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Abstract: The uncertainty of wind power and photoelectric power output will cause fluctuations
in system frequency and power quality. To ensure the stable operation of the power system,
a comprehensive scheduling optimization model for the electricity-to-gas integrated energy system is
proposed. Power-to-gas (P2G) technology enhances the flexibility of the integrated energy system
and the power system in absorbing renewable energy. In this context, firstly, an electricity-to-gas
optimization scheduling model is proposed, and the improved Conditional Value at Risk (CVaR) is
proposed to deal with the uncertainty of wind power and photoelectric power output. Secondly,
taking the integrated energy system with the P2G operating cost and the carbon emission cost as
the objective function, an optimal scheduling model of the multi-energy system is solved by the A
Mathematical Programming Language (AMPL) solver. Finally, the results of the example illustrate
the optimal multi-energy system scheduling model and analyze the economic benefits of the P2G
technology to improve the system to absorb wind power and photovoltaic power. The simulation
calculation of the proposed model demonstrates the necessity of taking into account the operating
cost of the electrical gas conversion in the integrated energy system, and the feasibility of considering
the economic and wind power acceptance capabilities.

Keywords: integrated energy system; risk assessment; improved CVaR; P2G; robust optimization

1. Introduction

Complementary operation between multiple energy sources is conducive to improving
the efficiency of renewable energy utilization. In 2015, China clearly put forward the
strategy of “strengthening energy interconnection and promoting multi-energy optimization and
complementarity” in the guidance of promoting the development of a smart grid [1]. The development
of renewable energy is a national strategic demand to ensure the establishment of China’s energy
sustainable development system and complete the energy technology revolution [2]. The volatility
of large-scale renewable energy has increased the pressure on grid dispatching [3]. Therefore,
the characteristics of wind energy and solar energy resources are studied, and then a reasonable
optimization model power system is proposed for dispatching and is rationally allocated [4].
The optimal dispatching operation of an integrated energy system as an important physical carrier is
the key to achieving abandonment [5].

As energy storage technology has developed, it has become a key technology to improve the
flexibility, security, and stability of the energy Internet and improve the consumption of renewable
energy [6]. The application of energy storage to stabilize wind power fluctuations has been studied
by many scholars. Jabr et al. [7] studied an integrated optimization model of system operation for
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an energy storage system, and a wind thermal water storage gas joint optimization scheduling model
was constructed. We further study the coordinated scheduling model of thermal power storage
with energy storage and propose a combined solution method based on bilevel programming and
opportunity constrained goal planning [8]. Energy storage is used to smooth the wind power output
curve, effectively reducing the difficulty of grid regulation. The coupling of traditional power systems
and natural gas systems is the conversion of natural gas to electrical energy [9]. Power-to-gas (P2G)
technology may change this situation, and a model for peak-filling and valley filling through P2G
and gas turbine coordination is proposed, taking into account the economic goals of the system and
the peak-filling target. Gahleitner [3] provided a new idea for large-scale storage of electric energy,
electrochemically reacting surplus electric energy to turn water and carbon dioxide into artificial
natural gas that is injected into the natural gas network. The key technologies of each link of P2G
are introduced in detail, and the cost is systematically analyzed [10]. In addition, P2G technology
can convert electrical energy into natural gas when the transmission line is blocked, and can send it
through the natural gas pipeline to the gas unit that is not in the blocking area to generate electricity
to alleviate system blockage. P2G technology can promote the integration of electrical networks and
natural gas systems, and is an important part of integrated energy systems [11]. The cost characteristics
and operational economy of P2G applications in different scenarios are studied.

The breakthrough of electro-gas technology and the application of cogeneration technology
will bring the power network and natural gas network closer together, providing a new way to
eliminate renewable energy [12,13]. The gradual maturity and application of P2G technology increase
the flexibility of the energy system to operate. Chaudry et al. [14] described the application and
development potential of P2G technology in Germany, and the German Energy Agency and China
have also begun to cooperate. The energy management system [15] integrates power generation
optimization scheduling, load management, real-time monitoring and automatic realization of
micro-grid synchronization and other functions. With the continuous development of the system
and the expansion of its scale, it will face a series of problems that need to be solved, such as control
structure, optimization algorithms, and communication design.

The convergence of power networks and natural gas networks will present new challenges
to the operation of energy systems. Although there have been some studies on the coordinated
scheduling of natural gas and power systems, such as CHP or CCHP, the modeling method lacks
versatility [16]. Jabr et al. [17] assessed the feasibility of P2G’s participation in the energy market by
purchasing electricity and selling natural gas. The energy center modeling method is proposed to
integrate energy systems such as electric power, natural gas, and heating networks for modeling.
Because of its versatility and scalability, this method is widely used to solve various problems related
to multi-energy systems [18]. P2G technology is still in the initial stage of development, and the
relevant research literature is relatively scarce [19]. Wei et al. [20] used two-stage optimal power flow
method to evaluate the impact of P2G technology on power networks and natural gas networks.
The gas-electric network considering wind power uncertainty is proposed, the commercial application
of P2G technology enables energy to flow in both directions between the power system and the natural
gas system, thereby increase the flexibility of system operation [21,22]. The development potential of
P2G technology in Germany is expounded, and the impact of P2G technology on the power system
and natural gas system is analyzed. In general, the existing literature is in the exploration stage for the
collaborative planning of power systems and natural gas systems with P2G.

At present, in the existing research on the optimization of integrated energy systems with P2G,
it is rare to consider the impact of P2G operating costs on the scheduling operation of integrated energy
systems. In fact, when the P2G operating cost is high, it will affect the wind power acceptance capability
and operational economy of the system to a certain extent, so that there is a certain contradiction
between the two. Furthermore, it is important to coordinate the relationship between the renewable
energy system and gas system, and ensure the economical operation of the system with high wind
power acceptance capability, which is a key issue facing the integrated energy system with P2G.



Energies 2018, 11, 3437 3 of 15

In the above context, this paper will focus on the market equilibrium of multi-energy systems
with P2G equipment. This paper establishes a risk optimization model under the Conditional Value
at Risk (CVaR) framework for the decision-making problem of electricity-to-gas in the power market
environment, that is, under the premise of a given probability of confidence level, the comprehensive
energy system benefits the largest. First, an integrated energy system with P2G equipment is based
on an energy center modeling approach. Secondly, taking the minimum difference between system
power generation cost and carbon emission cost as the optimization goal, to determine the optimal
input capacity of each unit at each time period and optimize the energy utilization of the system.

2. System Scheduling Risk Assessment Model

2.1. Structure of Integrated Energy System with P2G

The energy supply system mainly includes wind turbines, photovoltaic power plants,
gas generating units, energy storage power stations, and gas storage systems. The system can realize
gas-electricity conversion, participate in bidding in the electricity market and the natural gas market,
and maximize the flat load demand curve. The gas storage system can store the CH4 generated by gas
conversion in the valley period and release the natural gas to obtain economic benefits in the peak
period. Figure 1 is the structure of the integrated energy system with P2G:
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Figure 1. The structure of the integrated energy system with power-to-gas (P2G).

The energy supply system consists of two parts: the power system and the natural gas system.
The gas storage system consists of two parts: the P2G and the gas storage equipment. P2G is driven
by wind power and photovoltaic and uses the CO2 generated by the gas unit. Wind turbines and
photovoltaic power plants are the main power sources for the system. the gas unit provides a reserve
service for the system. If the energy supply capacity is insufficient, the gas storage system can supply
CH4 to the gas unit.

2.1.1. Unit Output Power Model

The randomness and uncertainty of wind power and photovoltaic output depend on the
randomness of wind speed and light radiation in the region, and wind speed and light radiation are
susceptible to weather factors and terrain conditions. Although wind power and photovoltaic output
have randomness and uncertainty, considerable statistical data indicate that wind speed is subject
to Weibull distribution, for the specific formula of wind power output, refer to the literature [23].
The output curve of the photovoltaic power system generally satisfies the Beta distribution, for the
specific formula of wind power output, refer to the literature.
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2.1.2. Time-Of-Use Pricing Design

Assuming that the Time of Use (TOU) price parameters remain unchanged for a certain period of
time, the relationship between transferred load and price elasticity coefficient is as follows:

Q′(t) = Q(t)[1 +
24

∑
k=1,k 6=t

α(k, t)
γ(k)− γ(t)

γ(t)
] (1)

where in Q(t) is user load at time t; Q′(t) is the user load after transferring at time t; and α(k, t) is
the price elastic coefficient transferred load from time k to time t, α(k, t) ≥ 0. γ(k) and γ(t) are the
electricity price of the time-of-use (TOU). The basic period is 1 h.

2.1.3. Gas Storage Facility Storage Model

Gas storage tanks can store a large amount of electric energy, enable interconnection of the
electric–gas network and an increase connectivity in new energy grids, and reduce the system carbon
emissions. Gas storage tanks include electrical gas and gas storage equipment, which converts electrical
energy to either hydrogen or natural gas. Figure 2 is a schematic diagram of the P2G technology.
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P2G is divided into two processes: electrolysis and methanation. Electrolysis is generating excess
hydrogen through electrolyzed water. The chemical reaction of electrolyzed water is as follows:

2H2O
Electrolysis→ 2H2+O2 (2)

CO2 + 4H2 → CH4 + 2H2O (3)

Through the above two stages of chemical reactions, the efficiency of P2G is approximately 45%
to 60%. After the electric energy is converted into natural gas, it can be injected into the gas storage
tank. The P2G chemical reaction consumes CO2 and reduces the carbon emissions generated by the
system. P2G uses the CO2 generated by the gas unit to inject CH4 into the gas unit during peak hours.
The specific formula is as follows:

QP2G(t) =
EP2G(t)ϕP2G

Hg
(4)

where in QP2G(t) is the amount of natural gas produced by P2G is at time t, EP2G(t) is the power
consumed by P2G at time t, ϕP2G is the conversion efficiency of P2G, and Hg is the calorific value of
natural gas. The energy status in the gas tank can be expressed as follows:

SGST(t) = SGST(T0) +
T

∑
t=1

(
QP2G

GST(t)−QGST,CGT(t)−QGST,CH4(t)
)

(5)
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where in SGST(t) is the capacity of the gas tank at time t, SGST(T0) is the capacity of the gas tank
in the initial stage, QGST,P2G(t) is the natural gas capacity injected into the gas storage tank at
time t, QGST,CGT(t) is the natural gas capacity of the gas tank injected into the gas unit at time t,
and QGST,CH4(t) is the capacity of the gas tank to inject into the network at time t.

2.2. Uncertainty Set

gd
w,k and gu

w,k are the minimum and maximum output ranges, respectively, of wind power at time
t. gd

pv,m and gu
pv,m are the minimum and maximum output ranges, respectively, of photovoltaic power

at time t. The concrete formula is as follows:

gd
w,k ≤ gw,k ≤ gu

w,k (6)

gd
pv,m ≤ gpv,m ≤ gu

pv,m (7)

The absolute predictive error of wind and photovoltaic power is constrained by the 1-norm,
and the parameter Γ is the uncertainty coefficient.

k
∑

k=1

∣∣∣ga
wt,k − g f

wt,k

∣∣∣
g f

wt,k

≤ Γ1 (8)

k
∑

k=1

∣∣∣ga
pv,m − g f

pv,m

∣∣∣
g f

pv,m
≤ Γ2 (9)

where in Γ1 and Γ2 are the uncertainty coefficients of wind and photovoltaic power output. The above
problem is a linear constrained two-objective optimization.

2.3. Improved CVaR Risk Assessment Model

In this paper, CVaR is derived from Value at Risk (VaR), which is the “conditional risk value”
of system uncertainties. Supposing X is a random variable, VaR1−α(X) represents VaR at a (1− α)

confidence level. CVaR1−α(X) is the loss exceeds VaR1−α(X) the expected value. The specific formula
is as follows:

CVaR1−α(X) = E[X|X ≤VaR1−α(X)] =
1
α

∫ VaR

−∞
x f (x)dx (10)

where in VaR is the α quntile of random variable X; As VaR is not subadditive, the CVaR is used
to measure the risk value of uncertainties. In this paper, we use the Cornish-Fisher expansion
to approximate the X percentile of uncertain factors. The approximate value of q is expressed as
Equation (11):

q = c(α) +
1
6

[
c(α)2 − 1

]
sp +

1
24

[
c(α)3 − 3c(α)

][
kp − 3

]
− 1

36

[
c(α)3 − 5c(α)

]
s2

p (11)

where in µp is the mean of uncertainty X, σp is the standard deviation of uncertainty X, c(α) is
a standard normal distribution α percentile, sp is the skewness of uncertainty X, and kp is the kurtosis
of uncertainty. The uncertainty X of percentile α is µp + σpq. VaR(1− α) = −

(
µp + σpq

)
, and the

CVaR of uncertainty X is expressed as Equation (12):

CVaR(1− α) = −σp

[
M1 +

1
6
(M2 − 1)sp

]
+

1
24

(M3 − 3M1)
(
kp − 3

)
− 1

36

[
(2M3 − 5M1)s2

p

]
(12)
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where in Mi =
1
α

∫ c(α)
−∞ xi f (x)dx, i = 1, 2, 3, and f (x) is the probability density function of the normal

distribution of uncertain factors. The normal distribution uncertainty factors X’s VaR and CVaR
calculations are as follows Equations (13) and (14):

VaR(1− α) = −
[
µp + σpc(α)

]
(13)

CVaR(1− α) = −
[
µp −

σp

α
f (c(α))

]
(14)

3. Optimized Scheduling Model of P2G System

3.1. System Objective Function

3.1.1. System Operation Cost Minimization

Due to the volatility and randomness of photovoltaic panels and wind turbines in the system,
the optimization objective is mainly to reduce the consumption of fossil energy and to achieve social
benefits. Therefore, the cost of power generation is the objective of the system

min z1 =
T

∑
t=1

I

∑
i=1

[ui(t)[1− ui(t)]SUi + ui(t)Gi(gi(t))] (15)

s.t. Gi(gi(t)) = ac
i (gi(t))

2 + bc
i gi(t) + cc

i (16)

where in ui(t) is the 0–1 integer state function of unit i at time t, SUi is the start and stop cost
of unit i, Gi(gi(t)) is the gas consumption function of the unit i, and ac

i , bc
i , and cc

i is the gas unit
consumption coefficient.

Ec = min
n

∑
i=1

Z1 + Cp (17)

where in Z1 is the cost for the system operating, and Cp is the cost of purchasing electricity for
the system.

3.1.2. System Carbon Emissions’ Minimization

Minimization of the carbon emissions of the system is taken as an objective function, and the
specific relationship is as follows:

EE = Pco2
[

aco2
i (gi)

2 + bco2
i gi + cco2

i

]
(18)

where in EE is the total carbon emissions cost of the system, and aco2
i , bco2

i , and cco2
i is the carbon

emission coefficient of generator i. Pco2 is the price of CO2. Costtotal is the total cost of the system.

Costtotal = EC + EE (19)

3.2. System Constraints

(1). Electricity power balance(
gGT(t) + gWPP(t) + gpv(t)

)
· (1− e) + ggrid,t = EST(t) + Eg(t) + EAC(t) + EEC(t)+EP2G(t) (20)

where in gGT(t) is the power generation output of gas turbine at time t, gWPP(t) is the wind power
output at time t, gPV(t) is the photovoltaic power output at time t, e is the power consumption ratio
of the system, ERE(t) is the power for RE at time t, EEC(t) is the power for EC at time, Eg(t) is the
electrical load of other equipment at time t, ggrid(t) is the power buying from the grid at time t, EP2G(t)
is the power required for P2G, and EST(t) is the power required for ST.
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(2) Heating balance
QRE,h(t) + QGB(t) = Qh,load(t) (21)

where in QGB(t) is the heating load provided by GB at time t, QHE,h(t) is the heating load provided by
HE at time t, and Qh,load(t) is the heating energy load required by the system at time t.

(3). Cooling balance
QAC,c(t) + QEC,c(t) = Qc,load(t) (22)

where in QAC,c(t) and QEC,c(t) are the cooling energy generating by EC and AC at time t, and Qc,load(t)
is the cooling energy load required by the buildings at time t.

(4). Generator set constraints

Gas unit constraints include mainly upper and lower power constraints, climbing constraints,
minimum start time constraints, and minimum downtime constraints. The energy storage equipment
stores electricity in valley periods and discharges in peak periods, which can effectively reduce the
peak-to-valley difference of the load curve. Energy storage equipment output and constraint functions
are described in the literature.

4. Example Analysis

4.1. Simulation Scenario Setting

The gas storage system can store the natural gas generated by P2G in the low valley period
according to the supply and demand situation of the load. During peak periods, the CH4 is released
for the gas unit, which increases the flexibility of the energy supply system. Similarly, the demand
response uses the TOU electricity price to smooth the load demand curve. Therefore, this paper sets
up simulation scenarios of a multi-objective model according to gas storage system and the TOU
electricity price. The specific scenarios are as follows:

Scenario 1: the system has no P2G and demand response. As a basic scenario, this scenario is
used to discuss the conversion effect of energy sources in the system and to achieve stable output of
the energy supply.

Scenario 2: the system has P2G and no demand response. This scenario is a comparative scenario
that analyzes the impact of P2G equipment on the system.

Scenario 3: the system has P2G and demand response. This scenario is a comprehensive
scenario that analyzes the synergistic optimization effects between TOU electricity prices and gas
storage systems.

Scenario 4: this scenario has a confidence coefficient that is different from that of the above
scenario. There is a direct relationship between the TOU electricity price and P2G, so this scenario
focuses on the impact of different confidence factors on system operating costs.

Through the above four scenarios, we analyze the conversion effect within the energy supply
system and the impact of the gas storage system and the TOU electricity price on the operation of the
system. There are nonlinear constraints in constraints of gas units, and the proposed objective function
and constraints should be linearized. The above problem is a mixed integer nonlinear programming
problem, and the optimal solution is difficult to achieve.

4.2. Basic Data

The system is equipped with a battery energy storage system and a natural gas storage system.
The equipment parameters of the integrated energy system are shown in Table 1:
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Table 1. The equipment parameters of the integrated energy system.

Equipment Symbol Capacity

Wind power W 1000 kW
Photovoltaic PV 600 kW

Battery energy storage system BT 500 kW
Gas turbine GT 1000 kW

Waste heated recovery equipment RE 1000 kW
Gas boiler GB 1000 kW

Electric refrigerator EC 500 kW
Absorption refrigeration equipment AC 500 kW
Electric gas conversion equipment P2G 500 kW

The TOU price is shown in Table 2.

Table 2. Time of Use (TOU) price of 24 h.

Time division Peak Flat Valley

Period 8:30–11:30
18:00–23:00

07:00–8:30
11:30–18:00 23:00–07:00

Price (yuan/kW) 1.2898 0.8443 0.4188

For convenient calculation, the average value of each parameter is selected. The specific coefficients
are shown in Table 3:

Table 3. Unit emission coefficient.

Unit gmax
i (MW) ac

i bc
i cc

i aco2
i bco2

i cco2
i

1# 600 1.02 × 10−5 0.277 9.2 3.02 × 10−5 0.822 22.8
2# 400 1.21× 10−5 0.288 8.8 3.21 × 10−5 0.830 24.1
3# 350 2.17× 10−5 0.290 7.2 6.17 × 10−5 0.861 19.3
4# 300 3.42× 10−5 0.292 5.2 9.82 × 10−5 0.877 12.8
5# 150 6.63 × 10−5 0.306 3.5 1.23 × 10−5 0.889 8.4

4.3. Simulation Result Analysis

4.3.1. Analysis of System Operation Cost under Different Scenarios

AMPL (A Mathematical Programming Language) is a powerful and flexible comprehensive
mathematical model language that solves the linear, nonlinear and integer mathematical programming
problems often encountered in the optimization process. AMPL is a modeling language that describes
and solves large-scale complex mathematical problems. AMPL supports most of the world’s solvers,
such as CBC (2009), CPLEX (2009) software. A major feature of the AMPL language is the simplification
of mathematical expressions for optimization problems, which makes it possible to define optimization
problems in a concise manner. The simulation results show that the optimized scheduling scheme can
achieve the consumption of renewable energy, and the TOU electricity price improves the economics
of the operation of the integrated energy system. Figure 3 shows Scenario 1 for the output structure of
each device in the system.
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It can be seen from Figure 3 that the wind power and photovoltaic system can meet the system’s
electrical load and heat and cooling load, and the energy storage equipment can achieve efficient
energy utilization. Systems that consider the uncertainty of wind power output will increase operating
costs, but can effectively avoid the greater losses caused by wind abandonment. Therefore, economic
losses are effectively avoided by introducing system energy storage and the TOU electricity price.
Figure 4 shows the output structure of each device in Scenario 2.

P2G equipment converts excess wind and photovoltaic power into natural gas, which is stored by
the system, reducing the amount of natural gas obtained from the station. The power purchased by
the public grid does not increase during the peak load, which reduces the natural gas and power from
the network, thereby reducing transmission losses. Figure 5 shows the output structure of each device
in Scenario 3.Energies 2018, 11, x FOR PEER REVIEW  10 of 16 
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P2G and the TOU electricity prices are configured in the system, which increases the output of
wind power and photovoltaic system equipment and the energy flow between the various energy
systems, and improves the energy utilization efficiency of wind and photovoltaic power. Figure 6
shows the output structure of each device in Scenario 4.

In this paper, four scenarios are set up in the example section for comparison. The gas storage
equipment can be adjusted optimally according to the system load requirements, which increases the
wind power and photovoltaic grid connected capacity. The energy flow is enhanced in the various
devices of the system, and the energy utilization efficiency of the system is improved. Table 4 shows
the operating costs of the system in different scenarios.

P2G equipment reduces fossil energy consumption and system carbon emissions. Figure 7 shows
the system wind power and photovoltaic grid-connected capacity under different scenarios.Energies 2018, 11, x FOR PEER REVIEW  11 of 16 
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Through the system simulation, the system makes full use of the TOU electricity price and 
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introduced to transfer the load, thereby realizing the consistency of wind power output and load 
and reducing the problem of wind abandonment. 
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Table 4. The cost of the system in different scenarios.

Scenario System Operating Cost Carbon Emissions Cost Total Cost

Scenario 1 9026.298 yuan 417.9235 yuan 9444.221816 yuan
Scenario 2 9021.25103 yuan 444.7423 yuan 9465.993326 yuan
Scenario 3 8310.976 yuan 450.0837 yuan 9261.998042 yuan
Scenario 4 8821.175 yuan 440.8232 yuan 8761.060023 yuan

Energies 2018, 11, x FOR PEER REVIEW  11 of 16 

 

-400

-200

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Wind power Public grid
Photovoltaic P2G
Gas turbine Battery energy storage system

Time(h) 

Power(kW)

 

Figure 6. The output structure of each device in Scenario 4. 

Table 4. The cost of the system in different scenarios. 

Scenario System Operating Cost Carbon Emissions Cost Total Cost 
Scenario 1 9026.298 yuan 417.9235 yuan 9444.221816 yuan 
Scenario 2 9021.25103 yuan 444.7423 yuan 9465.993326 yuan 
Scenario 3 8310.976 yuan 450.0837 yuan 9261.998042 yuan 
Scenario 4 8821.175 yuan 440.8232 yuan 8761.060023 yuan 

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Scenario1 Scenario2 Scenario3 Scenario4

Time(h)

Cost(yuan)

 
Figure 7. The system wind power and photovoltaic grid-connected capacity under different 
scenarios. 

Through the system simulation, the system makes full use of the TOU electricity price and 
improves the economic model of the integrated energy system. The TOU electricity price is 
introduced to transfer the load, thereby realizing the consistency of wind power output and load 
and reducing the problem of wind abandonment. 

4.3.2. Analysis of the Relationship between Carbon Trading Price and System Cost 

Carbon trading prices are low, system carbon emissions are slow, and system operations are 

Figure 7. The system wind power and photovoltaic grid-connected capacity under different scenarios.

Through the system simulation, the system makes full use of the TOU electricity price and
improves the economic model of the integrated energy system. The TOU electricity price is introduced
to transfer the load, thereby realizing the consistency of wind power output and load and reducing the
problem of wind abandonment.

4.3.2. Analysis of the Relationship between Carbon Trading Price and System Cost

Carbon trading prices are low, system carbon emissions are slow, and system operations are
dominated by economic targets. However, as carbon trading prices increase, carbon trading costs and
system power generation costs are increasing. As carbon trading prices increase, the system output
begins to shift gas turbines, so the carbon trading cost and the system operating cost fall. As seen in
Figure 8, the operating cost of an integrated energy system is sensitive to the fluctuation of carbon
trading prices. Figure 8 presents is the relationship between carbon trading price and system cost.
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The carbon trading price has risen, and the reduction in system outsourcing power has reduced
carbon emissions. If the price of carbon trading continues to increase so that the amount of purchased
natural gas cannot continue to grow, the actual carbon emissions are no longer reduced, and the
capacity changes affect the results of low-carbon economic dispatch. Within a certain range, as the
P2G capacity increases it will reduce energy costs and have no impact on the cost of carbon emissions.

4.3.3. System Cost at Different Confidence Levels

Different confidence levels reflect the degree of risk aversion of the decision-makers, so it is
necessary to study the impact of the confidence level on the scheduling results. Figure 9 shows the
scheduling costs of CVaR, taking different confidence levels into account.

It can be seen that, as the confidence level increases, the total scheduling cost also increases.
This reflects the improvement of the level of risk aversion by decision-makers. In addition,
the confidence level can also be used as a safety indicator for system operation. The increase in
confidence level indicates that the system has increased safety requirements, that the total operating
cost of the system increases and the economics of the system deteriorate. Therefore, the dispatcher
can determine the scheduling scheme of the system according to the actual situation and consider
comprehensively the system operation requirements in regard to safety and economy.Energies 2018, 11, x FOR PEER REVIEW  13 of 16 
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5. Conclusions

This paper establishes an integrated energy system economic dispatch model that takes into
account the conditional risk value. The model can introduce improved CVaR into the objective function
of economic dispatching; the operator determines the level of confidence based on the level of risk
aversion. The main contributions of this paper to the above issues are as follows:

P2G improves the wind power and photovoltaic grid connected capacity of the integrated energy
system and can effectively slow down the fluctuation of the net load, but it also increases the economic
cost of the system. The mechanism by which P2G impacts on the safety and reliability of integrated
energy systems needs further study. The simulation results show that the confidence level is increased,
the scheduling risk of the system increases, and the distribution of electric and thermal loads between
the energy-providing devices also changes. Since the model takes into account the electricity, heat,
and gas and the multi-energy flow constraint, the generated scheduling scheme can ensure the safe
operation of the system. Thus, the unit power adjustment cost of the controllable energy-providing
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equipment will affect the distribution of the system operating cost, and the CVaR-based economic
scheduling model proposed in this paper can be reduced.

In the day-to-day scheduling of integrated energy systems with P2G, this paper considers
the impact of P2G operating costs on system wind power acceptance and operational economy,
and proposes a multi-objective optimization model to coordinate the contradiction between the two.
The results of the example show that the higher P2G operating cost will affect the wind power
acceptance ability and operational economy of the system to a certain extent, which will cause certain
contradictions between the two.

Author Contributions: Z.T. guided the research; Q.T. established the model, implemented the simulation and
wrote this article; S.Y. collected references; L.J. and G.D. revised the language of this article.

Funding: Project Supported by National Natural Science Foundation of China (71573084) and Beijing Municipal
Social Science Foundation (16JDYJB044). The authors declare no conflict of interest.

Conflicts of Interest: It should be noted that the whole work was accomplished by the authors collaboratively.
All authors read and approved the final manuscript.

Nomenclature

P2G Power-to-gas
AMPL A Mathematical Programming Language
CVaR Conditional Value at Risk
VaR value at risk
Q(t) User load at time t
Q′(t) The user load after transferring at time t
α(k, t) The price elastic coefficient transferred load from time k to time t
γ(k),γ(t) are the electricity price of the time-of-use (TOU)
QP2G(t) The amount of natural gas produced by P2G is at time t
EP2G(t) The power consumed by P2G at time t
ϕP2G The conversion efficiency of P2G
Hg The calorific value of natural gas
SGST(t) The capacity of the gas tank at time t
SGST(T0) The capacity of the gas tank in the initial stage
QGST,P2G(t) The natural gas capacity injected into the gas storage tank at time t
QGST,CGT(t) The natural gas capacity of the gas tank injected into the gas unit at time t
QGST,CH4 (t) The capacity of the gas tank to inject into the network at time t
gd

w,k The minimum output of wind power at time t
gu

w,k The maximum outputof wind power at time t
gd

pv,m The minimum output of photovoltaic power at time t
gu

pv,m The maximum outputof photovoltaic power at time t
Γ The uncertainty coefficient
Γ1 The uncertainty coefficients of wind power output
Γ2 The uncertainty coefficients of photovoltaic power output
X Random variable
q The approximate value
µp The mean of uncertainty X
σp The standard deviation of uncertainty X
c(α) Astandard normal distribution α percentile
sp The skewness of uncertainty X
kp The kurtosis of uncertainty
f (x) The probability density function of the normal distribution of uncertain factors
ui(t) The 0-1 integer state function of unit i at time t
SUi The start and stop cost of unit i
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Gi(gi(t)) The gas consumption function of the unit i
ac

i , bc
i , cc

i The gas unit consumption coefficient
Z1 The cost for the system operating
Cp The cost of purchasing electricity for the system
EE The total carbon emissions cost of the system
aco2

i ,bco2
i , cco2

i The carbon emission coefficient of generator i
Pco2 The price of CO2

Costtotal The total cost of the system
gGT(t) The power generation output of gas turbine at time t
gWPP(t) The wind power output at time t
gPV(t) The photovoltaic power output at time t
e The power consumption ratio of the system
ERE(t) The power for RE at time t
EEC(t) The power for EC at time
Eg(t) The electrical load of other equipment at time t
ggrid(t) The power buying from the grid at time t
EP2G(t) The power required for P2G
EST(t) the power required for ST
QGB(t) The heating load provided by GB at time t
QHE,h(t) The heating load provided by HE at time t
Qh,load(t) The heating energy load required by the system at time t.
QAC,c(t) The cooling energy generating by AC at time t
QEC,c(t) The cooling energy generating by EC at time t
Qc,load(t) The cooling energy load required by the buildings at time t
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