
energies

Article

A Numerical Study on the Light-Weight Design of
PTC Heater for an Electric Vehicle Heating System

Hyun Sung Kang 1, Seungkyu Sim 2 and Yoon Hyuk Shin 1,*
1 Green Car Power System R&D Division, Korea Automotive Technology Institute, 303 Pungse-Ro,

Pungse-Myeon, Cheonan-Si 330-912, Chungnam, Korea; hskang@katech.re.kr
2 Donga High Tech Company, Dongtangiheung-Road, Dongtan-Myeon,

Hwaseong-Si 445-813, Gyunggi-Do, Korea; shimsk76@dongah.biz
* Correspondence: yhshin@katech.re.kr; Tel.: +82-41-559-3284; Fax: +82-41-559-3235

Received: 4 May 2018; Accepted: 15 May 2018; Published: 16 May 2018
����������
�������

Abstract: As the market for electric vehicles grows at a remarkable rate, various models of electric
vehicles are currently in development, in parallel to the commercialization of components for diverse
types of power supply. Cabin heating and heat management components are essential to electric
vehicles. Any design for such components must consider the requirements for heating capacity
and power density, which need to reflect both the power source and weight reduction demand
of any electric vehicle. In particular, design developments in electric heaters have predominantly
focused on experimental values because of structural characteristics of the heater and the variability
of heat sources, requiring considerable cost and duration. To meet the ever-changing demands of the
market, an improved design process for more efficient models is essential. To improve the efficacy
of the design process for electric heaters, this study conducted a Computational Fluid Dynamics
(CFD) analysis of an electric heater with specific dimensions by changing design parameters and
operating conditions of key components. The CFD analysis modeled heat characteristics through the
application of user-defined functions (UDFs) to reflect temperature properties of Positive Temperature
Coefficient (PTC) elements, which heat an electric heater. Three analysis models, which included
fin as well as PTC elements and applied different spaces between the heat rods, were compared
in terms of heating performance. In addition, the heat performance and heat output density of
each analysis model was analyzed according to the variation of air flow at the inlet of the radiation
section of an electric heater. Model B was selected, and a prototype was fabricated based on the
model. The performance of the prototype was evaluated, and the correlation between the analysis
results and the experimental ones was identified. The error rate between performance change
rates was approximately 4%, which indicated that the reliability between the design model and the
prototype was attained. Consequently, the design range of effective performance and the guideline for
lightweight design could be presented based on the simulation of electric heaters for various electric
vehicles. The fabrication of prototypes and minimum comparison demonstrated opportunities to
reduce both development cost and duration.

Keywords: performance characteristics; Positive Temperature Coefficient (PTC) elements; heat transfer;
thermal performance; Computational Fluid Dynamics (CFD) simulation; air heater

1. Introduction

Issues such as energy shortages and environmental pollution are currently being addressed across
all industries. The automobile industry accounts for over 10% of both global energy consumption
and greenhouse gas emissions. Such a contribution cannot be neglected [1]. According to the World
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Business Council for Sustainable Development, the number of passenger cars in the world will reach
about 2 billion by 2050 [2].

The replacement of the existing combustion engine vehicles with electric vehicles (EVs) is one of
the solutions to the above problem [3–5]. However, one obstacle to the spread of electric vehicles is the
reduction of electric vehicle mileage by almost 50% due to the operation of cabin heating system [6].
Accordingly, cabin heating systems must be improved through the development of enhanced heating
capacity and a reduction in energy consumption [7].

Heating systems in conventional combustion engines use waste heat from the engines. On the
other hand, EVs have no engine and require a separate heating system. To improve the heating
system of an EV, some studies have proposed heat pump systems for EVs, which reduce energy
consumption [8,9]. Cho and Lee utilized the energy discharged from electrical components such as
the motor, battery, or inverter to develop a heat pump that was suitable for the heating condition of
EV [10]. Shin verified the performance of an electric heater using high-voltage Positive Temperature
Coefficient (PTC) elements to improve the energy efficiency of EVs [11].

With regard to the above heating systems for EVs, the performance of the heat pump heating
system showed considerable deterioration during prolonged low temperature conditions, as in winter.
Studies which used waste heat from electrical components such as the motor, battery, or inverter found
that the heat capacity was far below the cabin heating capacity and thus was largely useless for heating.
A promising and realistic alternative is to improve the performance of the electric heater, which is a key
heating component. In this regard, it is necessary to determine an optimal heating capacity, designing
an electric heater according to the performance requirements of the system in which the heater is used.

An electric heater offers a simple structure as well as good compatibility and a fast response
time due to PTC elements. In addition, because PTC elements drastically increase the resistance at or
above a set temperature to maintain it, electric heaters include both temperature control and safety
functions of its own, unlike other heating systems. However, one significant drawback to this feature
is its inability to predict the power consumption of a PTC element based electric heater according to
external environment and boundary conditions. Moreover, even if an electric heater with optimal
heating capacity is designed in accordance to various specifications (weight, volumes, etc.) of the
system where the heater is to be used, the reliable (accurate) performance of real products is difficult
to attain.

The performance of an air-heating electric heater is significantly affected by the structural designs
of heat rods (Figure 1) and fins. Heat transfer is caused by the dispersion of wake flow which occurs as
a result of periodic friction in the boundary layer between air and fin. Accordingly, if the finite area of
fin increases, heat transfer is improved; however, this also increases friction and drag, which facilitates
a drop in pressure [12]. As mentioned above, the heat transfer mechanisms are under development
not only in heaters but throughout various fields, such as nanoscales [13,14]. Any successful design
must satisfy the requirements for heat transfer and pressure drop as well as the weight reduction of
components, which have great effect on the fuel economy of EV. An analytical approach can effectively
consider these factors.

A three-dimensional Computational Fluid Dynamics (CFD) simulation can easily reflect physical
conditions without the need for an expensive tester or fabrication of a prototype; accordingly, various
design options can be effectively tested at a low cost. Lalot and Florent used a CFD simulation
to examine the non-uniformity of flow in an electric heater and demonstrated its impact on the
non-uniformity of heat exchange [15]. Zhang and Li applied a CFD method to ensure uniform heat
distribution according to fluid flow inside a heat exchanger. They could easily predict physical
phenomena caused by the inlet shape of a heat exchanger [16].

This study conducted a comparative analysis of power density (heating performance/weight)
according to the configuration of key components by using a 3D heat flow analysis model. The analysis
examined the design of 6 kW electric heaters which are conventionally used in the cabin of EVs.
The heat flow simulation model for an electric heater formulated PTC characteristic curves to model
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PTC heating. In this way, the number of heat rods inserted into the radiation fin and the heating
performance could be simulated. Additionally, to verify the reliability of the simulation, a prototype of
the electric heater was fabricated based on the analysis model which tested performance. Both the
heating performance and the output density characteristic of the electric heater were analyzed
according to the radiation fin and heat rod. On the basis of this analysis, a guideline on weight
reduction design, which satisfied reference performance factors, was proposed.
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Figure 1. Schematic diagram of heat rod and fin for electric heater. PTC: Positive Temperature Coefficient.

2. CFD Model Details

2.1. Physical Model

Figure 2 shows a geometric model of an electric heater including the plate fins and heat rods
which were adopted in this study [17]. Different spaces between heat rods were applied by changing
the number of heat rods used in the electric heater. The radiation performance of each model was
compared. Seven PTC heating elements were inserted into each heat rod and the elements were
connected in parallel. The heat core, which consisted of heat rods and fins, was divided into two zones.
In each heat core, heat rods were inserted at regular intervals into 112 fin layers.
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Comprising a repeating shape of fins and heat rods, the electric heater model required a
considerable number of meshes, which demanded a significant period of time for the convergence
process of analysis; it also decreased the reliability of results because of its complex structure. To reduce
the number of iterative calculations and required analysis time, an analysis domain was set, as shown
in Figure 3. The analysis domain indicated half of the fin pitch and heat rod pitch. The open ratio Or of
this domain was calculated by the ratio of the inlet area of the domain to that of the heater model. Fw

and Fp indicate the width and height of the analysis domain, respectively. To improve the reliability of
the analysis, the flow path of the inlet was reduced while that of the outlet was set at over five times
the hydraulic diameter, which could prevent reverse flow. As shown in Figure 3, the analysis domain
included air, heat bar, PTC elements, fin, and insulator. Table 1 presents the common geometric design
values of each model. Table 2 shows the properties of each part of the domain.
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Table 1. Geometrical parameter for heater models.

Parameters Values

Full size Heater width, Hw (mm) 265.5
Full size Heater height, Hh (mm) 215

Heat rod pitch, Rp (mm) 21
Heat rod thickness, Rt (mm) 5.1

Fin pitch and Inlet face height, Fp (mm) 1.8
Fin thickness, Ft (mm) 0.3

Table 2. Material properties used in the Computational Fluid Dynamics (CFD).

Material Properties Air (Fluid) Aluminum (Fin, Heat Rod) Silicon Series
(Insulator)

Density (kg/m3) Incompressible-ideal-gas 2719 2329
Specific Heat (J\kg·K) 1006.43 871 720

Thermal conductivity (w\m·K) 0.0242 202.4 0.25
Viscosity (kg/m·s) 1.7894 × 10−5 - -

A three-dimensional simulation was implemented through the commercial program, Fluent.
The grid was built and the meshes were improved by applying the proximity and curvature method.
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An inflation layer was applied near the fin surface to create the necessary amount of meshes to study
whether the heat transfer according to air flow on the fin surface was more effective. In addition, on
the basis of the initial analysis, the adaption function was applied to points with high temperature
variation to generate meshes with higher density. Finally, approximately 1× 106 ∼ 2× 106 meshes
were made.

2.2. Analysis Model

Navier-Stokes and SIMPLE algorithm were used to solve three-dimensional energy equations for
steady-state fluid mechanics and the heat transfer zone (1)–(3).

Continuity equation:
∇ · ρu = 0 (1)

Momentum equation:
ρ(u · ∇u) = −∇p + µ∇2u (2)

Energy equation in steady state condition:

ρCp(u · ∇)T = k∇2T (3)

Among turbulence models provided by Ansys Fluent, the Transition SST (Shear Stress Transport)
model was used as the analysis model. This model was the combination of the k-omega model for
analyzing wall flow and the k-epsilon, which was effective in predicting flow behaviors occurring
far from the wall. To implement the Transition SST model, meshes need to satisfy the requirement
of Y+ ≤ 1. The y value, which was the distance from a wall to the first mesh-formation layer, was
calculated by using the Equation (4). The prism mesh was applied to the layer.

Y+ =
ρUτy

µ
=

Uτy
υ

(4)

2.3. Model Parameters and Boundary Condition

For the boundary condition for the inlet of the heater, the mass flow rate of 300 kg\h, which is
conventionally used to test a heater, was adopted; the temperature condition was 0 ◦C, which acted
as the reference temperature of winter. However, this boundary condition corresponded to the area
of Hw × Hh. Accordingly, it had to be adjusted to the simulation domain. Table 3 presents mass flow
rates and open area ratios of each simulation model. The open area ratio was the ratio of inlet area of a
model to the radiation section area of the electric heater.

Open area ratio (Or):

Or =
Fw × Fp

Hw × Hh
(5)

The length of fin (that is, the distance between heat rods) Fw was set as a model parameter to
predict the heater performance according to the number of heat rods in the same area of heater. Figure 3
illustrates Model B. The fin lengths of Models A and C were set to the half and twice of that of Model
B, respectively. Table 3 provides parameters of each model.

Table 3. Specification of each simulation model.

Parameter Model A Model B Model C

Inlet face width, Fw (mm) 5.25 10.5 21
Open ratio, Or 1.655× 10−4 3.311× 10−4 6.622× 10−4

Mass flow rate, Md (kg/s) 1.38× 10−5 2.76× 10−5 5.52× 10−5

Hydraulic diameter, Dh (mm) 2.68 3.07 3.31
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User define functions (UDFs) were used to apply real radiation characteristics of PTC to the
simulation. On the basis of the experimental data, curve fitting was performed to obtain the
resistance-temperature curve of PTC elements, as shown in Figure 4. Two sections were distinguished
to effectively formulate the drastic change of resistance according to temperature. For the section of
the heating temperatures ranging from 25 ◦C to 140 ◦C, Equation (6) was applied. Equation (7) was
used for the heating temperature over 145 ◦C. To calculate the equation of PTC elements characteristic
curve as power consumption, Equation (10) was used, which applied Ohm’s law (9) to Joule’s law
(8). Power consumption of PTC elements was assumed to be converted to thermal energy without
loss. The power consumption was obtained by using the applied voltage of 330 V and the resistance
values functionalized by temperature variation, as shown in Equations (6) and (7). This was set to the
boundary condition of the calorific value of PTC elements.
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Resistance–Temperature equation

(25 ◦C < T ≤ 140 ◦C) :
R1 = 3.39653− 0.04493Tc +

(
2.66467× 10−4)T2

c −
(
5.72879× 10−7)T3

c
(6)

(140 ◦C < T ≤ 145 ◦C) :
R2 = 0.77
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(145 ◦C < T) :
R3 = 0.77297 +

(
6.39769× 10−12)e0.14594∗Tc

(7)

Heat generation
P = V × I (8)

V = I × R (9)

Pp =
V2

p

Rp

(
Vp = 330, Constant

)
(10)

3. Simulation Result and Analysis

3.1. Analysis of Each Model According to Test Condition

To design a lightweight electric heater for EVs, which could satisfy the target performance (6 kW),
this study conducted a simulation of heating performance by applying different heat rod distances to
the heater radiation section (heat core). Figure 5 illustrates distributions of air, fin, and PTC temperature
for three models.
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Figure 6 shows temperature distributions from the center of PTC elements in the width direction of
fins, an essential component of heaters. Models A and B had variations of 0.8% and 6.2%, respectively,
both of which were lower than 24.2% of Model C.
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In the case of a drop in pressure, as shown in Table 4, Model A had the highest value of 43 Pa,
as it included the largest number of heat rods in the same area. Model A showed the lowest calorific
value of 1.34 W in the analysis domain. However, this value was converted to 7203.84 W by the unit of
the whole heater model, which was the highest value. The comparison of heating capacity in Figure 7a
revealed that Models A and B had similar levels. As shown in Figure 7c, Model B had the highest
heating power density, when heating capacities were compared according to the unit weight of heater
per each model. Also, Model C showed a similar value but it did not satisfy the target performance
(6 kW) of electric heaters.

Table 4. Analysis results of simulation. Positive Temperature Coefficient.

Description Model A Model B Model C

Simulation model

Pressure drop (Pa) 43 24 19
PTC elements temperature (◦C) 180 172 164

PTC resistance (kΩ) 2.412 1.283 0.932
Heating capacity (w) 1.34 2.39 3.45

Heater model

Number of PTC (ea) 168 84 42
Power consumption of a PTC element (w) 42.88 76.48 110.4

Weight (kg) 1.659 1.081 0.792
Heating capacity (w) 7203.84 6424.32 4636.8

When an electric heater is designed, heating capacity must be secured that is suitable for its
required size and performance; the use of main component materials can achieve a lightweight
and cost-effective design. On the basis of these considerations, Model B was selected as the most
appropriate option as a result of the simulation.
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3.2. Analysis of Each Model According to Flow Rate Variation

The above result was obtained under the ideal condition that the outlet air temperature and mass
flow rate were constant according to locations of heater radiation section. For this reason, the heating
performance attained was beyond expectation.

However, existing studies have already demonstrated that the entire radiation section of an
electric heater does not have a uniform temperature distribution; temperature variation may be as
much as 10 ◦C~20 ◦C in areas [18]. Such non-uniformity of temperature distribution points to the
non-uniformity of air density, which transfers heat, in relationship to the location of a heater radiation
section. This also implies that the non-uniformity of mass flow rate depends on the location of
the heater.

The analysis domain of this study was an ideal position, which was a local area of a real heater,
as shown in Figure 8. If the results of the analysis can be converted to data for an entire heater, the
ideal heater could be designed and fabricated. However, as is clear from Figure 8, the real heater
included an edge position that exhibited relatively inferior performance. Accordingly, temperature
and mass flow rate had different values, depending on the distance from the aforementioned edge
position. Analysis results for the heating performance, which were derived from the ideal position,
were more positive than the experimental results reflecting flow and heat loss, which were applicable
to the entire heater.
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To verify such a gap with experimental performance, the mass flow rates of each model were
modified by applying 150 kg/h, 225 kg/h, 300 kg/h, 375 kg/h, and 450 kg/h to the basic flow rate,
respectively, as shown in Table 5; the heating performance was also verified. The distribution of
heating performance was obtained reflecting different flow rates, as shown in Figure 9. Figure 9a
shows the heating capacities of the entire heater, which were calculated by multiplying the heating
capacity of the simulation domain. In Models A and B, the heating capacity is proportional to the mass
flow rate. Figure 9b illustrates the density of heat output, which is an important factor for securing
sufficient heating performance and lightweight design for an entire heater. The above results show
that the heating capacity of all three models increases when the mass flow rate increases. In addition,
it was confirmed that the heating power density of Model B was the highest when the mass flow rate
was 300 kg/h or higher. On the basis of this consideration, an effective number of heat rods and the
distance between radiation fins could be determined to achieve the target performance and lightweight
design of an electric heater with specific dimensions.
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Table 5. Air mass flow conversion for heating performance according to each model.

Inlet Air Mass Flow
Rate of Heater (kg/h)

Inlet Air Mass Flow Rate of Each Simulation Model (kg/s)
Modle A Modle B Modle C

150 6.90× 10−6 1.38× 10−5 2.76× 10−5

225 1.04× 10−5 2.07× 10−5 4.14× 10−5

300 1.38× 10−5 2.76× 10−5 5.52× 10−5

375 1.73× 10−5 3.45× 10−5 6.90× 10−5

450 2.07× 10−5 4.14× 10−5 8.28× 10−5
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4. Experimental Results for the Electric Heater

To measure and compare the heating performance, efficiency, and pressure values of the prototype
electric heater fabricated in this study, a wind tunnel and environmental chamber system (Figure 10)
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were constructed. Each operational condition was applied and compared. The inlet/outlet air
temperature of the electric heater in the winder tunnel was measured using 25 T-type thermocouples
with ±0.1 ◦C error rate. The pressure drop of the radiation section was measured by using a pressure
gauge. The data loggers of Ganter and Yokogawa were used to collect temperature and pressure
values. To prevent the influence of the radiation section, the temperature sensors were installed in a
4 × 6 arrangement, with equal spacing at a distance over 3 cm from the outlet surface of the radiation
section. Accordingly, temperature distributions of heat cores could be compared. A 12 V power supply
was used to operate the controller of the radiation section. The electric heater ran based on the duty
control using a can analyzer. The inlet flow rate was set by considering air density (0.99~1.28 kg/m3)
according to temperature variation. The test conditions of Table 6 were applied.
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Table 6. PTC heater experimental conditions.

Parameter Value

Inlet air
Temperature (◦C) 0 ± 2
Mass flow (kg/h) 300 ± 10

Power Input Voltage (V) 330 ± 5

As shown in Figure 11, the results of the prototype electric heater test show a difference in heating
performance according to the heat dissipation location of the heater. This effect was likely caused by
the difference in contact of thermal resistance of each part (heat rod and fin). Therefore, to determine
qualitative characteristics, we compared the rate of change in heating performance by changing the
inlet air mass flow rate between the experiment and the analysis results. Figure 9 illustrates the
comparison of heating performance results according to flow rate between analysis and experiment.
The variations of heating performance according to flow rates at the level of the entire heater ranged
from 3% to 22% in the analysis and experiment, respectively. When the variations were compared
for each flow rate range in both the analysis and experiment, the maximum error rate was 4%, which
indicated that the error rate of performance variation between the analysis model and the prototype
was generally reliable.
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5. Conclusions

To ensure an effective design of an electric heater for an EV heating system, this study conducted
a simulation of heating performance by applying temperature characteristics of PTC elements.
A comparative analysis applied different design parameters of main components and operational
conditions to an electric heater with specific dimensions. In this way, candidate models were compared
in terms of heating performance and heat output density, which was an indicator of lightweight design.
A prototype heater was fabricated based on the selected optimal model, and its performance was
evaluated. The conclusions of this study can be summarized as follows.

(1) To obtain an optimal design of an electric heater using PTC elements, a three-dimensional
heat transfer analysis was performed by applying simple models that reflected the radiation
characteristics of PTC elements and the structural characteristics of the heater. The performance
of each model was compared according to different configurations of heat rods and fins, which
are dominant components in terms of heat transfer performance.

(2) Each model was analyzed to realize heating capacities over 6 kW, which was the target
performance at the level of the entire heater. As the indicator of lightweight design, the heat
output densities of Models A, B, and C were 4.34, 5.94, and 5.87 kW/kg. In addition, when the
inlet air flow rate varied, the performances (Delta Q, the performance variation in the same flow
rate rage) of Models A, B, and C were 3.6, 2.71, and 1.36 kW, respectively. On the basis of these
results, Model B was selected as the optimal design option that could achieve a high heat output
density as well as proportional and stable performance variation.

(3) A prototype electric heater was fabricated through the application of Model B. Under the
reference conditions, the prototype was evaluated to have a heating capacity of approximately
5.23 kW. The correlation between the simulation results and the heating performance results
of the prototype according to inlet flow rate showed that the error rate between performance
variations was about 4%. This indicated that sufficient reliability between the prototype and the
design model had been secured.

In the development of various electric heaters for EVs, a simulation reflecting radiation elements
and heater characteristics can provide a guideline to an effective performance design range and
lightweight design. Moreover, cost will be reduced by minimizing the comparative fabrication of
prototype heaters.
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Nomenclature

F Fin
H Heater
R Heat rod
T Temperature
y Distance from wall (mm)
Or Simulation domain open ratio
Uτ Velocity in shear stress direction (m/s)
Md Mass flow rate (kg/s)
Dh Inlet hydraulic diameter (mm)
R1 25 < Tc ≤ 140, Resistance of PTC (kΩ)
R2 140 < Tc ≤ 145, Resistance of PTC (kΩ)
R3 145 < Tc, Resistance of PTC (kΩ)
P Power (W)
V Voltage (V)
I Current (A)
Greek symbols
∇ Vector operator
ρ Density (kg/m3)
u Velocity (m/s)
µ Coefficient of dynamic viscosity (kg/m·s)
υ Coefficient of kinematic viscosity (m2/s)
Subscripts
h height (mm)
p pitch (mm)
w width (mm)
t thickness (mm)
c PTC
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