Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. NdFeb Rectangular Magnets
2.2. Acrylic Material
2.3. Test Procedures
- -
- Vsuplay: >30 VDC
- -
- Speed: 2750 rpm
- -
- Torque: 10 kgm
- -
- Weight: 1.5 kg
- -
- Current: 0.75 A
- -
- Power: 25 W
3. Results
3.1. Design Concept Development of the Axial MG
3.1.1. Geometry of the Gear
3.1.2. Concept Design
3.2. Proposed MG Design
3.3. Magnetic Flux Measurement
3.4. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Basic Approach of Comparison of a Magnetic Circuit and Electrical Circuit
Electric Circuit | Units | Magnetic Circuit | Units |
---|---|---|---|
Voltage (V) | Volt | Magneto-motive force | Amp-turns |
Current (I) | Ampere | Magnetic flux (φ) | Webers Wb |
Resistance (R) | Ohm | Reluctance () | Amp-turns/Wb |
Conductivity (1/ρ) | Mho | Permeability (μ) | Wb/A-t-m |
Current density (J) | A/m2 | Magnetic flux density (B) | Wb/m2 = teslas T |
Electric field (E) | Newton/Coulomb (N/C) | Magnetic field intensity (H) | Amp-turn/m |
References
- Gouda, E.; Mezani, S.; Baghli, L.; Rezzoug, A. Comparative study between mechanical and magnetic planetary gears. IEEE Trans. Magn. 2011, 47, 439–450. [Google Scholar] [CrossRef]
- Jian, L.; Chau, K.T.; Li, W.; Li, J. A novel coaxial magnetic gear using bulk HTS for industrial applications. IEEE Trans. Appl. Supercond. 2010, 20, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chau, K.T.; Li, J. Simulation of a tubular linear magnetic gear using HTS bulks for field modulation. IEEE Trans. Appl. Supercond. 2011, 21, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Yang, Z.; Tian, J. Study on calculation method of the torque of permanent magnetic gears. Chin. J. Mech. Eng. 2001, 37, 66–70. [Google Scholar] [CrossRef]
- Pakdelian, S.; Frank, N.W.; Toliyat, A.H. Principles of the Trans-Rotary Magnetic Gear. IEEE Trans. Magn. 2013, 49, 883–889. [Google Scholar] [CrossRef]
- Musial, W.; Butterfield, S.; McNiff, B. Improving wind turbine gearbox reliability. In Proceedings of the European Wind Energy Conference, Milan, Italy, 7–10 May 2007. [Google Scholar]
- Chau, K.T.D.; Zhang, J.; Jiang, Z.; Jian, L. Transient analysis of coaxial magnetic gears using finite elemenco-modeling. J. Appl. Phys. 2008, 103, 07F101. [Google Scholar] [CrossRef]
- Ikuta, K.; Makita, S.; Arimoto, S. Non-contact magnetic gear for micro transmission mechanism. In Proceedings of the IEEE Conference on Micro Electro Mechanical Systems, Nara, Japan, 30 January–2 February 1991; pp. 125–130. [Google Scholar]
- Yao, Y.D.; Huang, D.R.; Lee, C.M.; Wang, S.J.; Chiang, D.Y.; Ying, T.F. Magnetic coupling studies between radial magnetic gears. IEEE Trans. Magn. 1997, 33, 4236–4238. [Google Scholar] [CrossRef]
- Yao, Y.Y.D.; Huang, D.R.; Hsieh, C.C.; Chiang, D.Y.; Wang, S.J. Simulation study of the magnetic coupling between radial magnetic gears. IEEEE Trans. Magn. 1997, 33, 2203–2206. [Google Scholar] [CrossRef]
- Furlani, E.P. A two-dimensional analysis for the coupling of magnetic gears. IEEE Trans. Magn. 1997, 33, 2317–2321. [Google Scholar] [CrossRef]
- Jorgensen, F.T.; Andersen, T.O.; Rasmussen, P.O. Two dimensional model of a permanent magnet spur gear. In Proceedings of the Industry Application Conference, Kowloon, Hongkong, China, 2–6 October 2005; pp. 261–265. [Google Scholar]
- Yao, Y.Y.D.; Huang, D.R.; Hsieh, C.C.; Chiang, D.Y.; Wang, S.J.; Ying, T.F. The radial magnetic coupling studies of perpendicular magnetic gears. IEEE Trans. Magn. 1996, 32, 5061–5063. [Google Scholar] [CrossRef]
- Wang, R.; Furlani, E.P.; Cendes, Z.J. Design and analysis of a permanent magnet axial coupling using 3D Finite element Field computations. IEEE Trans. Magn. 1994, 30, 2292–2295. [Google Scholar] [CrossRef]
- Yao, Y.D.; Chiou, G.J.; Huang, D.R.; Wang, S.J. Theoretical computations for the torque of magnetic coupling. IEEE Trans. Mag. 1995, 31, 1881–1884. [Google Scholar]
- Chen, M.; Chau, K.T.; Li, W.; Liu, C. Development of non-rare-earth magnetic gears for electric vehicles. J. Asian Electr. Vehicles 2012, 10, 1607–1613. [Google Scholar] [CrossRef]
- Rasmussen, P.O.; Andersen, T.O.; Jorgensen, F.T.; Nielsen, O. Development of a High-Performance Magnetic Gear. IEEE Trans. Ind. Appl. 2005, 41, 764–770. [Google Scholar] [CrossRef]
- Atallah, K.; Howe, D. A novel high-performance magnetic gear. IEEE Trans. Magn. 2001, 37, 2844–2846. [Google Scholar] [CrossRef]
- Kikuchi, S.; Tsurumoto, K. Design and characteristics of a new magnetic worm gear using permanent magnet. IEEE Trans. Magn. 1993, 29, 2923–2925. [Google Scholar] [CrossRef]
- Kikuchi, S.; Tsurumoto, K. Trial construction of a new magnetic skew gear using permanent magnet. IEEE Trans. Magn. 1994, 30, 4767–4769. [Google Scholar] [CrossRef]
- Joergensen, F.T.; Andersen, T.O.; Rasmussen, P.O. The cycloid permanent magnetic gear. IEEE Trans. Ind. Appl. 2008, 44, 1659–1665. [Google Scholar] [CrossRef]
- Charpentier, J.; Lemarquand, G. Calculation of ironless Permanent Magnet couplings using semi numerical magnetic pole theory method. Int. J. Comput. Math. Electr. Electron. Eng. 2001, 20, 72–89. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chau, K.-T.; Cheng, M.; Hua, W. Comparison of magnetic-geared permanent-magnet machines. Prog. Electromagn. Res. 2013, 133, 177–198. [Google Scholar] [CrossRef]
- Yonnet, J.-P. A new type of permanent magnet coupling. IEEE Trans. Magn. 1981, 17, 2991–2993. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, D.; Sheng, L. Application of field theory to air gap permanent magnet eddy current coupling. Adv. Sci. Technol. Lett. 2014, 73, 44–51. [Google Scholar]
- Wu, Y.; Wang, C. Transmitted torque analysis of a magnetic gear mechanism with rectangular magnets. Appl. Math. Inform. Sci. 2015, 9, 1059–1065. [Google Scholar]
- Wu, Y.; Tseng, W.; Chen, Y. Torque ripple suppression in an external-meshed magnetic gear train. Adv. Mech. Eng. 2013, 5, 178909. [Google Scholar] [CrossRef]
- Jian, L.; Chau, K.T.; Gong, Y.; Jiang, J.Z.; Yu, C.; Li, W. Comparison of coaxial magnetic gear with different topologies. IEEE Trans. Magn. 2009, 45, 4525–4529. [Google Scholar]
Symbol | Quantity | Value |
---|---|---|
R1d | Inner radius, drive magnets (mm) | 40 |
R2d | Outer radius, drive magnets (mm) | 50 |
R3d | Outer radius of the acrylic yoke, drive magnets (mm) | 60 |
R1s | Inner radius, source magnets (mm) | 15 |
R2s | Outer radius, source magnets (mm) | 25 |
R3s | Outer radius of the acrylic yoke, source magnets (mm) | 30 |
g | Length of air gap (mm) | 0.5 |
t | Magnets thickness (mm) | 1 |
h | Magnets height (mm) | 10 |
L1 | Outer magnet length (mm) | 20 |
L2 | Inner magnet length (mm) | 18 |
Nd | Number of pole pairs (source magnets) | 16 |
Ns | Number of pole pairs (drive magnets) | 8 |
Br | Remanence of the PMs |
Symbol | Quantity | Value |
---|---|---|
R1d | Inner radius, drive magnets (mm) | 40 |
R2d | Outer radius, drive magnets (mm) | 50 |
R3d | Outer radius of the acrylic disk, drive magnets (mm) | 60 |
R1s | Inner radius, source magnets (mm) | 15 |
R2s | Outer radius, source magnets (mm) | 25 |
R3s | Outer radius of the acrylic disk, source magnets (mm) | 30 |
G | Length of air gap (mm) | 0.5 |
T | Magnets thickness (mm) | 2 |
H | Magnets height (mm) | 10 |
L1 | Outer magnet length (mm) | 10 |
L2 | Inner magnet length (mm) | 8 |
Nd | Number of pole pairs (source magnets) | 16 |
Ns | Number of pole pairs (drive magnets) | 8 |
Br | Remanence of the PMs |
Magnet No. | Series (1 Layer) | Parallel (2 Layers) | Notes |
---|---|---|---|
mT | mT | ||
1 | 93.1 | 173.5 | N |
2 | 94.3 | 173.5 | S |
3 | 95.5 | 157.6 | N |
4 | 95.1 | 199.2 | S |
5 | 110.2 | 175.4 | N |
6 | 93.6 | 169.5 | S |
7 | 95.4 | 183.3 | N |
8 | 98.4 | 177.7 | S |
9 | 101.2 | 139.2 | N |
10 | 95.6 | 177.1 | S |
11 | 97.7 | 191.2 | N |
12 | 75.8 | 178.4 | S |
13 | 92.3 | 180.5 | N |
14 | 90.1 | 176.3 | S |
15 | 98.8 | 160.4 | N |
16 | 104.2 | 190.3 | S |
Ʃ | 1531.3 | 2803.1 | |
95.71 | 175.19 |
Magnet No. | Series (1 Layer) | Parallel (2 Layers) | Notes |
---|---|---|---|
mT | mT | ||
1 | 112.3 | 215.2 | N |
2 | 110.2 | 236.5 | S |
3 | 77.6 | 183.4 | N |
4 | 78.8 | 194.2 | S |
5 | 97.5 | 196.1 | N |
6 | 108.2 | 239.2 | S |
7 | 104.4 | 214.3 | N |
8 | 106.3 | 222.4 | S |
Ʃ | 795.3 | 1701.3 | |
99.41 | 212.66 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syam, S.; Soeparman, S.; Widhiyanuriawan, D.; Wahyudi, S. Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences. Energies 2018, 11, 1153. https://doi.org/10.3390/en11051153
Syam S, Soeparman S, Widhiyanuriawan D, Wahyudi S. Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences. Energies. 2018; 11(5):1153. https://doi.org/10.3390/en11051153
Chicago/Turabian StyleSyam, Sudirman, Sudjito Soeparman, Denny Widhiyanuriawan, and Slamet Wahyudi. 2018. "Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences" Energies 11, no. 5: 1153. https://doi.org/10.3390/en11051153
APA StyleSyam, S., Soeparman, S., Widhiyanuriawan, D., & Wahyudi, S. (2018). Comparison of Axial Magnetic Gears Based on Magnetic Composition Topology Differences. Energies, 11(5), 1153. https://doi.org/10.3390/en11051153