Submarine Landslides and their Distribution in the Gas Hydrate Area on the North Slope of the South China Sea
Abstract
:1. Introduction
2. Geological Background
3. Data Acquisition and Processing
4. Types of Seabed Landslide and Their Developmental Characteristics
4.1. Magmatism-Related Landslides
4.2. Fault-Related Landslides
4.3. Seismicity-Related Landslides
4.4. Erosion-Related Landslides
4.5. Slope-Break Landslides
4.6. Hydrate-Related Landslides
4.6.1. Pre-Hydrate Landslides
4.6.2. Syn-Hydrate Landslides
4.6.3. Post-Hydrate Landslides
5. Spatial Distribution and Genesis of the Submarine Landslides
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulder, T.; Cochonat, P. Classification of offshore mass movements. J. Sediment. Res. 1996, 66, 43–57. [Google Scholar]
- Baum, R.L.; Savage, W.Z.; Wasowski, J. Mechanics of earthflows. In Proceedings of the International Workshop on Occurrence and Mechanisms of Flow-Like Landslides in Natural Slopes and Earthfills, Bologna, Italy, 14–16 May 2003; pp. 185–190. [Google Scholar]
- Solheim, A.; Berg, K.; Forsberg, C.F.; Bryn, P. The Storegga Slide complex: Repetitive large scale sliding with similar cause and development. Mari. Pet. Geol. 2005, 22, 97–107. [Google Scholar] [CrossRef]
- Mountjoy, J.J.; McKean, J.; Barnes, P.M.; Pettinga, J.R. Terrestrial-style slow-moving earthflow kinematics in a submarine landslide complex. Mar. Geol. 2009, 267, 114–127. [Google Scholar] [CrossRef]
- Wech, A.G.; Creager, K.C. A continuum of stress, strength and slip in the Cascadia subduction zone. Nat.Geosci. 2011, 4, 624–628. [Google Scholar] [CrossRef]
- Hampton, M.A.; Lee, H.J.; Locat, J. Submarine landslides. Rev. Geophys. 1996, 34, 33–59. [Google Scholar] [CrossRef]
- Song, H. Researches on dynamic evolution of gas hydrate system (II): Submarine slides. Prog. Geophys. 2003, 18, 503–511. [Google Scholar]
- Brown, H.E.; Holbrook, W.S.; Hornbach, M.J.; Nealon, J. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Mar. Geol. 2006, 229, 179–186. [Google Scholar] [CrossRef]
- Haeussler, P.; Lee, H.; Ryan, H.; Labay, K.; Suleimani, E.; Alexander, C.; Kayan, R. Submarine landslides and tsunamis at Seward and Valdez triggered by the 1964 magnitude 9.2 Alaska earthquake. Newsl. Alsk. Geol. 2008, 39, 1–2. [Google Scholar]
- Kawamura, K.; Laberg, J.S.; Kanamatsu, T. Potential tsunamigenic submarine landslides in active margins. Mar. Geol. 2014, 356, 44–49. [Google Scholar] [CrossRef]
- Barnes, P.M.; Pecher, I.; LeVay, L. Expedition 372 Scientific Prospectus: Creeping Gas Hydrate Slides and LWD for Hikurangi Subduction Margin. Int. Ocean Discov. Program 2017. [Google Scholar] [CrossRef]
- Makogon, Y.F.; Holditch, S.A.; Makogon, T.Y. Natural gas-hydrates—A potential energy source for the 21st century. J. Pet. Sci. Eng. 2007, 56, 14–31. [Google Scholar] [CrossRef]
- Cristián, R.; Vera, E.; Antonio, G. Seismic analysis and distribution of a bottom-simulating reflector (BSR) in the chilean margin offshore of valdivia (40° s). J. South Am. Earth Sci. 2009, 27, 1–10. [Google Scholar]
- Micallef, A.; Masson, D.G.; Berndt, C.; Stow, D.A.V. Development and mass movement processes of the north-eastern storegga slide. Quat. Sci. Rev. 2009, 28, 433–448. [Google Scholar] [CrossRef]
- Urlaub, M.; Talling, P.J.; Masson, D.G. Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quat. Sci. Rev. 2013, 72, 63–82. [Google Scholar] [CrossRef]
- Smith, D.E.; Harrison, S.; Jordan, J.T. Sea level rise and submarine mass failures on open continental margins, 2013. Quat. Sci. Rev. 2013, 82, 93–103. [Google Scholar] [CrossRef]
- Zander, T.; Choi, J.C.; Vanneste, M.; Berndt, C.; Dannowski, A.; Carlton, B.; Bialas, J. Potential impacts of gas hydrate exploitation on slope stability in the Danube deep-sea fan, black sea. Mar. Pet. Geol. 2017, 92, 1056–1068. [Google Scholar] [CrossRef]
- Crutchley, G.J.; Geiger, S.; Pecher, I.A.; Gorman, A.R.; Zhu, H.; Henrys, S.A. The potential influence of shallow gas and gas hydrates on sea floor erosion of Rock Garden, an uplifted ridge offshore of New Zealand. Geo-Mar. Lett. 2010, 30, 283–303. [Google Scholar] [CrossRef]
- Phrampus, B.J.; Hornbach, M.J. Recent changes to the Gulf Stream causing widespread gas hydrate dissociation. Nature 2012, 490, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, J.J.; Krastel, S.; Gross, F.; Pecher, I. Large creepy landslides controlled by gas hydrates? Rheological control or cyclic gas flux from the base of hydrate stability. In Proceedings of the Gordon Research Conference, Galveston, TX, USA, 28 February–4 March 2016. [Google Scholar]
- Borrell, N.; Somoza, L.; León, R.; Medialdea, T.; Gonzalez, F.J.; Gimenezmoreno, C.J. GIS Catalogue of Submarine Landslides in the Spanish Continental Shelf: Potential and Difficulties for Susceptibility Assessment. 2016. Available online: https://link.springer.com/chapter/10.1007%2F978-3-319-20979-1_50 (accessed on 4 November 2018).
- Somoza, L.; Medialdea, T.; Gonzalez, F.J. Giant Mass-Transport Deposits in the Southern Scotia Sea (Antarctica); Geological Society: London, UK, 2018; Volume 477. [Google Scholar]
- Yelisetti, S. Seismic Structure, Gas Hydrate, and Slumping Studies on the Northern Cascadia Margin Using Multiple Migration and Full Waveform Inversion of OBS and MCS Data. Ph.D. Thesis, University of Victoria, Victoria, BC, Canada, 2014. [Google Scholar]
- Yelisetti, S.; Spence, G.D.; Riedel, M. Role of gas hydrates in slope failure on frontal ridge of northern Cascadia margin. Geophys. J. Int. 2014, 199, 441–458. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Yang, S.X.; Wu, N.Y.; Schultheiss, P. China’s first gas hydrate expedition successful. Fire in the Ice: Methane Hydrate Newsl. 2007, 7, 4–8. [Google Scholar]
- Zhang, G.X.; Yang, S.X.; Zhang, M.; Liang, J.Q.; Lu, J.A.; Holland, M.; Schultheiss, P.; the GMGS2 Science Team. GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea. Fire Ice Methane Hydrate Newsl. 2014, 14, 1–5. [Google Scholar]
- Yang, S.X.; Zhang, M.; Liang, J.Q.; Lu, J.A.; Zhang, Z.J.; Holland, M.; Schultheiss, P.; Fu, S.Y.; Sha, Z.B.; the GMGS3 Science Team. Preliminary results of China’s third gas hydrate drilling expedition: A critical step from discovery to development in the South China Sea. Fire Ice Methane Hydrate Newsl. 2015, 15, 1–5. [Google Scholar]
- Sha, Z.B.; Liang, J.Q.; Zhang, G.X.; Yang, S.X.; Lu, J.A.; Zhang, Z.J.; McConnell, D.R.; Humphrey, G. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations. Mar. Geol. 2015, 366, 69–78. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Feng, W.K.; Xue, W.J.; Liu, Z.; Chen, J.; Li, W. Evaluation of Marine Geologic Hazards and Engineering Geological Conditions in the Northern South China Sea; Hehai University Publish: Nanjing, China, 1996. [Google Scholar]
- Xia, Z.; Zheng, T.; Pang, G.C. Features of submarine geological hazards in northern South China Sea. Trop. Oceanol. 1999, 18, 91–95. [Google Scholar]
- Liu, S.Q.; Liu, X.Q.; Wang, S.J.; Guo, Y.G. Discussion on Some Problems in Compilation of Hazardous Geological Map (1:2,000,000) of South China Sea. Chin. J. Geol. Hazard Control. 2002, 13, 17–20. [Google Scholar]
- Li, Z.W. Research on Hazardous Geological Factors in the Outer Shelf of Northern South China Sea and Influence on the Submarine Pipelines. Ph.D. Thesis, Institute of Oceanology, Chinese Academy of Science, Qingdao, China, 2011. [Google Scholar]
- Zhou, C.; Fan, F.X.; Luan, Z.D.; Ma, X.C.; Yan, J. Geomorphology and hazardous geological factors on the continental shelf of the northern South China Sea. Mar. Geol. Front. 2013, 29, 51–60. [Google Scholar]
- Ma, Y.; Li, S.Z.; Xia, Z.; Zhang, B.; Wang, X.; Cheng, S. Characteristics of Hazardous Geological Factors on Shenhu Continental Slope in the Northern South China Sea. Earth Sci. 2014, 39, 1364–1372. [Google Scholar]
- Zhu, C.Q.; Jia, Y.G.; Liu, X.L.; Zhang, H.; Wen, Z.M.; Huang, M.; Shan, H.X. Classification and genetic mechanism of submarine landslide: A review. Mar. Geol. Quat. Geol. 2015, 35, 153–163. [Google Scholar]
- Feng, W.K.; Shi, Y.H.; Chen, L.H. Research for seafloor landslide stability on the outer continental shelf and the upper continental slope in the northern South China Sea. Mar. Geol. Quat. Geol. 1994, 14, 81–94. [Google Scholar]
- Sun, Y.B.; Wu, S.G.; Wang, Z.J.; Li, Q.P.; Wang, X.J.; Dong, D.D.; Liu, F. The geometry and deformation characteristics of Baiyun submarine landslide. Mar. Geol. Quat. Geol. 2008, 28, 69–77. [Google Scholar]
- Wu, S.G.; Chen, S.S.; Wang, Z.J.; Li, Q.P. Submarine landslide and risk evaluation on its instability in the deepwater continental margin. Geoscience 2008, 22, 430–437. [Google Scholar]
- Liu, F. Submarine Landslides and Its Environmental Risk Assessment by Gas Hydrate Decomposition in the Northern Slope of the South China Sea. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences, Beijing, China, 2010. [Google Scholar]
- Liu, F.; Wu, S.G.; Sun, Y.B. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation. Chin. J. Geophys. 2010, 53, 946–953. [Google Scholar]
- Wu, S.G.; Qin, Z.L.; Wang, D.W.; Peng, X.C.; Wang, Z.J.; Yao, G.S. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea. Chin. J. Geophys. 2011, 54, 3184–3195. [Google Scholar] [CrossRef]
- Chen, H.J.; Huang, L.; Peng, X.C.; Wu, J.Q.; Li, W.C. Discussion of characteristics and formation of landslide zones in the gas hydrate survey area of northwest continental slope, the South China Sea. J. Trop. Oceanogr. 2012, 51, 4137–4140. [Google Scholar]
- Li, J.F.; Ye, J.L.; Qin, X.W.; Qiu, H.J.; Wu, N.Y.; Lu, H.L.; Xie, W.W.; Lu, J.A.; Peng, F.; Xu, Z.Q.; et al. The first offshore natural gas hydrate production test in South China Sea. China Geol. 2018, 1, 5–16. [Google Scholar] [CrossRef]
- Ye, J.L.; Qin, X.W.; Qiu, H.J.; Liang, Q.Y.; Dong, Y.F.; Wei, J.G.; Lu, H.L.; Lu, J.A.; Shi, Y.H.; Zhong, C.; et al. Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea. China Geol. 2018, 1, 202–209. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, S.Z.; Gong, Y.H.; Xin, L.; Suo, Y.H.; Dai, L.M.; Yun, M.; Zhang, B.K. Active Tectonics and Its Effects on Gas-Hydrates in Northern South China Sea. J. Jilin Univ. 2014, 44, 419–431. [Google Scholar]
- Li, S.Z.; Suo, Y.H.; Liu, X.; Dai, L.M.; Yu, S.; Zhao, S.J.; Ma, Y.; Wang, X.F.; Cheng, S.X.; An, H.T.; et al. Basin dinamics and basin groups of the South China Sea. Mar. Geol. Quat. Geol. 2012, 32, 55–78. [Google Scholar] [CrossRef]
- Wan, L.; Yao, B.C.; Wu, N.Y.; Ma, K.Y.; Dong, Y.J. Cenozoic geological characteristics in the west of the South China Sea. Mar. Geol. Quat. Geol. 2005, 25, 45–52. [Google Scholar]
- He, J.; Liang, Q.Y.; Ma, Y.; Shi, Y.H.; Xia, Z. Geohazards types and their distribution characteristics in the natural gas hydrate area on the northern slope of the South China Sea. Geol. China 2018, 45, 15–28. [Google Scholar]
- Ma, Y. Study of Submarine Landslides and Trigger Mechanism along the Continental Slope of the Northern South China Sea. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2014. [Google Scholar]
- Wild, J.J. Seismic velocities beneath creeping gas hydrates slides: Analysis of ocean bottom seismometer data in the Tuaheni Landslide Complex on the Hikurangi margin, New Zealand. Master’s Thesis, University of Auckland, Auckland, New Zealand, 2016. [Google Scholar]
- Rodriguez, N.M.; Paull, C.K. Data Report: 14C Dating of Sediment of the Uppermost Cape Fear Slide Plain: Constraints on the Timing of This Massive Submarine Landslide. In Proceedings of the Ocean Drilling Program, Galveston, Tx, USA, 2000; Volume 164, pp. 325–327. [Google Scholar]
- Lu, M.A.; Ma, Z.J.; Chen, M.H.; Sui, S.Z. The δ13C fast negative event and its cause during the penultimate deglacial stage of West Pacific Marginal Sea. Quat. Sci. 2002, 38, 349–358. [Google Scholar]
- Ye, L.M.; Chu, F.Y.; Ge, Q.; Xu, D. A Rapid gas hydrate dissociation in the Northern South China Sea since the Late Younger Dryas. Earth Sci. J. China Univ. Geosci. 2013, 38, 1299–1308. [Google Scholar]
- Chen, F.; Zhou, Y.; Zhuang, C.; Lu, H.F.; Wu, C. Origin of the hiatus of last glacial period in cold seep area of northeastern South China Sea. Mar. Geol. Quat. Geol. 2016, 36, 19–27. [Google Scholar]
- Zhuang, C.; Chen, F.; Cheng, S.H.; Lu, H.F.; Wu, C.; Cao, J.; Duan, X. Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Sci. China Earth Sci. 2016, 59, 1981–1995. [Google Scholar] [CrossRef]
- Sun, Y.B. The Mechanism and Prediction of Deepwater Geohazard in the Northern of South Sea. Ph.D. Thesis, Institute of Oceanology, Chinese Academy of Science, Qingdao, China, 2011. [Google Scholar]
- Wei, L. Seismic Characteristics and Trigger Mechanisms of Submarine Landslides in Northern South China Sea. Ph.D. Thesis, Institute of Oceanology, Chinese Academy of Science, Qingdao, China, 2013. [Google Scholar]
Criteria | Classification | Feature | |
---|---|---|---|
Slip scale | Small landslides | Volume < 3 × 104 m3 | |
Medium landslides | volume (3~50) × 104 m3 | ||
Large landslides | volume (50~300) × 104 m3 | ||
Very large landslides | Volume > 300 × 104 m3 | ||
Slip body thickness | Thin landslides | Slip body thickness < 6 m | |
Mid - level landslides | Slip body thickness < 6~20 m | ||
Thick landslides | Slip body thickness 20~50 m | ||
Very thick landslides | Slip body thickness > 50 m | ||
Structure of sliding slope and position of sliding surface | No layer landslides | Curved sliding surface in a uniform non-layered rock mass | |
Along layer landslides | Slanting determined by slope structure | ||
Cutting layer landslides | Sliding surface intersects with strata of various constituents | ||
Main factor | Magmatism landslide | Formation of magma caused by folds or skew resulted in landslides | |
Fault related landslides | Fracture activity causes landslides to occur | ||
Seismicity related landslides | Earthquake caused landslides to occur | ||
Erosion-related landslides | Erosion caused strata instability | ||
Slope break landslides | Slope of slope-belt lead to inclination angle | ||
Hydrate-related landslides | Pre-hydrate landslides | Landslides occurred before hydrate formation | |
syn-hydrate landslides | Landslides accurred during hydrates formed | ||
Post-hydrate landslides | Landslides occurred after hydrate formation |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Liang, Q.; Ma, Y.; Shi, Y.; Xia, Z.; Liu, L.; Haeckel, M. Submarine Landslides and their Distribution in the Gas Hydrate Area on the North Slope of the South China Sea. Energies 2018, 11, 3481. https://doi.org/10.3390/en11123481
Wu X, Liang Q, Ma Y, Shi Y, Xia Z, Liu L, Haeckel M. Submarine Landslides and their Distribution in the Gas Hydrate Area on the North Slope of the South China Sea. Energies. 2018; 11(12):3481. https://doi.org/10.3390/en11123481
Chicago/Turabian StyleWu, Xuemin, Qianyong Liang, Yun Ma, Yaohong Shi, Zhen Xia, Lihua Liu, and Matthias Haeckel. 2018. "Submarine Landslides and their Distribution in the Gas Hydrate Area on the North Slope of the South China Sea" Energies 11, no. 12: 3481. https://doi.org/10.3390/en11123481
APA StyleWu, X., Liang, Q., Ma, Y., Shi, Y., Xia, Z., Liu, L., & Haeckel, M. (2018). Submarine Landslides and their Distribution in the Gas Hydrate Area on the North Slope of the South China Sea. Energies, 11(12), 3481. https://doi.org/10.3390/en11123481