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Abstract: This paper proposes a second-order active disturbance rejection control (ADRC)-based
control strategy with an integrated design of the flux damping method, for the fault ride-through (FRT)
improvement in wind power generation systems with a doubly-fed induction generator (DFIG).
First, a first principles model of the rotor and grid side converter of DFIG is developed, which is
then used to theoretically analyze the system characteristics and show the damage caused to the
DFIG system by a grid voltage fault. Then, the flux damping method is used to suppress the rotor
current during a fault ride-through. In order to enhance the robustness and effectiveness of the flux
damping method under complex working conditions, an ADRC approach is proposed for disturbance
attenuation of the DFIG systems. Finally, a comparison of the proposed method with three other
control approaches on a 1.5-MV DFIG system benchmark is performed. It is shown that the proposed
method can adaptively and effectively improve the system performance during an FRT.

Keywords: wind energy conversion system (WECS); doubly fed induction generation (DFIG); voltage
fault ride through (FRT); flux damping method; active disturbance rejection control (ADRC)

1. Introduction

As the world continues to consume ever greater amounts of energy, the need for alternative
sources of energy is increasing. Wind generation is one such source that has the potential to provide
some of the required power [1]. Of the different types of wind energy conversion systems (WECS),
the doubly-fed induction generator (DFIG), due to its wide speed range, independent adjustment
of the active and reactive power, and smaller rating of the excitation converter, occupies the largest
proportion of the market [2]. In the DFIG system, the generator stator is directly connected to the grid,
while the rotor is integrated into the grid via a back-to-back converter. Due to the way the system
connects to the grid, the voltage fault ride through (FRT) capability is considered to be one of the
largest challenges in the control and optimization system design of wind turbines [3].

When a fault occurs, the grid voltage dips instantly and the energy produced by the DFIG cannot
be transmitted to the power grid, which will lead to an accumulation of the capacitor voltage and
a sudden increase in the rotor current. This may even cause damage to the converter and the DFIG
motor [3,4]. In order to improve the FRT capability of the DFIG system, the state of the art focuses on
the following two approaches: (1) hardware protection [5] and (2) control and optimization approaches.
The hardware protection approach uses the rotor-side crowbar circuits to short-circuit the generator
rotor for dealing with the emergence of the grid faults [6]. Its effectiveness and ease of implementation
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for performance improvement have been shown for severe voltage dips. However, in the process of
protection, the DFIG system could lose control and absorb a large amount of reactive power from the
power grid and cause further grid voltage degradation. Moreover, the electromagnetic torque will
seriously oscillate when the crowbar circuit moves, leading to fatigue and aging of the mechanical
equipment in the DFIG transmission system [7]. Other approaches, such as the energy storage system
(ESS) [8], additional series grid side converter (SGSC) [9], and DC-chopper circuit [10], have also been
shown to be effective, but with a corresponding increase in hardware costs.

The control and optimization approach seeks to suppress the current fluctuations of the rotor-side
converter (RSC) by some advanced control/optimization methods. Compared with the crowbar
(hardware) method, these types of algorithms can realize the fault ride-through without any additional
hardware, and the DFIG system’s performance can be maintained. Limited by the capacity of RSC,
the controllable range is discussed in [11]. In [12] the stability of the flux linkage of DFIG system was
analyzed, and the flux damping method was proposed to improve the system transient process. In [13],
the input timing of the flux damping signal was considered, which further reduces the loss of the
system running. However, these papers only considered low-voltage ride through (LVRT) situations.
In [14], a control method based on accurate model compensation is proposed. By calculating the stator
flux linkage in real time, the DC and negative component can be compensated. However, this method
is strongly dependent on model accuracy. In [15,16], feedback linearization and a robust controller
are used to design the control system, but the system design is usually complex. In [17,18] the ADRC
controller is used to reduce dependency on system models, but only the first-order controller is used.
The second-order ADRC has better adaptability and robustness to the system model.

Thus, due to the complexity of the DFIG system model and the unknown disturbances in system
operation, such as modeling error, equipment aging, and parameter drift, the control effect of the RSC
will be reduced. Previous work [13] mainly focused on changing the input parameters of the flux
damping method to achieve better LVRT control effect. However, when dealing with the complex
working conditions and model parameter drift, it cannot maintain good control. On this basis, in order
to pursue a more stable and robust control effect, the ADRC controller is considered. In general,
for first-order systems, the first-order ADRC can achieve fast tracking control with no overshoot [17].
However, due to the complexity of the DFIG system, it is difficult to simplify it to a first-order plant.
For example, we usually simplify the magnetic field of the generator to a second-order damped
oscillatory system. Thus, better control performance and higher robustness can be achieved by using a
second-order ADRC.

Motivated by the aforementioned studies, for the purpose of the FRT improvement for DFIG
system, an optimization method based on an ADRC controller with an integrated design of the flux
damping method is proposed in this paper. Firstly, the model of the RSC and grid-side converter
(GSC) of the DFIG is introduced. The system characteristics of the model are analyzed theoretically,
and the damage to the DFIG system is explained. Then the flux damping method is introduced and the
integration process with the flux damping and ADRC is explained. Furthermore, the ADRC approach
is proposed to reduce the internal and external disturbance of DFIG system under complex working
conditions. Finally, a 1.5-MV DFIG system was tested and compared with three other control methods,
to show its adaptability and effectiveness on FRT improvement performance.

2. DFIG Model

In this section, the RSC and GSC model for the DFIG is introduced. As well, the damage caused
by a grid voltage fault is shown and discussed. We briefly explain the notation used in this paper: v is
the voltage, i is the current, R is the resistance, ψ is the flux linkage, L is the inductance, Lls and Llr is
the leakage inductance of the stator and rotor, Lm is the mutual inductance. ω is the angular frequency,
and ω1 is the slip frequency defined as ω1 = ωs − ωr. The subscript s represents the stator, and the
subscript r represents the rotor. The subscript g represents the grid, subscript dc represents the DC-bus,
and subscript gc represents the GSC control side. In the synchronous dq-reference frame, the subscript
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d represents the direct directions component and q the quadrature directions component. The positive
direction of each vector is shown in Figure 1.
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Figure 1. The equivalent circuit of the DFIG.

2.1. Control Model of Rotor Side Converter (RSC)

The basic model of the DFIG, shown in Figure 1, assumes that the DFIG has three-phase symmetric
windings, that the air gap flux is uniform, and that the magnetic path is symmetrical. The hysteresis,
eddy current loss, and iron loss are ignored. The basic equations of the voltage and flux linkage are:

vs = Rsis +
dψs
dt

vr = Rrir +
dψr
dt

ψs = Lsis + Lmir

ψr = Lrir + Lmis

(1)

The rotor variables are all referred to the stator for simplicity.
Transforming Equation (1) into the synchronous dq-reference frame gives:

vsd = Rsisd + dψsd
dt −ωsψsq

vsq = Rsisq +
dψsq

dt + ωsψsd

vrd = Rrird + dψrd
dt −ω1ψrq

vrq = Rrirq +
dψrq

dt + ω1ψrd

(2)

The active, P, and reactive, Q, power in the stator of the DFIG are:{
Ps = vsdisd + vsqisq

Qs = vsqisd − vsdisq
(3)

Using the stator flux orientation, which implies that ψsq = 0, the flux equation becomes:
ψsd =

ψsq =

ψrd =

ψrq =

Lsisd + Lmird

Lsisq + Lmirq = 0
Lmisd + Lrird

Lmisq + Lrirq

(4)

Assuming that the stator flux linkage cannot be changed and that the resistance is negligible,
the stator voltage equation can be simplified to:{

vsd = 0
vsq = ωsψsd = Vsp

(5)
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where Vsp is stator phase voltage and ψsd = Vsp/ω1. Substituting Equations (4) and (5) into Equation (3),
the power equation can be expressed as:{

Ps = Vsp
Lm
Ls

irq

Qs = Vsp
Lm
Ls

ird −
V2

sp
ωsLs

(6)

From Equation (6), it can be seen that the active power and reactive power of stator are determined
only by the variables irq and ird. This means that the power can be decoupled.

Finally, the relationships between the rotor currents and voltages is [13]:{
vrd = Rrird + σLr

dird
dt −ω1σLrirq

vrq = Rr + σLr
dirq
dt + ω1σLrird + ω1

Lm
Ls

ψsd
(7)

where σ = 1 − Lm
2/(LsLr) is the linkage coefficient. Equations (6) and (7) are the rotor side control

model of DIFG system, whose structure is shown in Figure 2.
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2.2. Control Model of Grid Side Converter (GSC)

The purpose of the GSC controller is to maintain the DC capacitance voltage and control the
power factor of DFIG.

The basic voltage equation in the synchronous dq-reference frame is [19]:{
vgd = Rgigd + Lg

digd
dt + vgcd −ωsLgigq

vgq = Rgigq + Lg
digq
dt + vgcq + ωsLgigd

(8)
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Let vgq = 0, then the power from the grid to the GSC can be written as:{
Pg = vgdigd + vgqigq = vgdigd
Qg = vgqigq − vgdigq = −vgdigq

(9)

From Equation (9), it can be seen that the active power and reactive power are determined only
by the variables igd and igq. Thus, the grid-side power can also be decoupled.

In addition, based on the instantaneous power theory, the reactive power can only be transmitted
to the grid, which means it cannot be sent to the DC-link. Thus, we can control the DC-link voltage
using the active current igd.

Similar to the control of the RSC, the current control of the GSC is based on the voltage control.
Thus, we should determine the relationship between voltage and current.

According to Equation (6):{
vgcd = vgd + ωsLgigq − (Rgigd + Lg

digd
dt )

vgcq = vgq −ωsLgigd − (Rgigq + Lg
digq
dt )

(10)

Using Equations (9) and (10), the control model of the GSC can be obtained, as shown in Figure 3.
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2.3. Behavior Analysis of Grid Faults

Since the stator of the DFIG is directly connected to the power grid, when a grid voltage fault
occurs, the stator voltage will instantaneously follow the fault. However, the stator flux linkage is
an integral value, which cannot be changed instantaneously. Thus, if the power grid faults, a large
number of DC flux linkages components will be generated. At this point, the stator flux is no longer
a circular rotating magnetic field, but a complex magnetic field include rotating magnetic field and
DC magnetic field. Then, the rotor which is still rotating and driven by the wind turbine, will cut the
irregular stator magnetic field, which can lead to overvoltage and overcurrent of the rotor winding.
The electromotive force (EMF) under symmetrical faults is [4]:

er =
Lm

Ls
[sVs(1− p)ejω1t −Vs p(1− s)e−jωrte−t/τs ] (11)

where er is the EMF induced by the stator flux linkage, s is the slip, Vs is the amplitude of the stator
voltage, p is the change of the grid voltage, and τs is the time constant of the stator flux linkage.
The first term is induced by the positive stator flux linkage, while the second term is induced by the
DC component of the stator flux linkage. Under a full voltage dip with s = −0.2, the initial amplitude
of the EMF is 1.2 VsLm/Ls, which is six times that under normal conditions.
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If an asymmetric fault occurs in the power grid, the rotor overvoltage and overcurrent will be more
complicated. Since the negative sequence component is contained in the stator flux, the negative sequence
component can produce a greater deviation [3]. In the same way, the EMF under asymmetrical faults is:

er =
Lm

Ls
[sV1ejω1t + (2− s)V2e−j(ωs+ωr)t − jωrψsdce−jωrte−t/τs ] (12)

where V1 and V2 are the amplitudes of the positive and negative sequence components of the stator
voltage, respectively, and ψsdc is the amplitude of the initial DC component. It can be seen that when
V1 = V2 and s = −0.2, the EMF can be 11 times larger than under normal conditions.

Finally, the overcurrent can damage the rotor converter, and the overvoltage will break the
winding insulation. On the other hand, part of the excess energy can be sent to the grid through
the GSC. However, the rest of the energy can only flow to the capacitor, which will force the capacitor
voltage to rapidly rise. Obviously, this will damage the DFIG hardware. Based on the aforementioned
analysis, it is necessary to improve the FRT ability of the DFIG.

3. Flux Damping Method

The purpose of FRT is to protect the power grid and power equipment when the fault occurs.
It requires DFIG to keep running for a period of time during a power grid fault to help the grid
recover. Immediate off-grid behavior can trigger a chain reaction between devices and aggravate the
power grid fault [3]. The aim of the flux damping method is to suppress the rotor current during a
fault ride-through and accelerate the dynamic process, help the DFIG quickly passing the FRT time.
However, the system has are complex working conditions, including such issues as modeling error,
equipment aging, parameter drift, and unknown disturbance. Under such situations, the control effect
of the DFIG will be greatly reduced, and the FRT ability will also be reduced. In order to increase the
robustness of the system and reduce dependency on system models, ADRC controller is used to replace
the traditional Proportion Integration (PI) control. This effectively improves the antidisturbance ability
of the DFIG control and greatly increases the robustness and effectiveness of the flux damping method.
The flow chart of the integrated design of ADRC and flux damping method are showed in Figure 4.
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3.1. Flux Linkage Analysis in the Grid Fault

When a power grid fault occurs, the stator flux cannot instantaneously follow the stator voltage,
causing the rotor side current to quickly increase, which, in turn, causes the DC voltage to increase.

In traditional vector control, according to Equation (2), the flux vectors in the synchronous dq
reference frame are [12]: { dψsd

dt = vsd − Rs
Ls

ψsd + ωsψsq +
RsLm

Ls
ird

dψsq
dt = vsq − Rs

Ls
ψsq −ωsψsd + RsLm

Ls
irq

(13)

Taking the derivatives of both sides, setting the stator voltage to be constant, and using the
differential operator s, the results are:{

s2ψsd = − Rs
Ls

sψsd + ωssψsq +
RsLm

Ls
i,

rd

s2ψsq = − Rs
Ls

sψsq −ωssψsd + RsLm
Ls

i,
rq

(14)

Then the stator flux linkage can be expressed as:

s2ψsd = −Rs

Ls
sψsd −ω2

s ψsd −
Rs

Ls
ωsψsq + ωs

RsLm

Ls
irq + ωsvsq +

RsLm

Ls
i,

rq (15)

From Equation (2), we get ωsψsq = sψsd − vsd + Rsisd. Substituting into Equation (15) gives:

s2ψsd = −2
Rs

Ls
sψsd −ω2

s ψsd −
R2

s
Ls

isd + (
Rs

Ls
vsd . . . . . .) (16)

The constant terms are ignored.
From Equation (4), we get isd = 1

Ls
(ψsd − Lmird). Substituting isd into Equation (16) gives:

s2ψsd + 2
Rs

Ls
sψsd + (

R2
s

L2
s
+ ω2

s )ψsd = (
Rs

Ls
− Lm

L2
s

ird . . .) (17)

Then the characteristic equation of the stator flux is s2 + 2Rs
Ls

s + ( R2
s

L2
s
+ ω2

s ) = 0, and the
characteristic root is:

s = −Rs

Ls
± jωs (18)

From Equation (18), it can be seen that the stability of the stator flux is only related to stator
inductance and stator resistance. Since Rs is usually very small [12], the transient time is quite long.

Thus, when a grid fault occurs, the traditional vector control cannot suppress the transient
DC component of the stator flux linkage, which will lead to overvoltage and overcurrent in the
DFIG system.

At the same time, if we can reduce the rotor current, and weaken the transient flux linkage or
“flux damp”, it will accelerate the transient time and help DFIG overcome the fault. The instantaneous
power can be transformed into reactive power feeding into the power grid.

3.2. Flux Damping Method

In order to change the dynamic characteristics of the stator flux, we need to fix the current
underdamped state of the system.

From the aforementioned analysis, it can be seen that adding a virtual resistor into the current
loop can increase the damping coefficient of the system. However, the existence of a virtual resistance
will increase the loss during normal operation [13].
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Switching to the current loop control method, Equation (13) can be written as:{ dψsd
dt = vsd − Rs

Ls
ψsd + ωsψsq +

RsLm
Ls

(ird − Krefi
∗
rd
)

dψsq
dt = vsq − Rs

Ls
ψsq −ωsψsd + RsLm

Ls
(irq − Krefi

∗
rq)

(19)

where i*rd is the compensating current.
Then, once the compensating current i*rd can be obtained, this will increase the dynamic response

of the system and help the DFIG overcome the LVRT. Thus, this approach can be called a flux
damping current.

Using the stator flux orientation, which means that ψsq = 0, we need to control the d-axis current
decrease. Then the characteristic equation can be given by:

s2 + (
2Rs

Ls
+ 2Kref

RsLm

Ls
)s + (

Rs

Ls
+ 2Kref

RsLm

Ls
)

2
+ ω2

s = 0 (20)

The new characteristic root is:

s = −(Rs

Ls
+ Kref

RsLm

Ls
)± jωs (21)

From Equation (21), it can be seen that by reducing the set value of the rotor current, the negative
real part of the characteristic root increases, which means, the transient time of the stator flux chain
is accelerated. Changing Kref can also change the compensation current i*rd. A larger compensation
current can speed up the transient time of the system. However, it cannot be arbitrarily large, because
the rotor current value is limited to the maximum capacity of the RSC converter [11].

According to the capacity of the converter, the current value is limited to the following equation:

i2
rd_ref + i2

rq_ref ≤ i2
r_max (22)

where ird_ref and irq_ref are the set value of the rotor current in d and q axis, respectively, and ir_max is
the maximum current of the converter.

The structure diagram of the flux damping current is shown in Figure 5.
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4. Active Disturbance Rejection Control Controller Design

The active disturbance rejection control (ADRC) was developed by Han [20], which is a robust
control technology and the structure is shown in Figure 6 [21].

As a matter of fact, ADRC inherits the advantages of traditional PID control and aims to
improve the PID controller [22]. Without relying on an accurate process model, ADRC has strong
anti-disturbance ability, high accuracy, quick response, and a simple structure [23]. Using modern
control theory, the tracking differentiator (TD), the extended state observer (ESO) and the state error
feedback control law (SEF) greatly improve the robustness of system.
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TD was originally intended to extract differential signals by tracking a given signal as quickly as
possible. Currently, TD is often used to arrange the transition process [20]. The ESO is used to estimate
the system model and disturbances. From the perspective of the ESO, the model and the disturbances
are equally important since they can both be compensated by the extended state. ESO transforms the
uncertain system into an “integral series”, which is a structure of feedback linearization for nonlinear
uncertain systems. This estimate does not depend on a precise mathematical models, since it is a
dynamic estimate [24,25].

The control structure of RSC with ADRC is shown in Figure 7.
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4.1. Tracking Differentiators (TD)

In order to avoid high-frequency disturbance, the discrete form of the TD can be expressed as [21]:{
v1(n + 1) = v1(k) + hv2(k)
v2(n + 1) = v2(k) + hfst(v1(k)− v(k), v2(k), r, h)

(23)

where h is the sampling period, v(k) is the input signal at time k, and r is the parameter that determines
the tracking speed. The function fst(.) is the fastest controlled synthesis function, which is defined by:

fst(x1, x2, δ, h) =

{
−δsign(a) |a| > d
−δ a

d |a| ≤ d
(24)

a =

{
x2 +

a0−d
2 sign(y) |y| > d0

x2 + y/h |y| ≤ d0
(25)

where d = δh, d0 = hd, y = x1 + hx2, a0 =
√

d2 + 8δ|y|.
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4.2. The Extended State Observer (ESO)

The control system is represented as:
.
x1 = x2
.
x2 = f (x1, x2) + bu
y = x1

(26)

where f (x1, x2) is unknown, but bu is known.
Let the unknown part be x3 = f (x1, x2), then Equation (26) can be expressed as:

.
x1 = x2
.
x2 = bu + x3

y = x1

(27)

Using the ESO, we can get the system speed without a speed measurement device and predict the
unknown part.

For the second-order ADRC controller, the extended state observer is third order, and the design
method is: 

e = z1 − y
.
z1 = z2 − β1e
.
z2 = z3 − β2fal(e, α1, δ ) + bu
.
z3 = −β3fal(e, α2, δ )

(28)

where βi > 0 (i = 1, 2, 3), α1 = 0.5, and α2 = 0.25. The saturated function fal(e, α1, δ), which is used to
suppress signal shaking, which is defined as:

fal(e, α, δ) =

{
e

δ1−α |e| ≤ δ

|e|αsgn(e) |e| > δ
(29)

So that z1 can follow the system state x1, z2 can follow the system speed x2, and z3 can follow the
unknown part x3: 

z1(t)→ x1(t)
z2(t)→ x2(t)
z3(t)→ x3(t) = f1(x1, x2) + (b− b0)u(t)

(30)

z3 is called the state of being expanded.
Let x3 = f (x1, x2) = 5 sign(sin(2πt)). Figure 8 shows the disturbance signal predicted by the ESO.
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It can be seen that ESO can predict the magnitude and direction of the disturbance signal and
compensate the disturbance in time.
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4.3. The Advantages of Second-Order ADRCs

The design concept of first-order ADRC is to approximate the controlled system to a first-order
system, and remove the TD part to accelerate the response time [17]. Applied to first-order system,
it has good control effect with fast response, no overshoot, and strong robustness. At the same time,
the lower order reduces the control parameters that need to be adjusted [21].

The second-order ADRC has more extensive application scenarios than first-order ADRC.
For example, the first-order inertia system with time delay, the second-order inertia system with
time delay, the integral system with time delay and other single input single output (SISO) systems.
Moreover, it can be used for decoupling control of multiple input multiple output (MIMO) systems
and uncertain input system with time delay [24]. Under complex working conditions the DFIG system
can hardly be regarded as a simple first-order system. For example, we usually simplify the magnetic
field of the generator to the second-order damped system. Combined with parameter drift and model
mismatch, it may also add time delay and inertial part to the system. Therefore, the second-order
ADRC with higher robustness is a more reasonable choice.

Furthermore, the second-order ADRC has better disturbance prediction ability. Unlike the
first-order ADRC, which can only predict the position signals, the second-order ADRC can calculate
the speed signal in real-time. The control signal is adjusted by the position signal and the speed signal,
so that the control process is more accurate and smoother.

Figure 9 shows the step response diagram of a second-order integral system using both a first-order
and second-order ADRC controller. It can be seen that when the first-order ADRC is applied to a
second-order system, the control performance degrades. The overshoot of the system will be increased
and the adjustment time will be lengthened.
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5. Case Study

This section proposes the model of the DFIG that will be used for a case study of the typical 1.5-MW
DFIG based WECS to verify the proposed control method. In the following case study, a comparison is
carried out between the proposed method and a typical method based on vector PI control.

The specific parameters of DFIG motor are shown in Table 1. The parameters of the DFIG have
been converted to the stator side [13].

Table 1. Simulation parameters.

Parameters Value

Rated power (MW) 1.5
Stator voltage (V) 575

Stator resistance (pu) 0.023
Stator inductance (pu) 0.18
Rotor resistance (pu) 0.016

Rotor inductance (pu) 0.16
mutual inductance (pu) 2.9

Initial slip 0.2
DC voltage setting value (V) 1150

Wind speed (m/s) 10
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5.1. System Performance under Symmetrical Faults

5.1.1. Symmetrical Voltage Faults with 60% Dip Scenarios

Initially, the input wind speed is 10 m/s, while the output reactive power of the stator Qs is zero.
The corresponding slip of the DFIG is −0.2. At t = 0.2 s, a symmetrical voltage dip fault appears on the
stator terminal with recovery at t = 0.4 s. However, due to the lag of the reactive power compensation,
the recovery voltage increases to 120%. At t = 0.6 s, the grid voltage finally returns to normal.

We simulate two situations, 60% voltage dip depth and 80% voltage dip depth. The advantages
and disadvantages of vector PI control, “flux damping” control and second-order ADRC with “flux
damping” control are analyzed and compared.

From Figure 10a, it can be seen that DFIG with vector PI control is unable to consume the excess
energy generated by the stator flux change in a short period of time. The rotor current will reach 2.6 pu,
the voltage of the DC bus will break through 1.2 pu, and the electromagnetic torque will fluctuate for a
long time. The control system cannot effectively help DFIG through the fault.

Figure 10b shows the same situation but with a “flux damping current”. It can be seen that
the rotor current in the fault period was obviously inhibited. The maximum DC bus voltage and
electromagnetic torque fluctuations are also improved. In the case of a 60% voltage dip, the “flux
damping” method can limit the rotor current to 2 pu and help the DFIG through the fault time.

Finally, Figure 10c shows the results, when using ADRC with “flux damping”, which combines
the advantages of “flux damping” and ADRC. In this case, the rotor current is restricted effectively and
the inaccuracy and unknown disturbance of the model are suppressed. Moreover, in the case of 60%
voltage dip, the ADRC with “flux damping” method gives good performance for the rotor current, DC
bus voltage, and transient performance of electromagnetic torque.

The specific control performance index are shown in Table 2. The maximum DC bus voltage
(VDC_max), the maximum rotor current (Ir_max) and the regulation time of the electromagnetic torque
(Tm_ts) are selected as the key parameters to compare the control performance [26]. It can be seen that
the VDC_max for PI control reaches 1392 V during the voltage dip, which exceeds the DC bus voltage
setting value (1150 V) by 21%, while the ADRC approach keeps the value below 7%. At the same time,
the Ir_max for PI control is over 2.0 pu, which will trigger the protection of the hardware crowbar and
make the DFIG lose control ability [6]. Compared with PI control, the “flux damping” method and
ADRC approach can successfully control the rotor current below 2.0 pu.
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Table 2. Performance index comparison for the symmetrical 60% voltage dip case.

Performance Index Vector PI Control PI with Flux Damping ADRC with Flux Damping

VDC_max (V) 1392 1296 1229
Ir_max (pu) 2.6 1.79 1.59

Tm_ts (s) 0.08 0.07 0.06

5.1.2. Symmetrical Voltage Faults with 80% Dip Scenarios

Similar to the above results, the control performance in a severe voltage fault is shown more clearly.
Figure 11a shows the results for an 80% voltage dip controlled by a standard vector PI control.

From Figure 11a, it can be seen that in the severe voltage fault, DFIG with vector PI control has
already lost control. Excess energy causes the rotor current to increase and makes the DC bus voltage
uncontrollable. This is strictly forbidden in the DFIG system. The high DC-side voltage will cause the
DFIG to be released from the network prematurely and could potentially lead to a chain reaction in the
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remaining WECS [2]. Moreover, the rotor side current reaches 3.3 pu, while the electromagnetic torque,
active power, and reactive power are all unstable. It can be seen that, in the case vector PI control could
not help DFIG system passing the grid fault.

Figure 11b shows the results for an 80% voltage dip controlled using the “flux damping” control
method. It can be seen that the control of the rotor current has been greatly improved. Meanwhile,
the DC bus voltage is limited to 1.4 pu. However, the dynamic response of the system still takes a long
time. As well, the crowbar circuit will be activated since the rotor current reaches 2.0 pu.

Finally, Figure 11c shows the results for an 80% voltage dip controlled by an ADRC with flux
damping control system. It can be seen that the rotor current has good suppression effect, and the
dynamic process of the system is greatly improved. The DC bus voltage is limited to 1.1 pu and the rotor
current can be controlled to below 2 pu. Under a severe voltage dip, the ADRC controller can effectively
speed up the transient process, reduce uncertainty caused by inaccurate models, and compensate for
the disturbance in the energy impact process. It can be concluded that the ADRC could help the DFIG
system overcome a severe symmetrical voltage fault.
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The performance indices are shown in Table 3. It can be seen that the maximum DC bus voltage
for PI control reaches 3580 V during the voltage dip, which exceeds the DC bus voltage setting value
by 211%, which is strictly forbidden. On the other hand, the flux damping method and ADRC keep the
value at 40% and 11%, respectively. At the same time, Ir_max for PI control and flux damping method
is 3.3 pu and 2.3 pu, respectively, it will trigger the hardware crowbar. Compared with them, ADRC
approach can successfully control the rotor current below 2.0 pu.

Table 3. Performance index comparison for the symmetrical 80% voltage dip case.

Performance Index Vector PI Control PI with Flux Damping ADRC with Flux Damping

VDC_max (V) 3580 1620 1280
Ir_max (pu) 3.38 2.38 1.96

Tm_ts (s) >0.1 >0.1 0.06

5.2. System Performance under Asymmetrical Faults

The performance of the proposed method under single-phase faults is also examined. At t = 0.2 s,
an asymmetrical fault of the voltage dip appears on the stator phase A with recovery at t = 0.4 s.

In practice, asymmetrical faults are more frequent. In the process of an asymmetric fault, energy
impact is not as much as symmetrical fault, but it will produce a negative sequence current and zero
sequence current, which will cause the double frequency jitter and, thus, generate fatigue loss [4].

Figure 12 shows the performance of the DFIG system when an 80% asymmetric voltage dip occurs
under both standard vector PI control and the proposed ADRC with flux damping methods. It can
be seen from Figure 12 that, under PI control, the increase of DC voltage is not much, but due to the
existence of negative sequence current, voltage jitter is obvious. At the same time, the electromagnetic
torque also has a large value vibration. With ADRC with “flux damping” control, the amplitude
of DC voltage is suppressed better and the jitter is also reduced. Furthermore, the vibration of the
electromagnetic torque is obviously improved.
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5.3. System Performance for Disturbance Attenuation

The parameters of the generator will change with the temperature when the system is running.
For example, the rotor resistance increases with an increase in temperature, and the mutual inductance
decreases with the saturation of the magnetic circuit. Equipment aging and insulation loss also
gradually change the system parameters. If the control system is designed with constant control
parameters, when external disturbance or parameter changes occur, the overall performance will
be seriously affected. Therefore, external disturbance and parameter changes are added to test the
robustness of the system.

The waveform of the external disturbance is shown in Figure 13. It simulates the situation of large
and small harmonic disturbance due to the switch and a nonlinear load. It can be seen from Figure 14
that, when there is external disturbance, the PI system has a large overshoot and a long adjustment
time. The first-order ADRC can compensate the disturbance, but there was a slight overshoot and
oscillation. The second-order ADRC, due to the role of the TD and ESO, keeps smoothly tracking the
given signal. The prediction of the disturbance signal of ESO is shown as the black curve in Figure 13.
It can be seen that the disturbance of the system is accurately estimated.
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Figure 14. Comparison of control effects under external disturbance.

To the change in the external disturbance, the change of the parameters in the system is further
added. Due to modeling error, equipment aging, parameter drift and other factors, the resistance of
DFIG system decreased by 0.2 pu compared with the ideal model. Simulation and comparison of PI
and ADRC control are shown in Figure 15.

As can be seen from Figure 15, PI control under the same control parameters, the control effect is
significantly reduced when the system parameters change. The system overshoots and the adjustment
time increases. This indicates that the robustness of the system is low when the parameters of the
control model are changed. Compared to PI control, the first order ADRC has some robustness in
the parameter drift. However, the control effect will be reduced which increase the overshoot and
oscillation. Using second-order ADRC, the control is almost the same as before the changes occurred.
This shows that the second-order ADRC controller has good robustness. In the case of insulation
breakdown or equipment trouble, the system parameters will change more dramatically. At this time,
the PI control may fluctuate or diverge, losing control of the system.
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6. Conclusions

In order to improve the FRT capability of the DFIG, a second-order ADRC-based control strategy
with integrated design of the flux damping method was proposed. Simulation and comparisons
show that this method can effectively increase the robustness of the system and improve the system
performance under a grid fault. Although the benchmark study provides satisfactory simulation
results, the parameter tuning and optimizing of ADRC should be considered in future work.
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