Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Anaerobic Digestion
2.2. Mixed Culture Lactic Acid Fermentation
2.3. Dark Fermentation
3. Results and Discussion
3.1. Economic Assessment Results
3.2. Emerging Mixed Culture Technologies
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Diggelman, C.; Ham, R.K. Household food waste to wastewater or to solid waste? That is the question. Waste Manag. Res. 2003, 21, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Tuck, C.O.; Perez, E.; Horvath, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of Biomass: Deriving More Value from Waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Pfaltzgraff, L.A.; De bruyn, M.; Cooper, E.C.; Budarin, V.; Clark, J.H. Food waste biomass: A resource for high-value chemicals. Green Chem. 2013, 15, 307–314. [Google Scholar] [CrossRef]
- Arancon, R.A.D.; Lin, C.S.K.; Chan, K.M.; Kwan, T.H.; Luque, R. Advances on waste valorization: New horizons for a more sustainable society. Energy Sci. Eng. 2013, 1, 53–71. [Google Scholar] [CrossRef]
- Whyte, R.; Perry, G. A rough guide to anaerobic digestion costs and MSW diversion. Biocycle 2001, 42, 30–33. [Google Scholar]
- Gebrezgabher, S.A.; Meuwissen, M.P.M.; Prins, B.A.M.; Lansink, A.G.J.M.O. Economic analysis of anaerobic digestion—A case of Green power biogas plant in the Netherlands. NJAS-Wagen. J. Life Sci. 2010, 57, 109–115. [Google Scholar] [CrossRef]
- Clarke, W.P.; Alibardi, L. Anaerobic digestion for the treatment of solid organic waste: What’s hot and what’s not. Waste Manag. 2010, 30, 1761–1762. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Na, J.G.; Lee, M.K.; Ryu, H.; Chang, Y.K.; Triolo, J.M.; Yun, Y.M.; Kim, D.H. More value from food waste: Lactic acid and biogas recovery. Water Res. 2016, 96, 208–216. [Google Scholar] [CrossRef] [PubMed]
- EIA United States Natural Gas Industrial Price. Available online: https://www.eia.gov/dnav/ng/hist/n3035us3m.htm (accessed on 3 July 2017).
- Eurostat Energy Price Statistics. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price_statistics#Natural_gas_prices_for_industrial_consumers (accessed on 3 July 2017).
- Indexmundi Natural Gas Price. Available online: http://www.indexmundi.com/commodities/?commodity=natural-gas (accessed on 3 July 2017).
- Koupaie, E.H.; Barrantes Leiva, M.; Eskicioglu, C.; Dutil, C. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: Process and cost-benefit analysis. Bioresour. Technol. 2014, 152, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Bastidas-Oyanedel, J.-R.; Bonk, F.; Thomsen, M.H.; Schmidt, J.E. Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev. Environ. Sci. Bio/Technol. 2015, 14, 473–498. [Google Scholar] [CrossRef]
- Coma, M.; Martinez Hernandez, E.; Abeln, F.; Raikova, S.; Donnelly, J.; Arnot, T.C.; Allen, M.; Hong, D.D.; Chuck, C.J. Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kleerebezem, R.; Joosse, B.; Rozendal, R.; Van Loosdrecht, M.C.M. Anaerobic digestion without biogas? Rev. Environ. Sci. Bio/Technol. 2015. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Aceves-Lara, C.A.; Trably, E.; Bastidas-Oyanedel, J.R.; Ramirez, I.; Latrille, E.; Steyer, J.P. Bioenergy production from waste: Examples of biomethane and biohydrogen. J. Soc. Biol. 2008, 202, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Birgitte, K. Ahring Biochemical Production and Separation of Carboxylic Acids for Biorefinery Applications Biochemical Production and Separation of Carboxylic Acids for Biorefinery Applications. Fermentation 2017, 3, 22. [Google Scholar] [CrossRef]
- Agler, M.T.; Wrenn, B.A.; Zinder, S.H.; Angenent, L.T. Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. Trends Biotechnol. 2011, 29, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Yan, B.; Wong, J.W.C.; Zhang, Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E.; Chwiałkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Volatile fatty acids production during mixed culture fermentation—The impact of substrate complexity and pH. Chem. Eng. J. 2017. [Google Scholar] [CrossRef]
- Chang, H.N.; Kim, N.J.; Kang, J.; Jeong, C.M. Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioprocess Eng. 2010, 15, 1–10. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzcinski, A.P.; Liu, Y. Platform chemical production from food wastes using a biorefinery concept. J. Chem. Technol. Biotechnol. 2015, 90, 1364–1379. [Google Scholar] [CrossRef]
- Cope, J.L.; Hammett, A.J.M.; Kolomiets, E.A.; Forrest, A.K.; Golub, K.W.; Hollister, E.B.; DeWitt, T.J.; Gentry, T.J.; Holtzapple, M.T.; Wilkinson, H.H. Evaluating the performance of carboxylate platform fermentations across diverse inocula originating as sediments from extreme environments. Bioresour. Technol. 2014, 155, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Queir, D.; Sousa, R.; Pereira, S.; Serafim, S. Valorization of a Pulp Industry By-Product through the Production of Short-Chain Organic Acids. Fermentation 2017, 3, 20. [Google Scholar] [CrossRef]
- Padro, C.E.G.; Putsche, V. Survey of the Economics of Hydrogen Technologies; National Renewable Energy Lab.: Golden, CO, USA, 1999.
- Beerthuis, R.; Rothenberg, G.; Shiju, N.R. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem. 2015, 17, 1341–1361. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.T.; Shimamura, T.; Ishida, N.; Takahashi, H. PH-uncontrolled lactic acid fermentation with activated carbon as an adsorbent. Enzyme Microb. Technol. 2011, 48, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Bonk, F.; Bastidas-Oyanedel, J.-R.; Yousef, A.F.; Schmidt, J.E. Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresour. Technol. 2017, 238, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, X.; Hu, Y.; Zhang, Y.; Li, Y. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Manag. 2016, 52, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y.; Zhao, S.; Chen, H.; Zheng, X.; Luo, J.; Liu, Y. Efficient production of optically pure l-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res. 2015, 70, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, A.; Bastidas-Oyanedel, J.-R.; Schmidt, J.E. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Manag. 2018. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Henry, M. Lacic acid: Recent advances in products processes and technologies—A review. J. Chem. Technol. Biotechnol. 2006, 81, 1119–1129. [Google Scholar] [CrossRef]
- González, M.I.; Álvarez, S.; Riera, F.; Álvarez, R. Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. J. Food Eng. 2007, 80, 553–561. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, K. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana; National Renewable Energy Lab.: Golden, CO, USA, 2013.
- Bonk, F.; Bastidas-Oyanedel, J.-R.; Schmidt, J.E. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—Economic and energy assessment. Waste Manag. 2015, 40, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, A.; Bonk, F.; Bastidas-Oyanedel, J.R.; Schmidt, J.E. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon. Bioresour. Technol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Walla, C.; Schneeberger, W. The optimal size for biogas plants. Biomass Bioenergy 2008, 32, 551–557. [Google Scholar] [CrossRef]
- Joglekar, H.G.; Rahman, I.; Babu, S.; Kulkarni, B.D.; Joshi, A. Comparative assessment of downstream processing options for lactic acid. Sep. Purif. Technol. 2006, 52, 1–17. [Google Scholar] [CrossRef]
- Åkerberg, C.; Zacchi, G. An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresour. Technol. 2000, 75, 119–126. [Google Scholar] [CrossRef]
- Vaidya, A.N.; Pandey, R.A.; Mudliar, S.; Kumar, M.S.; Chakrabarti, T.; Devotta, S. Production and Recovery of Lactic Acid for Polylactide—An Overview. Crit. Rev. Environ. Sci. Technol. 2005, 35, 429–467. [Google Scholar] [CrossRef]
- Gruber, P.R. Commodity polymers from renewable resources: Polylactic acid. In Carbon Management: Implications for R&D in the Chemical Sciences and Technology: A Workshop Report to the Chemical Sciences Roundtable; National Academies Press (US): Washington, DC, USA, 2001; pp. 111–127. ISBN 0309503051. [Google Scholar]
- Subramanian, M.R.; Talluri, S.; Christopher, L.P. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb. Biotechnol. 2015, 8, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Ntaikou, I.; Antonopoulou, G.; Lyberatos, G. Biohydrogen production from biomass and wastes via dark fermentation: A review. Waste Biomass Valorization 2010, 1, 21–39. [Google Scholar] [CrossRef]
- Palomo-Briones, R.; Razo-Flores, E.; Bernet, N.; Trably, E. Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control. Appl. Energy 2017, 198, 77–87. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Dhar, B.R.; Nakhla, G.; Lee, H.-S. A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 2017, 79, 656–668. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.M.; Munoz-Paez, K.M.; Escamilla-Alvarado, C.; Robledo-Narvaez, P.N.; Ponce-Noyola, M.T.; Calva-Calva, G.; Rios-Leal, E.; Galindez-Mayer, J.; Estrada-Vazquez, C.; Ortega-Clemente, A.; et al. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: A review. Waste Manag. Res. 2014, 32, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Bundhoo, M.A.Z.; Mohee, R.; Hassan, M.A. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. J. Environ. Manag. 2015, 157, 20–48. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.A.; Tavares, F.; Alves, M.M.; Pereira, M.A. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Bioresour. Technol. 2016, 219, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastidas-Oyanedel, J.-R.; Mohd-Zaki, Z.; Zeng, R.J.; Bernet, N.; Pratt, S.; Steyer, J.-P.; Batstone, D.J. Gas controlled hydrogen fermentation. Bioresour. Technol. 2012, 110, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Y.; Chen, M.; Zeng, R.J. Hydrogen supersaturation in thermophilic mixed culture fermentation. Int. J. Hydrogen Energy 2012, 37, 17809–17816. [Google Scholar] [CrossRef]
- Yeshanew, M.M.; Frunzo, L.; Pirozzi, F.; Lens, P.N.L.; Esposito, G. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 2016, 220, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, T.; Shen, N.; Zhang, F.; Zeng, R.J. High-purity propionate production from glycerol in mixed culture fermentation. Bioresour. Technol. 2016, 219, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, N.; Wang, T.; Zhang, F.; Zeng, R.J. Ammonium level induces high purity propionate production in mixed culture glucose fermentation. RSC Adv. 2017, 7, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Den Boer, E.; Lukaszewska, A.; Kluczkiewicz, W.; Lewandowska, D.; King, K.; Reijonen, T.; Kuhmonen, T.; Suhonen, A.; Jaaskelainen, A.; Heitto, A.; et al. Volatile fatty acids as an added value from biowaste. Waste Manag. 2016, 58, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Bastidas-Oyanedel, J.R.; Fang, C.; Almardeai, S.; Javid, U.; Yousuf, A.; Schmidt, J.E. Waste biorefinery in arid/semi-arid regions. Bioresour. Technol. 2016, 215, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, J.; Liu, Y.; Zou, F.; Wu, J.; Li, K.; Chen, Y.; Xie, J.; Ying, H. Modeling of breakthrough curves of single and quaternary mixtures of ethanol, glucose, glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin. Bioresour. Technol. 2013, 143, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Alkaya, E.; Kaptan, S.; Ozkan, L.; Uludag-Demirer, S.; Demirer, G.N. Recovery of acids from anaerobic acidification broth by liquid-liquid extraction. Chemosphere 2009, 77, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Choudhari, S.K.; Cerrone, F.; Woods, T.; Joyce, K.; Flaherty, V.O.; Connor, K.O.; Babu, R. Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA-based composite membranes. J. Ind. Eng. Chem. 2014, 23, 163–170. [Google Scholar] [CrossRef]
- Lopez, A.M.; Hestekin, J.A. Separation of organic acids from water using ionic liquid assisted electrodialysis. Sep. Purif. Technol. 2013, 116, 162–169. [Google Scholar] [CrossRef]
- Prochaska, K.; Woźniak-Budych, M.J. Recovery of fumaric acid from fermentation broth using bipolar electrodialysis. J. Membr. Sci. 2014, 469, 428–435. [Google Scholar] [CrossRef]
- Xiong, B.; Richard, T.L.; Kumar, M. Integrated acidogenic digestion and carboxylic acid separation by nanofiltration membranes for the lignocellulosic carboxylate platform. J. Membr. Sci. 2015, 489, 275–283. [Google Scholar] [CrossRef]
- Belasri, D.; Sowunmi, A.; Bastidas-Oyanedel, J.R.; Amaya, C.; Schmidt, J.E. Prospecting of renewable energy technologies for the Emirate of Abu Dhabi: A techno-economic analysis. Prog. Ind. Ecol. 2016, 10, 301–318. [Google Scholar] [CrossRef]
- Leng, L.; Yang, P.; Mao, Y.; Wu, Z.; Zhang, T.; Lee, P.H. Thermodynamic and Physiological Study of Caproate and 1,3-Propanediol Co-Production through Glycerol Fermentation and Fatty Acids Chain Elongation; Elsevier Ltd.: New York, NY, USA, 2017; Volume 114, ISBN 8522766606. [Google Scholar]
- Liu, Y.; He, P.; Shao, L.; Zhang, H.; Lü, F. Significant enhancement by biochar of caproate production via chain elongation. Water Res. 2017, 119, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Strik, D.P.B.T.B.; Buisman, C.J.N.; Kroeze, C. Production of Caproic Acid from Mixed Organic Waste- An Environmental Life Cycle Perspective. Environ. Sci. Technol. 2017. [Google Scholar] [CrossRef] [PubMed]
- López-Garzón, C.S.; Straathof, A.J.J. Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 2014, 32, 873–904. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rodriguez, C.I.; Moreno-Gonzalez, M.; de Weerd, F.A.; Viswanathan, V.; van der Wielen, L.A.M.; Straathof, A.J.J. Esters production via carboxylates from anaerobic paper mill wastewater treatment. Bioresour. Technol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J.; Massanet-Nicolau, J.; Mulder, M.J.J.; Premier, G.; Dinsdale, R.; Guwy, A. Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter. Bioresour. Technol. 2017, 229, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xu, T.; Zhang, Y.; Xue, Y.; Chen, G. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Membr. Sci. 2007, 288, 1–12. [Google Scholar] [CrossRef]
- Villano, M.; Paiano, P.; Palma, E.; Miccheli, A.; Majone, M. Electrochemically-driven fermentation of organic substrates with undefined mixed microbial cultures. ChemSusChem 2017. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.S.; Lu, Y.C.; Luo, G.S. Separation and concentration of lactic acid by electro-electrodialysis. Sep. Purif. Technol. 2008, 60, 308–314. [Google Scholar] [CrossRef]
- Chen, X.; Ni, B.J. Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach. Chem. Eng. J. 2016, 306, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Gildemyn, S.; Molitor, B.; Usack, J.G.; Nguyen, M.; Rabaey, K.; Angenent, L.T. Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation. Biotechnol. Biofuels 2017, 10, 83. [Google Scholar] [CrossRef] [PubMed]
Route | Annualized Capital Cost (USD/t_VS_fw/year) * | Annual Operational Cost (USD/t_VS_fw/year) | Annualized Total Investment (USD/t_VS_fw/Year) | Capital Cost as Present Value (USD) | Total Investment as Present Value (USD) |
---|---|---|---|---|---|
(A1) Anaerobic digestion—methane sold to the grid | 42 a,b | 11 a,b | 53 | 1,528,365 | 1,928,652 |
(A2) Anaerobic digestion—power generation | 167 c | 113 c | 280 | 6,091,628 | 10,189,103 |
(B1) Mixed culture lactic acid fermentation | 108 a,b,d | 55 a,b,d | 163 | 3,930,083 | 5,931,514 |
(B2) Polylactic acid production | 114 a,b,d | 59 a,b,d | 173 | 4,148,421 | 6,295,410 |
(C1) Dark fermentation—hydrogen and methane sold to the grid | 47 a,b,d,e,f | 13 a,b,d,e,f | 60 | 1,710,314 | 2,183,379 |
(C2) Dark Fermentation—Acetic and butyric acids purified | 252 a,b,d,e,f | 148 a,b,d,e,f | 400 | 9,170,193 | 14,555,862 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastidas-Oyanedel, J.-R.; Schmidt, J.E. Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis. Energies 2018, 11, 1551. https://doi.org/10.3390/en11061551
Bastidas-Oyanedel J-R, Schmidt JE. Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis. Energies. 2018; 11(6):1551. https://doi.org/10.3390/en11061551
Chicago/Turabian StyleBastidas-Oyanedel, Juan-Rodrigo, and Jens Ejbye Schmidt. 2018. "Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis" Energies 11, no. 6: 1551. https://doi.org/10.3390/en11061551
APA StyleBastidas-Oyanedel, J. -R., & Schmidt, J. E. (2018). Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis. Energies, 11(6), 1551. https://doi.org/10.3390/en11061551