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Abstract: This paper proposes a design and implementation of an axial type magnetic gear (MG)
based on the composition of the magnetic arrangement. We report a quantitative comparison of two
MG topologies with rectangular magnets arranged in series and parallel. Increased magnetic flux
is done through magnetic circuit analysis and electrical circuit approach. Testing is done by using
the rotation of a DC motor drive from 300–2600 rpm with a DC generator under load conditions.
Measurement of load current and generator output power for both axial MG topologies are taken and
analyzed. The results showed that the performance of an axial MG with the rectangular magnetic
arrangement in parallel is better than that of a series arrangement. Based on the measured loading
current of the two axial MG topologies, at generator rotation between 300–1300 rpm with 100, 200,
and 300 Ω resistance loads show the same load current. Conversely, after a DC generator rotation
approaches 1

2 of the maximum rotation (1300–2600 rpm) there is a significant increase in load current
fluctuations. That is, with an increase of load currents occurring, the parallel magnetic topology
shows an increase in load torque due to an increase of magnetic flux in the gear train magnets of
the MG.

Keywords: parallel axis; NdFeB magnetic; design; electrical circuit

1. Introduction

Magnetic gears (MGs) are an alternative to replace mechanical gears as a transmission device that
connects mechanical power with an electric load in high speed and high torque applications. MGs can
easily replace mechanical gears while offering significant advantages of reduced acoustic noise,
minimum vibration, maintenance free, better reliability, inherent overload protection, and physical
isolation between the input and output shafts [1–3]. Compared to mechanical gears, there are no
friction losses, heat losses, unwanted noise or vibration [4–7].

Parallel-axis MGs are one of the kinds of magnetic field transmissions that have been developed
by Ikuta [8]. This type includes two different types of magnetic coupling: radial coupling and axial
coupling. These MGs can be categorized into the category of MGs with closely spaced magnets.
This gear type typically has a magnetic interaction between magnets on two or more axes. This
technology uses two MGs covered with magnets on the surface. These magnets interact with each
other and they create a driving force on the magnet wheel drive. The performance of this MG type has
been studied [9,10] by using the finite element analysis (FEA). Moreover, in [11,12] the corresponding
two-dimensional analytical calculation approach has been developed, exhibiting good agreement with
the FEA results. Although the parallel-axis MGs are very simple, the results of analysis by researchers,
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both in analytical calculations and in finite element analysis show that this type of MG still has a low
torque density [13].

On the other hand, MG can also achieve high efficiency, but high torque capability can be
difficult to achieve unless careful consideration is made regarding the technology and MG design.
That is why the torque density is the main problem for MG technology. The cost and amount of
magnetic material are also connected. Recently there has been increasing concern about the price
and supply of rare-earth elements. Although rare-earth MGs have better performance, fluctuating
and expensive prices and limited reserves will increase the cost of MG manufacture, inhibiting
further applications in MGs. In general, sector-shaped magnets were applied in the fabrication of
MGs such as a parallel-axis MGs [14,15], radial MGs [9,10,13], permanent magnetic spur gears [12],
and magnetic planetary gearboxes [16], which requires sufficient NdFeB magnetic material. Therefore,
a rectangular permanent magnet that can replace sector-shaped magnets in the manufacture of MGs is
an appropriate consideration.

Several techniques have been proposed to increase the MG torque, such as the use of magnetic
material that has high energy capability. Rasmussen, et al. [17], and Atallah and Howe [18],
focused their research on the type of magnet used in the manufacture of MGs prior to the NdFeB
magnet type. The NdFeB magnet type has a very high magnetic strength and torque density compared
to other magnetic types, with a torque density of 100 Nm/L. Other topologies such as the worm and
skew models have also been proposed by [19,20]. In [21], a new, better MG topology using a permanent
magnetic cycloid was proposed. This MG topology can increase the torque density 2 times compared
with previous MGs. However, all these topologies have very complex and complicated shapes.

Apart from work relating to this gear, surprisingly little attention appears to have been paid
to axial MGs, despite the advantages of simpler construction compared to other MG topologies.
In the axial MG structure, the rectangular magnet layers can be artfully integrated with a high-speed
transmission to constitute an axial MG, which can reduce the use of rare-earth magnets while providing
high torque density. Utilizing the simplicity of axial MG topologies, rectangular magnet layers can be
advantageous in axial MG fabrication. A new technique has been proposed in this paper by varying
the composition of the magnetic arrangement through the electrical circuit approach. Rectangular
magnets are used in the manufacture of parallel axial type MGs. The purpose of this paper is to
compare quantitatively the two MG-axis topologies based on their differences in magnetic composition
when in series and parallel. Increased magnetic flux can be achieved by engineering the rectangular
PM arrangement by applying a magnetic circuit analysis approach. To perform magnetic circuit
analysis, the electric circuit approach can be used. The resistance (R) and reluctance (<) are inversely
proportional to the area, indicating that the increased surface area will result in a reduction in value
and will increase the desired result in the form of current and flux. For long values, the opposite
happens, i.e., the desired effect is reduced.

2. Materials and Methods

2.1. NdFeb Rectangular Magnets

It has been explained that the NdFeB magnet material has the highest magnetic torsion properties
compared to other permanent magnets, such as ferrite, AlNiCo, and Sm−Co. This type of magnet has
the highest energy of all permanent magnets that are now practically used. The NdFeB magnet exhibits
excellent performance in terms of size reduction, weight reduction, thinning and enhancing the efficiency
of applied equipment. In this study, a rectangular magnetic measuring 10 mm × 20 mm × 1 mm was
used in the manufacture of the magnetic gear.

2.2. Acrylic Material

Our prototype is different from the axial MGs that have been studied previously. The iron yoke
has been replaced by using a disc made of acrylic (polymethyl methacrylate or PMMA). As discussed
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in the study of ironless coupling in [22], this design has a very small inertia and can be advantageous
in many applications. The advantage of acrylic discs other than those mentioned earlier is that
they can also eliminate the effect of magnetic saturation occurring on an iron yoke, and reduce the
use of NdFeB magnets. Acrylic is an optically transparent amorphous thermoplastic, unaffected by
moisture that offers a high strength-to-weight ratio. Chemically, this is a synthetic polymer of methyl
methacrylate monomer. This material was developed in 1928 at several different laboratories by
many chemists such as Chalmers, Röhm, and Bauer and was first marketed in 1933 by the Rohm
and Haas Company. Common trade names of acrylic include Plexiglas, Lucite or Acrylate. Acrylic
offers high light transmittance with a refractive index of 1.49 and can easily be formed with heat
without losing optical clarity. Acrylic is easily sawed, drilled, milled, carved, and cut with a sharp
carbide tool. It is also easy to bend at low temperatures, and it’s available in extrusion and/or cast
materials like sheets, rods, and tubes as well as special profiles. It is often preferred because of its good
properties, easy handling and processing, and low-cost. Figure 1 shows the acrylic discs to be used in
the manufacture of MGs.
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2.3. Test Procedures

The general structure of the experimental bench is as illustrated in Figure 2. The main
equipment includes a base board, DC regulator, DC Volt-meter, DC Ampere-meter, axial MG prototype,
load resistance, DC motor, and DC generator, among which the base board is used for support.
The DC motor is used as a prime mover with rated power at 25 watts and rated rotation speed of
2600 rpm. To set up the experiment, resistance loads of 100, 200, and 300 Ω were applied with speeds
varying from 0–2600 rpm. A tachometer was used to measure the rotation of the motor and generator.
The input voltage of the drive motor uses a regulated DC voltage of 3–15 V, while the measurement of
the generator output voltage is measured based on the input voltage setting. The input and output
currents are measured by variations of the generator output loading and motor rotation. Likewise,
the rotations of both the motor and the generator are measured according to the DC input voltage
setting of the motor. Figure 3 shows the prototype that has been created for experimental verification.
The DC motor and DC generator used for testing the MG performance had the following specifications:

- Vsuplay: >30 VDC

- Speed: 2750 rpm
- Torque: 10 kgm
- Weight: 1.5 kg
- Current: 0.75 A
- Power: 25 W
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3. Results

3.1. Design Concept Development of the Axial MG

3.1.1. Geometry of the Gear

Figure 4 shows a model of a parallel-axis MG with a conventional axial-coupling consisting of
permanent magnets arranged in series [8,23]. It consists of two discs of different diameters separated by
a small air gap and equipped with permanent magnets around it. A 2:1 gear ratio can provide a smaller
disc rotation than with larger discs. Magnets are axially magnetized and arranged intermittently
between the north and south poles. Soft-iron yoke is used to cover the flux. Through magnetic
interaction, the torque generated on one of the discs is transferred through the air gap to the other disc.
The magnets are coupled magnetically to each other, and when one magnet is rotated, it generates
a torque into the second magnet causing it to spin. Synchronous coupling between magnets is a
function of several variables, including the number of poles, material properties, dimensions, and air
gap distance.

There are two types of synchronous coupling known as coaxial type and face type. The axial
coupling is a face type coupling [24]. In a face type coupling, the equal-size rings carry alternating
north and south poles. An important attraction force is created in the axial direction. The synchronous
coupling can be achieved by using the power of attraction and the thrust of the permanent magnets.
Both parts of the clutch are fitted with multi-pole settings. With the magnetic interaction, the two
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parts move at the same velocity, if using the same disk diameter. Rotation becomes higher when the
size of the secondary disk is smaller and smaller, and on the contrary, the rotation is low when it is
made larger.
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3.1.2. Concept Design

The axial MG proposed in this paper refers to a conventional axial MG topology. Figure 5a shows
a conventional topology using permanent magnet teeth arranged in series. Based on this design,
it appears that the arrangement of the magnets is a closed circuit connected in series.

Energies 2018, 11, x FOR PEER REVIEW…  5.of 15 

 

coupling can be achieved by using the power of attraction and the thrust of the permanent magnets. 
Both parts of the clutch are fitted with multi-pole settings. With the magnetic interaction, the two 
parts move at the same velocity, if using the same disk diameter. Rotation becomes higher when the 
size of the secondary disk is smaller and smaller, and on the contrary, the rotation is low when it is 
made larger. 

 

 
                   (a)                    (b) 

Figure 4. Parallel axis MG with axial-coupling type (a) front view; (b) side view. 

3.1.2. Concept Design 

The axial MG proposed in this paper refers to a conventional axial MG topology. Figure 5a shows 
a conventional topology using permanent magnet teeth arranged in series. Based on this design, it 
appears that the arrangement of the magnets is a closed circuit connected in series.  

 
Figure 5. Analogies MG approach from magnet circuits into electrical circuits (a) Conventional MGs; 
(b) Analogies of MG gear into series reluctance; (c) Gear train magnets; (d) Pieces of series magnetic; 
(e) Parallel magnets. 

Here, we approach the magnetic phenomenon using the analogy of electrical circuits. When 
using a circuit diagram, it appears that “electrical circuit” and “magnetic circuit” is equivalent. The 
mathematical relationship of the two circuits is described in the Appendix. By analogy of electrical 
circuits, this type of MG can be analyzed as shown in Figure 5b. Figure 5c is the shape of the magnetic 

Figure 5. Analogies MG approach from magnet circuits into electrical circuits (a) Conventional MGs;
(b) Analogies of MG gear into series reluctance; (c) Gear train magnets; (d) Pieces of series magnetic;
(e) Parallel magnets.

Here, we approach the magnetic phenomenon using the analogy of electrical circuits.
When using a circuit diagram, it appears that “electrical circuit” and “magnetic circuit” is equivalent.
The mathematical relationship of the two circuits is described in the Appendix A. By analogy of
electrical circuits, this type of MG can be analyzed as shown in Figure 5b. Figure 5c is the shape
of the magnetic teeth and appears to be a magnetic gear connected in series when it is cut into two
parts (Figure 5d). In contrast, the roughly arranged magnetic teeth appear to be connected in parallel
(Figure 5e).
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3.2. Proposed MG Design

Based on the concept shown in Figure 5, for example, six permanent magnets are arranged in
such a way that it becomes a series circuit as shown in Figure 6a. Based on Ohm’s law rule, the total
reluctance is obtained using Equation (1):

<series = <s1+ <s2+ <s3+ <s4+ <s5+ <s6 (1)

The value of the series reluctance (<s) is 6<
In contrast, Figure 6b shows the arrangement of cuts from six magnetic to 1

2 sections resulting in
each cut of the magnetic bar changing the reluctance value to 0.5 from the previous value. Supposing it
is rearranged into a circuit, then each magnetic rod assembled in parallel will result in a change in
reluctance value again to 0.25 according to the following equation:

1
<p

=
1
<p1

+
1
<p2

+
1
<p3

+
1
<p4

+
1
<p5

+
1
<p6

(2)

1
<p1

=

(
1

< layer 1
+

1
< layer 2

)
or:

<p1 =
< layer1×< layer2
< layer1 +< layer2

=
0.5× 0.5
0.5 + 0.5

= 0.25<

The value of parallel reluctance (<p) is 1.5<.
From the electrical circuit analysis result it is clear that the magnetic arrangement in parallel will

reduce the magnetic reluctance value. In accordance with the laws of magnetism and electricity, if the
resistance or reluctance decreases, the current or magnetic flux will increase (Appendix A).

Based on this electrical circuit approach, the main purpose of the study is to develop an axial
MG topology by arranging the gear train in parallel. The comparison of parameter specifications of
the studied and proposed axial MGs is shown in Tables 1 and 2. Figures 7 and 8 shows a studied
axial MG and proposed MG consisting of two discs with a 2:1 gear ratio and separated by an air gap,
respectively. The disc used to install the layers of rectangular permanent magnets is made of acrylic
material. The rectangular magnetic layers with parallel arrangement are mounted around the disc
separated by a space. The space between the magnetic teeth of the MG is also an air gap or energy gap.
This air gap has a magnetic force line effect called permeability (µ). Permeability is the ability of an
object to pass through a magnetic force line [25].
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Table 1. Parameters of conventional axial MGs studied.

Symbol Quantity Value

R1d Inner radius, drive magnets (mm) 40
R2d Outer radius, drive magnets (mm) 50
R3d Outer radius of the acrylic yoke, drive magnets (mm) 60
R1s Inner radius, source magnets (mm) 15
R2s Outer radius, source magnets (mm) 25
R3s Outer radius of the acrylic yoke, source magnets (mm) 30
g Length of air gap (mm) 0.5
t Magnets thickness (mm) 1
h Magnets height (mm) 10

L1 Outer magnet length (mm) 20
L2 Inner magnet length (mm) 18
Nd Number of pole pairs (source magnets) 16
Ns Number of pole pairs (drive magnets) 8
Br Remanence of the PMs

Table 2. Parameters of the proposed axial MG.

Symbol Quantity Value

R1d Inner radius, drive magnets (mm) 40
R2d Outer radius, drive magnets (mm) 50
R3d Outer radius of the acrylic disk, drive magnets (mm) 60
R1s Inner radius, source magnets (mm) 15
R2s Outer radius, source magnets (mm) 25
R3s Outer radius of the acrylic disk, source magnets (mm) 30
G Length of air gap (mm) 0.5
T Magnets thickness (mm) 2
H Magnets height (mm) 10
L1 Outer magnet length (mm) 10
L2 Inner magnet length (mm) 8
Nd Number of pole pairs (source magnets) 16
Ns Number of pole pairs (drive magnets) 8
Br Remanence of the PMs
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3.3. Magnetic Flux Measurement

In this paper, two MG topologies have been tested. One is an MG that uses a gear train arranged
in series (conventional) which is similar to the previous MG design. Another magnetic gear uses the
gear train proposed in this study. Figure 9 shows one example of the magnetic flux measurement
results of a rectangular magnet obtained in a local market. The modification of the rectangular magnet
to be used as MGs has also been measured as in Figure 10.
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Based on Equations (1) and (2) we have verified the comparison of other magnetic flux
measurements using a Teslameter as shown in Tables 3 and 4.

Table 3. Results of magnetic flux measurements for primary MG.

Magnet No.
Series (1 Layer) Parallel (2 Layers) Notes

mT mT

1 93.1 173.5 N
2 94.3 173.5 S
3 95.5 157.6 N
4 95.1 199.2 S
5 110.2 175.4 N
6 93.6 169.5 S
7 95.4 183.3 N
8 98.4 177.7 S
9 101.2 139.2 N
10 95.6 177.1 S
11 97.7 191.2 N
12 75.8 178.4 S
13 92.3 180.5 N
14 90.1 176.3 S
15 98.8 160.4 N
16 104.2 190.3 S

Σ 1531.3 2803.1

x 95.71 175.19

Table 4. Results of magnetic flux measurements for secondary MG.

Magnet No.
Series (1 Layer) Parallel (2 Layers) Notes

(mT) (mT)

1 112.3 215.2 N
2 110.2 236.5 S
3 77.6 183.4 N
4 78.8 194.2 S
5 97.5 196.1 N
6 108.2 239.2 S
7 104.4 214.3 N
8 106.3 222.4 S

Σ 795.3 1701.3

x 99.41 212.66

We have presented a brief history of the magnetic flux value differentials based on theoretical
magnetic composition which is the main concern of this article. It is clear that the comparison
between the theory and experiments measuring the magnetic flux shows a trend of nearly twice the
value difference between the flux values of the series and parallel. So far, the primary disks with
series and parallel arrangement have an average flux value of 95.71 mT and 175.19 mT, respectively.
Similar magnetic flux values were also obtained on a secondary disk of 99.41 mT in series and 212.66 mT
in parallel.

3.4. Experimental Results

First of all, the input and output speeds are measured up to a maximum rotation of 2.600 rpm
(Figure 11). This shows that motor and generator rotations are synchronized in the absence of slip.
Data measurements were performed for both axial MG gear topologies with the same rotation ranging
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from 300–2600 rpm with the same load from 100 to 300 Ω. The measured data are input current,
the load current of a motor input voltage and generator output voltage.

Experimental results from the input and load currents of two MG axial topologies with rotations
ranging from 300 to 2600 rpm are shown in Figure 12. Figure 13 shows the ratio of load torque
between the two axial MG topologies with varying loads. It can be seen that the modification of one
rectangular magnet cut into two rods and arranged in parallel can improve the axial MGs performance
proportional with increased load current generator. Testing with speed from 0–1300 rpm for both
topological magnetic gears obtained the same load current. However, since the generator has reached
1
2 of the maximum speed, it shows the difference of load current from both MG topologies. That is,
after the DC generator reaches speeds of 1300–2600 rpm, the load current with gear-train topology
in parallel higher than in series. The increase of the load current is proportional to the increase in
load torque due to the difference of magnetic flux in the gear-train arrangement in both axial MG
topologies. This clearly shows the necessity to consider the effect of flux on the gear-train of axial MG.
As a non-contact gear, it relies on the air gap magnetic field passing power, torque, strong and weak
magnetic field intensity distribution of the air gap directing an impact on current density distribution
and the size of the magnetic moment passed.
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4. Discussion

Two different topologies using rectangular magnets have been tested. According to [26],
compared to sector-shaped magnets, rectangular magnets have advantages of low-cost due to the
size of materials and dimensions available. From a geometry standpoint, rectangular magnets have
the advantages of standard product specifications, low production costs, and easy magnetization.
However, two MGs meshed with rectangular magnets may cause interference or no magnetic contact
to occur when the air gap length is insufficient [27]. Therefore, the modification of a single rectangular
magnet cut into two rods and arranged in parallel based on the concept of Ohm’s law has been done.
The goal is to decrease the magnetic reluctance so that magnetic flux values can be increased.

Figures 7 and 8 show two axial MG topologies have been tested for obtaining measurable data,
load current and generator output voltage. Figure 7 has a series MG arrangement that has been
studied by previous researchers. Using the specifications given in Table 2 and the design of Figure 6b
with two parallel rods of magnets obtained from a single magnetic series strip, an axial MG topology
is constructed as Figure 8. Modified magnetic teeth were arranged in parallel and mounted using
adhesive glue on the acrylic dish. The advantage of using this acrylic material is to eliminate the effect
of losses occurring on the iron yoke. In [28] it is clear that the iron losses occurring in iron yokes in the
rotor and stationary rings are an important performance criterion in MGs. MGs with a 2:1 gear ratio
are used to connect the low speed of a DC drive motor with a high-speed DC generator load applied.
In addition, modification of one rectangular magnet cut into two parts and arranged in parallel can
decrease the reluctance (<) inversely with the increase of magnetic flux. It can also be seen from the
results of magnetic flux measurements as shown in Figures 9 and 10. The increase of magnetic flux on
each gear train also effects on increasing the torque of the axial MG.

5. Conclusions

In this paper, we discuss the comparison of two axial MG topologies based on the composition of
the permanent magnet. The torque of the proposed MG topology is better than that of a conventional
MG. The use of rectangular magnets is one of the alternatives to improve the axial MG performance.
This has advantages of easy manufacture and simplicity and it does not require a special permanent
magnet shape like any other MG topology. Using magnetic circuit analysis through an electrical circuit
approach, we obtained the difference in magnetic flux by using a single rectangular permanent magnet
of the same volume. Experimental results show that the use of MGs in the proposed axial topology may
reduce the use of NdFeB magnets. The maximum torque load is measured 24.9× 10−3 (Nm) at 2600 rpm
rotation speed for proposed axial MG, while for the conventional MG type it is 19.3 × 10−3 (Nm).
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Appendix Basic Approach of Comparison of a Magnetic Circuit and Electrical Circuit

Figure A1 shows the equivalents of “electrical circuit” and “magnetic circuit”. This is one approach
that can be used to help provide an overview of magnetic phenomena with electrical circuit analogy.
When using circuit diagrams, it appears that “electrical circuits” and “magnetic circuits” are equivalent.
Therefore the mathematical relationships in both circuits must be similar. Based on Figure A1, there is
some similarity/equality of parameters between electrical circuits and magnetic circuits as given in
Table A1. The magneto-motive force (mmf ) of an N-turn current-carrying coil is given by:

mm f = NI (A1)
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Table A1. Analogous electrical and magnetic circuit quantities.

Electric Circuit Units Magnetic Circuit Units

Voltage (V) Volt Magneto-motive force F = NI Amp-turns
Current (I) Ampere Magnetic flux (ϕ) Webers Wb

Resistance (R) Ohm Reluctance (<) Amp-turns/Wb
Conductivity (1/ρ) Mho Permeability (µ) Wb/A-t-m
Current density (J) A/m2 Magnetic flux density (B) Wb/m2 = teslas T

Electric field (E) Newton/Coulomb (N/C) Magnetic field intensity (H) Amp-turn/m

A current-carrying coil is the magnetic circuit equivalent to a voltage source in an electrical circuit.
Therefore, magneto-motive force can be considered to be analogous to a source voltage. The reluctance
of a path for magnetic flux (ϕ), such as the iron bar shown in Figure A2, is given by:

< =
l

µA

(
At
Wb

)
(A2)

Reluctance is analogous to resistance in an electrical circuit. When the bar is not straight, the
length of the path is taken to be the length of the centerline. l is therefore considered as the mean
length of the path. The magnetic flux in a magnetic circuit is analogous to current in an electrical
circuit although there is no flow like that of electric charge in the latter. Magnetic flux, reluctance and
magneto-motive force (mm f ) are related by:

mm f = (Reluctance×ϕ) (A3)



Energies 2018, 11, 153 14 of 15

This is similar to Ohm’s Law:
I =

V
R

(A4)

Figure A2 shows the concept of the reluctance of a magnetic path which depends on the mean
length, the cross-sectional area and the permeability of the material.Energies 2018, 11, x FOR PEER REVIEW…  14.of 15 
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Furthermore, by using the “cause” analogy of Kirchhof’s law of voltage, an equation can be obtained:
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F = 0 (for magnetic circuit) (A6)

This equation states that the number of algebraic increments and the decrease of the magnetic
motion force surrounding a closed loop on a magnetic circuit is zero. Thus, the amount of increase
in the magnetic force is equal to the amount of decrease in the magnetic force around a closed loop.
Equation (A7) is expressed as the Law of the Ampere Circuit. If this equation is applied to a magnetic
circuit, the magnetic force source is denoted by:
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