separator pressure of
51.5 bar and ammonia mass fraction of 79.5%.
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Figure 11. Effects of ammonia mass fraction and separator pressure on the thermal efficiency in KC
and KFC.

Figure 12. Effects of ammonia mass fraction and separator pressure on the exergy efficiency in KC
and KFC.

4. Conclusions

In this paper, a comparative thermodynamic analysis was carried out on the performances of the
Kalina Cycle (KC) and the Kalina Flash Cycle (KFC) for utilizing low-grade heat sources. By taking
ammonia mass fraction and separator pressure for both cycles and flash pressure for KFC as key
parameters, a parametric study was systematically performed on the effects of these parameters
on the cycle performance. Not only the mass flow rates, heat transfers, and powers at the cycle
components but also the net power and cycle efficiencies were extensively investigated. Special
attention was focused on the comparison of performance of KFC operating at optimal flash power
with KC. The important findings are as follows.

In KFC with specified ammonia concentration and separator pressure, the power of the second
turbine and net cycle power, and cycle efficiencies can be optimized with respect to the flash pressure.
The optimum flash pressure based on the cycle exergy efficiency increases as ammonia mass fraction
increases and separator pressure increases, approaching to the value of the separator pressure.
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Regeneration heat transfer in KFC at optimal flash pressure is smaller than KC since a part of liquid is
used for the second turbine, while the heat input rate, net cycle power, and cycle efficiencies of KFC are
greater than KC. The difference in the thermodynamic performances of KFC and KC diminishes with
the increase of ammonia mass fraction. As the maximum values of thermal and exergy efficiencies are
weakly dependent on separator pressure, a straightforward optimization by raising separator pressure
is not so recommendable.
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