Verification and Validation of a Low-Mach-Number Large-Eddy Simulation Code against Manufactured Solutions and Experimental Results
Abstract
:1. Introduction
2. Large-Eddy Simulation
2.1. Govering Equations
2.2. Numerical Methods
- Predict the values of velocity, density, and other scalars. The prediction will not affect the final converged results, but a good prediction will accelerate the convergence of the sub-iterations.
- Advance the scalar transport equations in time to get . The provisional scalar values can be estimated by .
- The equation of state is introduced to evaluate the density using provisional scalar values.
- Update the scalar value by .
- Advance the momentum equations in time to get . The provisional velocity components are computed from .
- Introducing the continuity equations to the momentum equations, a constant coefficient Poisson equation for pressure can be obtained and solved to ensure the conservation of mass.
- Check the residual of density. If more iterations are necessary, the procedure will continue from Step (2).
2.3. Method of Manufactured Solutions
2.4. Flamelet/Progress Variable Model
2.5. Boundary Conditions
2.5.1. Inlet
2.5.2. Outlet
3. Results and Discussion
3.1. 2-D Manufactured Solution
3.2. A Sandia Turbuleut Non-Premixed Propane Jet
3.3. Sandia Flame D
4. Conclusions
- The code has a second-order accuracy with a grid refinement in 2-D MMS verification.
- A proper sub-iteration number and tolerance of convergence should be used to ensure the order of accuracy.
- The LES code called ‘LESsCoal’ can give accurate predictions on non-reacting and reacting jet flow cases. The steady flamelet model tends to under-predict the combustion rate, because of the critical point moving forward in the steady flamelet table.
- The MMS method combined with some typical experimental results, which can give the order of accuracy and precision information about the code, is a useful verification and validation method.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
u | (m/s) | Velocity |
t | (s) | Time |
Sρ | (kg/m3·s) | Source term in continuity equation |
Su | (kg/m2·s2) | Source term in momentum equation |
SΦ | (kg/m3·s) | Source term in scalar transport equation |
Φ | (-) | Scalar |
Z | (-) | Mixture fraction |
C | (-) | Reaction progress variable |
p | (Pa) | Pressure |
Y | (-) | Mass fraction |
x | (m) | coordinate |
y | (m) | coordinate |
Q | varies | Unresolved part under SGS filter |
T | (K) | Temperature |
N | (-) | Number of variables for calculating the L2 error |
L2 | (-) | L2 error |
n | (m) | Boundary-normal coordinate |
at | (-) | Turbulent diffusion coefficient |
P | (-) | PDF function |
c | (m/s) | Convection velocity |
Z’ | (-) | Fluctuation of mixture fraction |
u’ | (m/s) | Fluctuation of X coordination velocity |
v’ | (m/s) | Fluctuation of Y coordination velocity |
Greek symbols | ||
ρ | kg/m3 | density |
τij | (kg/m·s2) | Viscous stress tensor |
σ | (-) | Kronecker delta |
ωc | (kg/m3·s) | Chemical reaction source term in mass |
χ | (1/s) | Scalar dissipation rate |
αZ | (-) | Diffusivity of the scalar Z |
αC | (-) | Diffusivity of the scalar C |
Subscripts | ||
i,j,k | Direction of the Cartesian coordinate | |
Φ,sgs | Unresolved scalar flux | |
sgs | Unresolved Reynold stress | |
st | Stoichiometric | |
sim | Simulation result | |
ana | Analytical result | |
Operators | ||
Density-weighted spatial filtering | ||
Spatial filtering | ||
Sufficiently differentiable function |
References
- Wang, Z.; He, P.; Lv, Y.; Zhou, J.; Fan, J.; Cen, K. Direct numerical simulation of subsonic round turbulent jet. Flow Turbul. Combust. 2010, 84, 669–686. [Google Scholar] [CrossRef]
- Lee, D.; Huh, K.Y. DNS analysis of propagation speed and conditional statistics of turbulent premixed flame in a planar impinging jet. Proc. Combust. Inst. 2011, 33, 1301–1307. [Google Scholar] [CrossRef]
- Liu, T.; Bai, F.; Zhao, Z.; Lin, Y.; Du, Q.; Peng, Z. Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner. Energies 2017, 10, 2081. [Google Scholar] [CrossRef]
- Ciri, U.; Petrolo, G.; Salvetti, M.V.; Leonardi, S. Large-Eddy Simulations of Two In-Line Turbines in a Wind Tunnel with Different Inflow Conditions. Energies 2017, 10, 821. [Google Scholar] [CrossRef]
- Di Sarli, V.; Benedetto, A.D. Sensitivity to the presence of the combustion submodel for large eddy simulation of transient premixed flame–vortex interactions. Ind. Eng. Chem. Res. 2012, 51, 7704–7712. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aeosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef]
- Eça, L.; Hoekstra, M.; Hay, A.; Pelletier, D. A manufactured solution for a two-dimensional steady wall-bounded incompressible turbulent flow. Int. J. Comput. Fluid Dyn. 2007, 21, 175–188. [Google Scholar] [CrossRef]
- Brady, P.; Herrmann, M.; Lopez, J. Code verification for finite volume multiphase scalar equations using the method of manufactured solutions. J. Comput. Phys. 2012, 231, 2924–2944. [Google Scholar] [CrossRef]
- Pitsch, H. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 2006, 38, 453–482. [Google Scholar] [CrossRef]
- Le Clainche, S.; Ferrer, E. A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines. Energies 2018, 11, 566. [Google Scholar] [CrossRef]
- Colucci, P.; Jaberi, F.; Givi, P.; Pope, S. Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 1998, 10, 499–515. [Google Scholar] [CrossRef]
- Navarro-Martinez, S.; Kronenburg, A.; Di Mare, F. Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 2005, 75, 245–274. [Google Scholar] [CrossRef]
- Ihme, M.; Pitsch, H. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames D and E. Combust. Flame 2008, 155, 90–107. [Google Scholar] [CrossRef]
- Hawkes, E.; Cant, R. A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 2000, 28, 51–58. [Google Scholar] [CrossRef]
- Chakravarthy, V.; Menon, S. Large-eddy simulation of turbulent premixed flames in the flamelet regime. Combust. Sci. Technol. 2001, 162, 175–222. [Google Scholar] [CrossRef]
- Pitsch, H.; De Lageneste, L.D. Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 2002, 29, 2001–2008. [Google Scholar] [CrossRef]
- Park, T.S. LES and RANS simulations of cryogenic liquid nitrogen jets. J. Supercrit. Fluids 2012, 72, 232–247. [Google Scholar] [CrossRef]
- Ozawa, T.; Lesbros, S.; Hong, G. LES of synthetic jets in boundary layer with laminar separation caused by adverse pressure gradient. Comput. Fluids 2010, 39, 845–858. [Google Scholar] [CrossRef]
- Bonelli, F.; Viggiano, A.; Magi, V. How does a high density ratio affect the near-and intermediate-field of high-Re hydrogen jets? Int. J. Hydrogen Energy 2016, 41, 15007–15025. [Google Scholar] [CrossRef]
- Chen, Z.; Ruan, S.; Swaminathan, N. Large Eddy Simulation of flame edge evolution in a spark-ignited methane-air jet. Proc. Combust. Inst. 2017, 36, 1645–1652. [Google Scholar] [CrossRef]
- Gicquel, L.Y.; Staffelbach, G.; Poinsot, T. Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 2012, 38, 782–817. [Google Scholar] [CrossRef] [Green Version]
- Klein, R. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: One-dimensional flow. J. Comput. Phys. 1995, 121, 213–237. [Google Scholar] [CrossRef]
- Majda, A.; Sethian, J. The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 1985, 42, 185–205. [Google Scholar] [CrossRef]
- Vedovoto, J.M.; da Silveira Neto, A.; Mura, A.; da Silva, L.F.F. Application of the method of manufactured solutions to the verification of a pressure-based finite-volume numerical scheme. Comput. Fluids 2011, 51, 85–99. [Google Scholar] [CrossRef]
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 1991, 3, 1760–1765. [Google Scholar] [CrossRef]
- Lilleberg, B.; Panjwani, B.; Ertesvåg, I.S. Large Eddy Simulation of Methane Diffusion Flame: Comparison of Chemical Kinetics Mechanisms. AIP Conf. Proc. 2010, 1281, 2158–2161. [Google Scholar]
- Sheikhi, M.; Drozda, T.; Givi, P.; Jaberi, F.; Pope, S. Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D). Proc. Combust. Inst. 2005, 30, 549–556. [Google Scholar] [CrossRef]
- Pierce, C.D.; Moin, P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 2004, 504, 73–97. [Google Scholar] [CrossRef]
- Wall, C.; Pierce, C.D.; Moin, P. A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comput. Phys. 2002, 181, 545–563. [Google Scholar] [CrossRef]
- Shunn, L.; Ham, F. Method of Manufactured Solutions Applied to Variable-Density Flow Solvers; Annual Research Briefs, Center for Tubluence Research: Stanford, CA, USA, 2007; pp. 155–168. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Bunch, J.R.; Hopcroft, J.E. Triangular factorization and inversion by fast matrix multiplication. Math. Comput. 1974, 28, 231–236. [Google Scholar] [CrossRef]
- Leonard, B.P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Eng. 1979, 19, 59–98. [Google Scholar] [CrossRef]
- Morinishi, Y.; Vasilyev, O.V.; Ogi, T. Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations. J. Comput. Phys. 2004, 197, 686–710. [Google Scholar] [CrossRef]
- Ihme, M.; Shunn, L.; Zhang, J. Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 2012, 231, 7715–7721. [Google Scholar] [CrossRef]
- Pitsch, H.; Ihme, M. An unsteady/flamelet progress variable method for LES of nonpremixed turbulent combustion. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 January 2005. [Google Scholar]
- Ihme, M.; Pitsch, H. LES of a non-premixed flame using an extended flamelet/progress variable model. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting, Reno, Nevada, 10–13 January 2005. [Google Scholar]
- Pierce, C.D.; Moin, P. Method for generating equilibrium swirling inflow conditions. AIAA J. 1998, 36, 1325–1327. [Google Scholar] [CrossRef]
- Bell, J.B.; Marcus, D.L. A second-order projection method for variable-density flows. J. Comput. Phys. 1992, 101, 334–348. [Google Scholar] [CrossRef]
- Forestier, M.; Pasquetti, R.; Peyret, R.; Sabbah, C. Spatial development of wakes using a spectral multi-domain method. Appl. Numer. Math. 2000, 33, 207–216. [Google Scholar] [CrossRef]
- Shunn, L.; Ham, F.; Moin, P. Verification of variable-density flow solvers using manufactured solutions. J. Comput. Phys. 2012, 231, 3801–3827. [Google Scholar] [CrossRef]
- Schefer, R.; Hartmann, V.; Dibble, R. Conditional sampling of velocity in a turbulent nonpremixed propane jet. AIAA J. 1987, 25, 1318–1330. [Google Scholar] [CrossRef]
- Pitsch, H.; Steiner, H. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 2000, 12, 2541–2554. [Google Scholar] [CrossRef]
- Barlow, R.; Karpetis, A. Measurements of scalar variance, scalar dissipation, and length scales in turbulent piloted methane/air jet flames. Flow Turbul. Combust. 2004, 72, 427–448. [Google Scholar] [CrossRef]
- Minotti, A.; Sciubba, E. LES of a meso combustion chamber with a detailed chemistry model: Comparison between the flamelet and EDC models. Energies 2010, 3, 1943–1959. [Google Scholar] [CrossRef]
- Jones, W.; Prasad, V. Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method. Combust. Flame 2010, 157, 1621–1636. [Google Scholar] [CrossRef]
- Vreman, A.; Albrecht, B.; Van Oijen, J.; De Goey, L.; Bastiaans, R. Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 2008, 153, 394–416. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
ρ0 | 5 | a | 0.2 |
ρ1 | 1 | b | 20 |
uf | 2 | k | 4π |
vf | 0.8 | w | 1.5 |
0.001 | 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wan, K.; Li, L.; Wang, Z.; Cen, K. Verification and Validation of a Low-Mach-Number Large-Eddy Simulation Code against Manufactured Solutions and Experimental Results. Energies 2018, 11, 921. https://doi.org/10.3390/en11040921
Liu Y, Wan K, Li L, Wang Z, Cen K. Verification and Validation of a Low-Mach-Number Large-Eddy Simulation Code against Manufactured Solutions and Experimental Results. Energies. 2018; 11(4):921. https://doi.org/10.3390/en11040921
Chicago/Turabian StyleLiu, Yingzu, Kaidi Wan, Liang Li, Zhihua Wang, and Kefa Cen. 2018. "Verification and Validation of a Low-Mach-Number Large-Eddy Simulation Code against Manufactured Solutions and Experimental Results" Energies 11, no. 4: 921. https://doi.org/10.3390/en11040921
APA StyleLiu, Y., Wan, K., Li, L., Wang, Z., & Cen, K. (2018). Verification and Validation of a Low-Mach-Number Large-Eddy Simulation Code against Manufactured Solutions and Experimental Results. Energies, 11(4), 921. https://doi.org/10.3390/en11040921