Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Studies
2.2. Morphology and Elemental Composition Studies
2.3. Electrocatalytic Activity
2.4. Electrochemical Impedance Spectroscopy (EIS) Studies
2.5. Photovoltaic Performance of the DSSCs
3. Materials and Methods
3.1. Materials
3.2. Electrochemical Deposition of the Sheet-Like CoS2 Films
3.3. Preparation of the Phthaloylchitosan-Based Gel-Polymer Electrolyte
3.4. Assembly of the DSSCs
3.5. Characterization Techniques
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Theerthagiri, J.; Senthil, A.R.; Madhavan, J.; Maiyalagan, T. Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells. ChemElectroChem 2015, 2, 928–945. [Google Scholar] [CrossRef]
- Li, M.H.; Yum, J.H.; Moon, S.J.; Chen, P. Inorganic p-type semiconductors: Their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 2016, 9, 331. [Google Scholar] [CrossRef]
- Schnabel, T.; Seboui, M.; Ahlswede, E. Band gap tuning of Cu2ZnGeSxSe4−x absorbers for thin-film solar cells. Energies 2017, 10, 1813. [Google Scholar] [CrossRef]
- Gratzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Al-Mamun, M.R.; Halder, P.K.; Aziz, M.A. Performance improvement of modified dye-sensitized solar cells. Renew. Sustain. Energ. Rev. 2017, 71, 602–661. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Oliva, D.; Ewees, A.A.; el Aziz, M.A.; Hassanien, A.E.; Cisneros, M.P. A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells. Energies 2017, 10, 865. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G. Cobalt-based electrolytes for dye-sensitized solar cells: Recent advances towards stable devices. Energies 2016, 9, 384. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.; Raghavender, M.; Madhavan, J.; Arof, A.K. Synthesis and characterization of (Ni1−xCox)Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Solid State Chem. 2016, 238, 113–120. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.; Madhavan, J.; Arof, A.K. Synthesis of α-Mo2C by carburization of α-MoO3 nanowires and its electrocatalytic activity towards tri-iodide reduction for dye-sensitized solar cells. J. Mater. Sci. Technol. 2016, 32, 1339–1344. [Google Scholar] [CrossRef]
- Chen, M.; Shao, L.L. Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells. Chem. Eng. J. 2016, 304, 629–645. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.; Bhabu, K.A.; Madhavan, J.; Arof, A.K. Electrochemical deposition of carbon materials incorporated nickel sulfide composite as counter electrode for dye-sensitized solar cells. Ionics 2017, 23, 1017–1025. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.; Madhavan, J.; Arof, A.K. Muthupandian Ashokkumar, One-step electrochemical deposition of Ni1−xMoxS ternary sulfides as an efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2016, 4, 16119–16127. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.; Madhavan, J.; Arof, A.K. Studies of solvent effect on the conductivity of 2-mercaptopyridine-doped solid polymer blend electrolytes and its application in dye-sensitized solar cells. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.; Madhavan, J.; Arof, A.K. Effect of tetrabutylammonium iodide content on PVDF-PMMA polymer blend electrolytes for dye-sensitized solar cells. Ionics 2015, 21, 2889–2896. [Google Scholar] [CrossRef]
- Senthil, R.A.; Theerthagiri, J.; Madhavan, J.; Murugan, K.; Arunachalam, P.; Arof, A.K. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode. J. Solid State Chem. 2016, 242, 199–206. [Google Scholar] [CrossRef]
- Senthil, R.A.; Theerthagiri, J.; Madhavan, J.; Arof, A.K. Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells. Opt. Mater. 2016, 58, 357–364. [Google Scholar] [CrossRef]
- Senthil, R.A.; Theerthagiri, J.; Madhavan, J. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye sensitized solar cells. J. Phys. Chem. Solids 2016, 89, 78–83. [Google Scholar] [CrossRef]
- Sagaidak, I.; Huertas, G.; Nhien, A.N.V.; Sauvage, F. Towards renewable iodide sources for electrolytes in dye-sensitized solar cells. Energies 2016, 9, 241. [Google Scholar] [CrossRef]
- Elbohy, H.; Kim, M.R.; Dubey, A.; Reza, K.M.; Ma, D.; Zai, J.; Qian, X.; Qiao, Q. Incorporation of plasmonic au nanostars into photoanodes for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 2016, 4, 545–551. [Google Scholar] [CrossRef]
- Janani, M.; Srikrishnarka, P.; Nair, S.V.; Nair, A.S. An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells. J. Mater. Chem. A 2015, 3, 17914–17938. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Nan, X.; Tang, B. Application of non-covalent functionalized carbon nanotubes for the counter electrode of dye-sensitized solar cells. Org. Electron. 2016, 30, 52–59. [Google Scholar] [CrossRef]
- Motlagh, M.S.; Mottaghitala, V. The charge transport characterization of the polyaniline coated carbon fabric as a novel textile based counter electrode for flexible dye-sensitized solar cell. Electrochim. Acta 2017, 249, 308–317. [Google Scholar] [CrossRef]
- Hu, Z.; Xia, K.; Zhang, J.; Hu, Z.; Zhu, Y. Highly transparent ultrathin metal sulfide films as efficient counter electrodes for bifacial dye-sensitized solar cells. Electrochim. Acta 2015, 170, 39–47. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Zhao, Y.; Wei, A.; Liu, Z. Synthesis of NiCo2S4 nanowire arrays through ion exchange reaction and their application in Pt-free counter-electrode. Mater. Lett. 2016, 166, 154–157. [Google Scholar] [CrossRef]
- Yanga, P.; Tang, Q. Bifacial quasi-solid-state dye-sensitized solar cells with metal selenide counter electrodes. Electrochim. Acta 2016, 188, 560–565. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.; Madhavan, J.; Arof, A.K. Synthesis of W, Nb and Ta doped α-Mo2C and their application as counter electrode in dye-sensitized solar cells. Mater. Today Proc. 2016, 3, S65–S72. [Google Scholar] [CrossRef]
- Li, G.R.; Song, J.; Pan, G.L.; Gao, X.P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680–1683. [Google Scholar] [CrossRef]
- Huo, J.; Wu, J.; Zheng, M.; Tu, Y.; Lan, Z. Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. J. Power Sources 2016, 304, 266–272. [Google Scholar] [CrossRef]
- Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 2011, 4, 2630–2637. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Arunachalam, P.; Buraidah, M.H.; Madhavan, J.; Amutha, S.; Arof, A.K. Synthesis of various carbon incorporated flower-like MoS2 microspheres as counter electrode for dye-sensitized solar cells. J. Solid State Electrochem. 2017, 21, 581–590. [Google Scholar] [CrossRef]
- Sun, L.; Lu, L.; Bai, Y.; Sun, K. Three-dimensional porous reduced graphene oxide/sphere-like CoS hierarchical architecture composite as efficient counter electrodes for dye-sensitized solar cells. J. Alloys Compd. 2016, 654, 196–201. [Google Scholar] [CrossRef]
- Bu, I.Y.Y. Sol-gel derived cobalt sulphide as an economical counter electrode material for dye sensitized solar cells. Optik Int. J. Light Electron. Opt. 2016, 127, 7602–7610. [Google Scholar] [CrossRef]
- Chae, S.Y.; Hwang, Y.J.; Choi, J.H.; Joo, O.S. Cobalt sulfide thin films for counter electrodes of dye-sensitized solar cells with cobalt complex based electrolytes. Electrochim. Acta 2013, 114, 745–749. [Google Scholar] [CrossRef]
- Sigdel, S.; Dubey, A.; Elbohy, H.; Aboagye, A.; Galipeau, D.; Zhang, L.; Fong, H.; Qiao, Q. Dye-sensitized solar cells based on spray-coated carbon nanofiber/tio2 nanoparticle composite counter electrodes. J. Mater. Chem. A 2014, 2, 11448–11453. [Google Scholar] [CrossRef]
- Ma, X.; Elbohy, H.; Sigdel, S.; Lai, C.; Qiao, Q.; Fong, H. Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells. RSC Adv. 2016, 6, 11481–11487. [Google Scholar] [CrossRef]
- Li, Y.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Bian, Z.; Liu, Z.; Wang, S.; Huang, C. Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. J. Mater. Chem. A 2015, 3, 18389–18394. [Google Scholar] [CrossRef]
- Mallam, V.; Elbohy, H.; Qiao, Q.; Logue, B.A. Investigation of novel anthracene-bridged carbazoles as sensitizers and co-sensitizers for dye-sensitized solar cells. Int. J. Energy Res. 2015, 39, 1335–1344. [Google Scholar] [CrossRef]
CE | Voc (V) | Jsc (mA/cm2) | FF | η (%) |
---|---|---|---|---|
CoS2 | 0.65 ± 0.04 | 17.51 ± 0.07 | 0.64 ± 0.02 | 7.29 ± 0.01 |
Pt | 0.69 ± 0.03 | 17.81 ± 0.04 | 0.63 ± 0.02 | 7.82 ± 0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, S.; Durairaj, D.; AlSalhi, M.S.; Theerthagiri, J.; Arunachalam, P.; Durai, G. Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte. Energies 2018, 11, 281. https://doi.org/10.3390/en11020281
Prasad S, Durairaj D, AlSalhi MS, Theerthagiri J, Arunachalam P, Durai G. Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte. Energies. 2018; 11(2):281. https://doi.org/10.3390/en11020281
Chicago/Turabian StylePrasad, Saradh, Devaraj Durairaj, Mohamad Saleh AlSalhi, Jayaraman Theerthagiri, Prabhakarn Arunachalam, and Govindarajan Durai. 2018. "Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte" Energies 11, no. 2: 281. https://doi.org/10.3390/en11020281
APA StylePrasad, S., Durairaj, D., AlSalhi, M. S., Theerthagiri, J., Arunachalam, P., & Durai, G. (2018). Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte. Energies, 11(2), 281. https://doi.org/10.3390/en11020281