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Abstract:



The optimal power flow (OPF) problem is a non-linear and non-smooth optimization problem. OPF problem is a complicated optimization problem, especially when considering the system constraints. This paper proposes a new enhanced version for the grey wolf optimization technique called Developed Grey Wolf Optimizer (DGWO) to solve the optimal power flow (OPF) problem by an efficient way. Although the GWO is an efficient technique, it may be prone to stagnate at local optima for some cases due to the insufficient diversity of wolves, hence the DGWO algorithm is proposed for improving the search capabilities of this optimizer. The DGWO is based on enhancing the exploration process by applying a random mutation to increase the diversity of population, while an exploitation process is enhanced by updating the position of populations in spiral path around the best solution. An adaptive operator is employed in DGWO to find a balance between the exploration and exploitation phases during the iterative process. The considered objective functions are quadratic fuel cost minimization, piecewise quadratic cost minimization, and quadratic fuel cost minimization considering the valve point effect. The DGWO is validated using the standard IEEE 30-bus test system. The obtained results showed the effectiveness and superiority of DGWO for solving the OPF problem compared with the other well-known meta-heuristic techniques.
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1. Introduction


Recently, OPF problems have become a strenuous task for optimal operation of the power systems. The main objective of OPF is finding the best operation, security and economic settings of electrical power systems. In this study, the operating variables of systems are determined optimally for different objective functions such as fuel cost minimization, power loss minimization, emission and voltage deviation minimization, etc., while in addition, enhancing system stability, loadability and voltage profiles. Practically, the solution of OPF problem must satisfy the equality and inequality system constraints [1,2].



OPF is a non-smooth and non-linear optimization problem that is considered a complicated problem. This problem becomes especially more difficult when the equality and inequality operating system constraints are considered. Thus, solving the OPF problem needs more efficient and developed meta-heuristic optimization algorithms. Many conventional methods have been developed in order to solve the OPF problem such as NLP [3], LP [4], QP [5], Newton’s Method [6], IP [7]. However, these methods face some problems in solving nonlinear or non-convex objective functions. In addition, these methods may fall into local minima, hence new optimization algorithms have been proposed to avoid the shortcomings of these methods. From these methods; GA [8,9], MFO [10], DE [11,12], PSO [13], MSA [14], EP [15,16], ABC [17], GSA [18], BBO [19], SFLA [20], forced initialized differential evolution algorithm [21], TS [22], MDE [23], SOS [24], BSA [25] and TLBO [26], decentralized decision-making algorithm [27]. The thermal generation units have multiple valves to control the output generated power. As the valves of thermal generation units are opened in case of steam admission, a sudden increase in losses is observed which leads to ripples in the cost function curve (known as the valve-point loading effect). Several optimization techniques have been employed for solving the OPF considering the valve-point loading effect such as ABC [17], GSA [18], SFLA [20], SOS [24], BSA [25] and Hybrid Particle Swarm Optimization and Differential Evolution [28].



The conventional and some meta-heuristics methods could not efficiently solve the OPF problem, thus several new or modified versions of optimization techniques have been proposed. The GWO algorithm is considered a new optimization technique that proposed by Mirjalili [29]. GWO simulates the grey wolves’ social hierarchy and hunting behavior. The main phases of gray wolf hunting are the approaching, encircling and attacking the prey by the grey wolves [29,30]. It should point out that the conventional GWO technique updates its hunters towards the prey based on the condition of leader wolves. However, the population of GWO is still inclined to stall in local optima in some cases. In addition, the GWO technique is not capable of performing a seamless transition from the exploration to exploitation phases. In this paper, a new developed version of GWO is proposed to effectively solve the OPF problem. The DGWO is based on enhancing the exploration phase by applying a random mutation in order to enhance the searching process and avoid the stagnation at local optima. The exploitation process is improved by updating the populations of GWO in spiral path around the best solution to focus on the most promising regions. DGWO is applied for minimizing the quadratic fuel cost, fuel cost considering the valve loading. The obtained simulation results by the DGWO are compared with those obtained by the classical GWO and other well-known techniques to demonstrate the effectiveness of the proposed algorithm.



The rest of paper is organized as follows: Section 2 presents the optimal power flow problem formulation. Section 3 presents the mathematical formulation of GWO and DGWO techniques. Section 4 presents the numerical results. Finally, the conclusions presented in Section 5.




2. Optimal Power Flow Formulation


Solution of OPF problem aims to achieve certain objective functions by adjustment some control variables with satisfying different operating constraints. Generally, the optimization problem can be mathematically represented as:
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(1)







Subject to:
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(3)




where, [image: ] is a certain objective function, [image: ] are the state variables, u is the control variables vector, [image: ] and [image: ] are equality and inequality operating constraints, respectively. [image: ] and [image: ] are the number of the equality and inequality operating constraints, respectively. The state variables vector (x) can be given as:
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(4)




where, [image: ] is the generated power of slack bus, [image: ] is the load bus voltage, [image: ] is the generated reactive power, [image: ] is the power flow in the line, [image: ] is the load buses number, [image: ] is the generated buses number and [image: ] is the lines number. The independent variables [image: ] can be given as:
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(5)




where, [image: ] is the generated active power, [image: ] is the generated voltage, [image: ] is the shunt compensator injected reactive power, [image: ] is the transformer tap setting, [image: ] is the generators number, [image: ] is the shunt compensator units and [image: ] is the transformers number.



2.1. Objective Functions


2.1.1. Quadratic Fuel Cost


The first objective function is the quadratic equation of total generation fuel cost which formulated as follows:


[image: ]



(6)




where, [image: ] is the fuel cost. [image: ], [image: ] and [image: ] are the cost coefficients.




2.1.2. Quadratic Cost with Valve-Point Effect and Prohibited Zones


Practically, the effect of valve point loading for thermal power plants should be considered. This effect occurred as a result of the rippling influence on the unit’s cost curve which produced from each steam admission in the turbine as shown in Figure 1.


Figure 1. Cost function with and without valve point effect.
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The valve point loading effect is considered by adding a sine term to the fuel cost as:


[image: ]



(7)




where, [image: ] and [image: ] are the fuel cost coefficients considering the valve-point effects.




2.1.3. Piecewise Quadratic Cost Functions


Due to the different fuel sources (coal, natural gas and oil), their fuel cost functions can be considered as a non-convex problem which is given as:
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(8)




where, [image: ], [image: ] and [image: ] are cost coefficients of the ith generator for fuel type k.





2.2. Operating Constraints


2.2.1. Equality Operating Constraints


The operating equality constrains can be represented as:
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where, [image: ] and [image: ] are the generated power at bus i. [image: ] and [image: ] are load demand at bus i. [image: ] and [image: ] are the real and imaginary parts of admittance between bus i and bus j, respectively.




2.2.2. Inequality Operating Constrains


The inequality operating constrains can be given as:
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where, [image: ] and [image: ] are the minimum and maximum generated active power limits of ith generator, respectively. [image: ] and [image: ] are the lower and upper output voltage limits of ith generator, respectively. [image: ] and [image: ] are the minimum and maximum generated reactive power limits of ith generator, respectively. [image: ] and [image: ] are the lower and upper limits of regulating transformer i. [image: ] and [image: ] are the minimum and maximum injected VAR of ith shunt compensation unit. [image: ] is the apparent power flow in ith line while [image: ] is the maximum apparent power flow of this line. [image: ] and [image: ] are the lower and upper limits of voltage magnitude load bus i, respectively.



The dependent state variables can be considered in OPF solution using the quadratic penalty formulation as:
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where, [image: ], [image: ], [image: ], [image: ] and [image: ] are the penalty factors. [image: ] is the limit value that can be given as:
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(19)




where, [image: ] and [image: ] are the upper and lower limits of the dependent variables, respectively.






3. Developed Grey Wolf Optimizer


3.1. Grey Wolf Optimizer


GWO is a robust swarm-based optimizer inspired by the social hierarchy of grey wolves [27]. The pack of grey wolves has a special social hierarchy where the leadership in the pack can be divided into four levels; alpha, beta, omega and delta. Alpha wolf (α) is the first level in the social hierarchy hence it is the leader that guides the pack and the other wolves follow its orders. Beta wolf (β) is being in the second level of leadership that helps the alpha wolf directly for the activities of the pack. Delta (δ) wolves come in the third level of hierarchy where, they follow α and β wolves. The rest of wolves are the omegas (ω) that always have to submit to all the other dominant wolves. Figure 2 illustrates the social hierarchy ranking of wolves in GWO. In the mathematical model of GWO, the fittest solution is considered as the alpha (α), where, the second and third best solutions are called beta (β) and delta (δ), respectively. Finally, omega (ω) are considered the rest of the candidate solutions. However, the GWO based on three steps:

	
Encircling prey.



	
Hunting the prey.



	
Attacking the prey.







Figure 2. Social hierarchy of wolves in GWO.
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3.1.1. Encircling Prey


The grey wolves encircle the prey in hunting process that can be mathematically modeled as:


[image: ]



(20)
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where, [image: ] is the current iteration, [image: ] is the prey position vector, and [image: ] indicates the position vector of a grey wolf. [image: ] and [image: ] are coefficient vectors that can be calculated as:
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(22)






[image: ]



(23)




where, [image: ] is a value can be decreased linearly from 2 to 0 with iterations. [image: ] and [image: ] are random numbers in range [0, 1].




3.1.2. Hunting the Prey


In hunting process, the pack is affected by [image: ], [image: ] and δ. Hence, the first three best solutions are saved as best agents ([image: ], β, δ) and the other search agents are updated their positions according to the best agents as:
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where, i is number of populations (vectors) and j is number of variables (individuals). [image: ], [image: ] and [image: ] are random vectors. The step size of the ω wolves is expressed in Equations (25)–(27), respectively. The final location of the ω wolves is formulated in Equations (28)–(31).




3.1.3. Attacking the Prey


The last stage in hunting is attacking the prey when the prey stopped. This can be achieved mathematically by reducing the value of [image: ] gradually from 2 to 0, consequently, [image: ] is varied randomly in range [−1, 1].





3.2. Developed Grey Wolf Optimizer


DGWO technique is presented as a new version for the conventional GWO. In this technique, the exploration and exploitation processes of GWO is enhanced. The exploration process is enhanced by integration a random mutation to find new searching regions to avoid the local minimum problem. The random mutation is applied as follows:


[image: ]



(32)




where, R is a random number over [0, 1]. [image: ] is a new generated vector. [image: ] and [image: ] are the lower and upper limits of control variables, respectively. In the exploitation of DGWO, the search process is focusing on the promising area by updating the search agents around the best solution ([image: ]) in logarithmic spiral function as:


[image: ]



(33)




where:

	
[image: ]: the best position (alpha wolf position).



	
b: is a constant value for defining the logarithmic spiral shape.



	
[image: ]: is a random number [−1, 1].








For balancing the exploration during the initial searching process and exploitation in the final stages of the search process, an adaptive operator is used which changed dynamically as:


[image: ]



(34)







The procedures of DGWO algorithm for solving the OPF problem can be summarized as follows:

	(1)

	
Initialize maximum number of iterations ([image: ]) and search agents (N).




	(2)

	
Read the input system data.




	(3)

	
Initialize grey wolf population [image: ] as:


[image: ]



(35)




where, [image: ], [image: ] and [image: ] are the minimum and maximum limits of control variables which are predefined values. rand is a random number in range [0, 1].




	(4)

	
Calculate the objective function for all grey wolf population using Newton Raphson load flow method.




	(5)

	
Determine [image: ], [image: ], [image: ] (first, second, and third best search agent).




	(6)

	
Update the location of each search agent according Equations (24)–(31) and calculate the objective function using Newton Raphson load flow for the updated agents.




	(7)

	
Update the values of a [2:0], A and C according Equations (22) and (23).




	(8)

	
Update the adaptive operator, [image: ] according to Equation (34)




	(9)

	
IF [image: ] < rand, update the position of search agent based on random mutation according to Equation (32)



ELSE IF K > rand, update the position of search agent locally in spiral path using Equation (33)



END



IF Fitness ([image: ]) < Fitness ([image: ])


[image: ]











ELSE, END



where, Fitness [image: ] is the objective function of the position vector n while Fitness ([image: ]) is the objective function of the updated position vector j.




	(10)

	
Repeat steps from (4) to (9) until the iteration number equals to its maximum value.




	(11)

	
Find the best vector ([image: ]) which include the system control variables and its related fitness function.









However, the OPF solution process using the DGWO is shown in Figure 3.


Figure 3. The solution process of OPF problem using DGWO.
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4. Simulation Results


The DGWO is validated using the IEEE 30-bus test system. More details about this system can be found in [31]. The developed code has been written using MATLAB 2015 and the simulation run on a PC equipped with a core i5 processor, 2.50 GHz and 4 GB RAM. The upper and lower operating ranges and coefficients of generators are given in Table 1. The upper and lower limits of the load bus voltage are 1.05 p.u. and 0.95 p.u., respectively. The upper and lower limits of VAR compensation units are 0.00 p.u. and 0.05 p.u., respectively. The working voltage ranges of PV buses is [0.95, 1.1] p.u while the allowable range of transformer taps is [0.9, 1.1].The limits of transmission line power flows are given in [24]. The parameters of DGWO technique are selected as; number of populations = 50, maximum iteration = 100, [image: ] = 1, [image: ] = 0.00001 and [image: ] = 0.1. In this study, 100 runs have been performed for all the test cases to calculate the best cost, the worst cost and the average cost.


Table 1. Generator data coefficients.





	
Bus No.

	
[image: ]

	
[image: ]

	
[image: ]

	
Cost Coefficients

	
Prohibited Zones




	
a

	
b

	
c






	
1

	
250

	
50

	
−20

	
0

	
2.0

	
0.00375

	
(55–66), (80–120)




	
2

	
80

	
20

	
−20

	
0

	
1.75

	
0.0175

	
(21–24), (45–55)




	
5

	
50

	
15

	
−15

	
0

	
1.0

	
0.0625

	
(30–36)




	
8

	
35

	
10

	
−15

	
0

	
3.25

	
0.00834

	
(25–30)




	
11

	
30

	
10

	
−10

	
0

	
3.00

	
0.025

	
(25–28)




	
13

	
40

	
12

	
−15

	
0

	
3.00

	
0.025

	
(24–30)










4.1. Case1: OPF Solution without Considering the Valve Point Effects


In this case, the quadratic fuel cost effect is taken as an objective function to be minimized as given in Equation (6). The generator data for this case are listed in Table 1. The optimal control variables for this case obtained by GWO and DGWO techniques are listed in 4th and 5th columns of Table 2, respectively. The obtained fuel cost using GWO and DGWO are 801.259 $/h and 800.433 $/h, respectively. Table 3 gives the fuel costs obtained by GWO, DGWO and other optimization techniques. From Table 3, it can be observed that the obtained results using DGWO are better than those obtained by the others reported optimization techniques in terms of the best, the worst and the average fuel costs. The convergence characteristics of GWO and DGWO for this case are shown in Figure 4. It is clear that DGWO has stable and rapid convergence characteristic.


Figure 4. Convergence characteristics of fuel cost (Case 1).
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Table 2. Optimal control variables for different cases obtained by GWO and DGWO.





	
Variables

	
Limit

	
Case 1

	
Case 2

	
Case 3




	
Min.

	
Max.

	
GWO

	
DGWO

	
GWO

	
DGWO

	
GWO

	
DGWO






	
P1 (MW)

	
50

	
250

	
171.094

	
176.949

	
212.633

	
219.801

	
140.00

	
140.00




	
P2 (MW)

	
20

	
80

	
48.615

	
48.519

	
25.684

	
28.358

	
54.992

	
55.000




	
P5 (MW)

	
15

	
50

	
21.123

	
21.326

	
17.612

	
15.047

	
34.930

	
24.105




	
P8 (MW)

	
10

	
35

	
22.068

	
21.571

	
14.185

	
10.000

	
25.008

	
35.000




	
P11 (MW)

	
10

	
30

	
15.479

	
12.026

	
10.651

	
10.000

	
16.934

	
18.239




	
P13 (MW)

	
12

	
40

	
13.665

	
12.001

	
13.751

	
12.000

	
18.223

	
17.664




	
V1 (p.u)

	
0.95

	
1.1

	
1.080

	
1.083

	
1.087

	
1.090

	
1.077

	
1.073




	
V2 (p.u)

	
0.95

	
1.1

	
1.062

	
1.063

	
1.062

	
1.065

	
1.064

	
1.060




	
V5 (p.u)

	
0.95

	
1.1

	
1.030

	
1.031

	
1.023

	
1.032

	
1.035

	
1.032




	
V8 (p.u)

	
0.95

	
1.1

	
1.036

	
1.035

	
1.035

	
1.035

	
1.044

	
1.040




	
V11 (p.u)

	
0.95

	
1.1

	
1.080

	
1.060

	
1.051

	
1.099

	
1.062

	
1.049




	
V13 (p.u)

	
0.95

	
1.1

	
1.054

	
1.050

	
1.060

	
1.037

	
1.036

	
1.060




	
T11

	
0.90

	
1.1

	
0.982

	
0.977

	
1.0128

	
0.948

	
1.023

	
0.994




	
T12

	
0.90

	
1.1

	
1.026

	
1.013

	
0.908

	
1.025

	
1.008

	
0.978




	
T15

	
0.90

	
1.1

	
0.989

	
0.934

	
0.986

	
0.970

	
1.019

	
0.971




	
T36

	
0.90

	
1.1

	
0.981

	
0.975

	
0.976

	
0.981

	
0.959

	
0.975




	
Q10 (MVar)

	
0.00

	
5.00

	
2.144

	
1.695

	
3.170

	
3.277

	
0.986

	
1.251




	
Q12 (MVar)

	
0.00

	
5.00

	
2.929

	
3.394

	
2.143

	
2.367

	
3.996

	
3.157




	
Q15 (MVar)

	
0.00

	
5.00

	
1.400

	
4.777

	
1.959

	
1.228

	
2.978

	
2.433




	
Q17 (MVar)

	
0.00

	
5.00

	
3.526

	
4.153

	
1.126

	
4.660

	
2.148

	
4.831




	
Q20 (MVar)

	
0.00

	
5.00

	
2.954

	
3.738

	
2.369

	
3.585

	
4.139

	
4.462




	
Q21 (MVar)

	
0.00

	
5.00

	
3.588

	
4.941

	
2.016

	
3.603

	
2.878

	
4.653




	
Q23 (MVar)

	
0.00

	
5.00

	
2.974

	
3.567

	
1.532

	
3.560

	
3.603

	
3.043




	
Q24 (MVar)

	
0.00

	
5.00

	
3.688

	
4.996

	
1.675

	
4.603

	
1.377

	
4.467




	
Q29 (MVar)

	
0.00

	
5.00

	
3.259

	
2.200

	
2.378

	
3.232

	
3.628

	
2.439




	
PLoss(MW)

	
NA

	
NA

	
8.6428

	
8.9921

	
11.1151

	
11.805

	
6.6860

	
6.6079




	
VD (p.u)

	
NA

	
NA

	
0.7285

	
0.8784

	
0.7055

	
0.8589

	
0.6170

	
0.8825




	
Lmax (p.u)

	
NA

	
NA

	
0.1299

	
0.1279

	
0.1328

	
0.1281

	
0.1307

	
0.1280




	
Fuelcost ($/h)

	
NA

	
NA

	
801.259

	
800.433

	
830.028

	
824.132

	
646.426

	
645.913




	
Computational time (s)

	
NA

	
NA

	
53.6

	
37.8

	
41.70

	
41.5

	
52.4

	
47.2








PLoss: Power losses, Lmax: Voltage stability index, VD: Summation voltage deviations.







Table 3. Simulation results of Case 1.





	Algorithm
	Best Cost
	Average Cost
	Worst Cost





	DGWO
	800.433
	800.4674
	800.4989



	GWO
	801.259
	802.663
	804.898



	MSA [14]
	800.5099
	NA
	NA



	SOS [24]
	801.5733
	801.7251
	801.8821



	ABC [17]
	800.6600
	800.8715
	801.8674



	TS [22]
	802.290
	NA
	NA



	MDE [23]
	802.376
	802.382
	802.404



	IEP [15]
	802.465
	802.521
	802.581



	TS [15]
	802.502
	802.632
	802.746



	EP [16]
	802.62
	803.51
	805.61



	TS/SA [15]
	802.788
	803.032
	803.291



	EP [15]
	802.907
	803.232
	803.474



	ITS [15]
	804.556
	805.812
	806.856



	GA [9]
	805.937
	NA
	NA










4.2. Case 2: OPF Solution Considering the Valve Point Effects


In this case, the OPF problem is solved considering the valve point effect as given in Equation (7). The optimal control variables obtained by the DGWO are given in 6th and 7th columns of Table 2, respectively. The minimum fuel costs obtained by GWO and DGWO are 830.028 $/h and 824.132 $/h, respectively. Table 4 gives the fuel costs obtained by DGWO, GWO, and other techniques under the same conditions (control variable boundaries, dependent variables limits and system constraints).


Table 4. Comparison of the simulation results of Case 2.





	Algorithm
	Best Cost
	Average Cost
	Worst Cost





	DGWO
	824.132
	824.295
	824.663



	GWO
	830.028
	844.639
	852.388



	SOS [24]
	825.2985
	825.4039
	825.5275



	BSA [25]
	825.23
	827.69
	830.15



	SFLA-SA [20]
	825.6921
	NA
	NA



	SFLA [20]
	825.9906
	NA
	NA



	PSO [20]
	826.5897
	NA
	NA



	SA [20]
	827.8262
	NA
	NA









From Table 4, it can be observed that the obtained results from DGWO are better than those obtained by GWO and the other techniques. Figure 5 shows the convergence characteristics of the minimum fuel cost of the GWO and DGWO. From this figures, it can be observed that the DGWO is converged faster than GWO.


Figure 5. Convergence characteristics of fuel cost (Case 2).



[image: Energies 11 01692 g005]






Table 2 gives the active power losses, voltage stability index and summation of voltage deviations. From this table, it can be observed that some values are increased for DGWO compared with GWO, this due to these values are not considered as objective functions. As it is well known that the optimization of single objective function probably not lead to enhance the other functions.




4.3. Case 3: OPF Solution Considering Piecewise Quadratic Fuel Cost Function


In this case, piecewise fuel cost function is taken as an objective function as given in Equation (8). In this case, two generation units at buses 1 and 2 are represented by piecewise quadratic cost functions [16]. The generated active power and the generation unit coefficients for this case are given in Table 5. The optimal control variables obtained by GWO and DGWO are listed in 8th and 9th columns of Table 2, respectively. The minimum piecewise fuel costs obtained by GWO and DGWO are 646.426 $/h and 645.913 $/h, respectively. The piecewise fuel costs obtained by DGWO, GWO, and other techniques given in Table 6. From Table 6, it can be observed that the obtained results from DGWO are better than those obtained by GWO and the other techniques in terms of the best, the worst and the average piecewise fuel costs. Figure 6 shows the convergence characteristics of the minimum fuel cost of the GWO and DGWO for this case. It is clear that DGWO has fast and stable convergence characteristic compared with GWO.


Figure 6. Convergence characteristics of fuel cost (Case 3).
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Table 5. Cost coefficients of generators (Case 3).





	
Bus No.

	
Output Power Limit (MW)

	
Cost Coefficients




	
Min.

	
Max.

	
a

	
b

	
c






	
1

	
50

	
140

	
55.0

	
0.70

	
0.0050




	
140

	
200

	
82.5

	
1.05

	
0.0075




	
2

	
20

	
55

	
40.0

	
0.30

	
0.0100




	
55

	
80

	
80.0

	
0.60

	
0.0200









Table 6. Comparison of the simulation results of Case 3.





	Algorithm
	Best Cost
	Average Cost
	Worst Cost





	DGWO
	645.9132
	645.993
	646.095



	GWO
	646.426
	647.432
	648.681



	GSA [18]
	646.8480
	646.8962
	646.9381



	Lévy LTLBO [26]
	647.4315
	647.4725
	647.8638



	PSO [13]
	647.69
	647.73
	647.87



	BBO [19]
	647.7437
	647.7645
	647.7928



	TLBO [26]
	647.8125
	647.8335
	647.8415



	MDE [23]
	647.846
	648.356
	650.664



	ABC [17]
	649.0855
	654.0784
	659.7708



	EP [16]
	650.206
	654.501
	657.120



	TS [15]
	651.246
	654.087
	658.911



	TS/SA [15]
	654.378
	658.234
	662.616



	ITS [15]
	654.874
	664.473
	675.035











5. Conclusions


In this paper, DGWO has been proposed to efficiently solve the OPF problem and avoid the stagnation problems of the traditional GWO. This technique is based on modifying the grey wolf optimizer by employing a random mutation for enhancing its exploration process. This modification provides a flexibility to search in new areas. Moreover, the new generated populations are updated around the best solution in a spiral path to enhance the exploitation process and focus on the most promising areas. In the proposed technique, two equations should be added to the traditional GWO, the first equation is related to the random mutation and the second one for the spiral path updating process. The results obtained by the proposed algorithm have been compared with those obtained by the conventional GWO and other well-known optimization techniques. From the results obtained, it can be concluded that:

	-

	
The proposed technique has successfully performed to find the optimal settings of the control variables of test system.




	-

	
Different objective functions (quadratic fuel cost minimization, piecewise quadratic cost minimization, and quadratic fuel cost minimization considering the valve point effect) have been achieved using the proposed algorithm.




	-

	
The superiority of DGWO compared with the conventional GWO and other well-known optimization techniques has been proved.




	-

	
DGWO has a fast and stable convergence characteristic compared with the conventional GWO.









In the future work, the proposed algorithm will be applied in other planning and expansion studies in power systems with thermal and renewable generation units considering the uncertainties of load.
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Nomenclature




	ABC
	Artificial bee colony algorithm



	BSA
	Backtracking search algorithm



	DGWO
	Developed grey wolf optimizer



	GA
	Genetic algorithm



	GWO
	Grey wolf optimizer



	LP
	Linear programming



	MSA
	Moth swarm algorithm



	OPF
	Optimal power flow



	QP
	Quadratic programming



	TS
	Tabu search



	MFO
	Moth-flame algorithm



	ITS
	Improved Tabu Search
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	Random vectors



	x
	The state variables vector



	[image: ]
	The lower and upper boundary of control variables



	QG
	The reactive power output of generators



	t
	The current iteration



	[image: ]
	The maximum number of iterations



	[image: ], [image: ]
	The active and reactive load demand at bus i



	[image: ]
	Phase difference of voltages



	VL
	The voltage of load bus



	VG
	The voltage of generation bus



	NPQ
	Number of load buses



	di, ei
	The fuel cost coefficients of the ith generator unit with valve-point effects



	NTL
	Number of transmission lines



	R
	Random number



	[image: ]
	Random value



	[image: ]
	Transmission line conductance
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	Transmission line susceptance



	[image: ]
	The prey position vector



	k
	Adaptive operator



	b
	Constant value



	[image: ]
	Penalty factors



	[image: ]
	First, second, and third best search agents



	max, min
	Superscript refers to maximum and minimum values



	BBO
	Biogeography-based optimization



	DE
	Differential evolution



	EP
	Evolutionary programming



	GSA
	Gravitational search algorithm



	MDE
	Modified differentia evolution



	NLP
	Nonlinear programming



	PSO
	Particle swarm optimization



	SFLA
	Shuffle frog leaping algorithm



	SOS
	Symbiotic organisms search



	TLBO
	Teaching–learning-based optimization



	IP
	Interior point



	F
	The objective function



	gi, hj
	The equality and inequality constraints



	u
	The control variables vector



	m, p
	Number of equality and inequality constraints



	QC
	The injected reactive power of shunt compensator



	PG1
	The generated power of slack bus



	PG
	The output active power of generator



	SL
	The apparent power flow in transmission line



	T
	Tap setting of transformer



	NG
	Number of generators



	NC
	Number of shunt compensator



	NT
	Number of transformers



	NPV
	Number of generators PV buses



	ai, bi, ci
	The cost coefficients of ith generator.



	NPV
	Number of generation buses



	I
	Current



	V
	Magnitude of node voltage



	R, X, Z
	Resistance, reactance, impedance



	P, Q, S
	Active, reactive, apparent powers
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	The location of the present solution
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	A random number
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	New generated vector



	[image: ]
	Alpha, beta, delta, omega fittest solutions
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	Random vectors
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