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Abstract: As an important interface converter, the three-phase voltage-source rectifier (VSR) connects
the grid to DC-input converters. The constant power load (CPL) characteristic of the converter-load
often causes large-signal stability problems. In order to solve this problem, the stability boundary
of the VSR with CPL is analyzed based on the mixed potential theory, and the stability condition
under large-signal disturbance is obtained; thus, the jump range of the load power can be estimated.
To improve the stability of the system, a voltage loop control scheme based on ADRC is proposed.
A theoretical analysis based on the mixed potential theory shows the proposed scheme expands
the power jump range of the VSR with CPL effectively, and improves its disturbance rejection
performance. Finally, experimental results prove the effectiveness of the proposed control scheme.

Keywords: voltage source rectifier (VSR); constant power load (CPL); large-signal stability; mixed
potential theory; active disturbance rejection control (ADRC); power jump range

1. Introduction

In order to achieve the goal of multi-functionality, low-cost and high reliability, modularization
has become an important trend in power electronics [1–3]. In the process of modularizing power
electronic devices, the situation of converters as loads becomes more and more common, and has
attracted wide attention [4,5]. As important interface converters, three-phase voltage-source rectifiers
(VSRs) connect the grid to DC-input converters, and are widely used in the fields of electric vehicle
charging [6], DC micro-grid [7], more electric aircrafts (MEAs) [8], and photovoltaic generation [9].

Many academic papers have focused on stability issues related to three-phase VSRs
(or voltage-source inverters, VSIs). In [10], bifurcation and large-signal stability of VSR are analyzed
under grid voltage dips, and the stable operating region is identified. Mehrasa M. and Pouresmaeil
E. use direct Lyapunov method to discuss a series of stability issues of VSRs applied in different
power sectors such as modular multilevel converters (MMCs) [3,11], shunt active power filters [12],
and distributed generation [13,14]. A dynamic model in d-q frame with six independent dynamical
state variables is obtained, and global asymptotical stability is achieved by the use of direct Lyapunov
method [11]. Furthermore, a multi-loop control strategy is proposed to provide stable operation under
both MMC’s arm inductance and resistance parameters variations, and also loads changes [3].

However, the above studies do not focus on the effect of load characteristics on the stability of
VSR. Figure 1 shows the schematic of a three-phase VSR cascaded with a DC-input converter. In this
situation, for VSR, the load is no longer a resistance, but a converter with a constant power load (CPL)
characteristic because of its closed-loop control. The CPL causes stability problems easily [15–17];
moreover, the problems are more significant when the DC-bus capacitance is a small-capacity film
capacitor to improve the system life and reliability. Some scholars have discussed this problem and
put forward some solutions based on small signal stability theory, such as the passive damping
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method [18,19], sliding mode control method [17], virtual impedance (active damping) method [20–22],
and so on. However, when the cascaded system suffers from a large-signal disturbance such as load
power jump or grid voltage drop, the small signal stability theory is no longer applicable, because the
theory only studies the stability problems near the operating point.

The problems of large-signal stability in converters with CPLs were analyzed in some literature
in recent years [16,23,24]. In [23], the large-signal stability region of a DC/DC converter is estimated
by a small signal loop. The norm inequalities are used to get the sufficient conditions for converter
stability in order to estimate the stable region of the system. Furthermore, the effect of the small signal
loop gain on the large-signal stability region is revealed. In [24], the Hamiltonian function method
is used to discuss the influence of pulse load on the stability of the system, and some details of the
transient response are shown. It indicates that pulse load has special effect on the stability of cascaded
systems. For example, the system is in an unstable state when the load is connected, however it may
attenuate to a stable state during the load disconnection. In general, it was called a metastable state.
In [16], the influence of the negative impedance characteristic of CPLs on the stability of the converter
is studied based on the mixed potential theory. In addition, a method to improve the large-signal
stability in the cascade system is proposed with multistage LC filters. However, this method requires
additional passive components, which increases the volume of the device.

On the premise of no additional circuits, some meaningful work on control methods has been
undertaken to improve the large-signal stability of converters with CPLs [25–28]. The sliding mode
control method to improve the stability of VSR is proposed in [25]. In this method, the voltage
loop is controlled by sliding mode, and the state observer of the real-time power of the system
is designed to observe the power. Furthermore, the parameters of the state observer are derived
from the Lyapunov stability theorem. However, for different systems, there is no uniform method
to establish the Lyapunov function, so the realization process of the control algorithm is relatively
complicated. Moreover, due to the boundary of the current and grid voltage, the range of attraction
area for large-signal disturbance is limited, which limits its practicality. In [26], a “stabilizing agent” is
implemented on each CPL to reduce the negative impedance characteristic to solve the DC micro-grid
stability problem. Thanks to the improved fault tolerance of the solution, the method permits us
to consider several fault scenarios, such as the electrical reconfiguration, or the failure of an agent.
In [27], multiple linear controllers are designed at different operating points of a three-phase VSR and
switched according to certain rules. When the load changes, the drop and overshoot of DC bus voltage
are both significantly reduced. The stability of the control method is proved by the general Lyapunov
functions. To improve the dynamic performance of three-phase VSR with large-signal disturbance,
a direct voltage control method based on feedback linearization is proposed in [28]. The scheme breaks
through the conventional double closed-loops control mode, and directly controls input variables by
voltage error, so as to stabilize the bus voltage rapidly. However, this scheme relies on an accurate
mathematical model of the circuits. Some abnormal operating conditions, such as the imbalance of the
grid voltage, would lead to poor control performance.

Active disturbance rejection control (ADRC) has been widely studied because of its excellent
immunity against disturbance sources [29–31], and has been applied to motion control [30], power
electronics, and so on [31]. However, the stability of converters with ADRC has not been adequately
analyzed, especially for large-signal stability problems.

In this paper, the authors are discussing the large-signal stability of three-phase VSRs with CPL.
The main contributions are triple:

(1) Obtaining a large-signal model of three-phase VSR with CPL based on mixed potential theory,
whose stable boundary is derived when load power jumps.

(2) Proposing a voltage control scheme to improve the large-signal stability based on ADRC,
and whose control stability is proven.

(3) Deriving the stable boundary of VSR with CPL based on ADRC, which proves that the proposed
control scheme expands the load power jump range effectively.
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The rest of this paper is organized into four sections. Following the introduction, a large-signal
stability analysis based on mixed potential theory under PI control is provided in Section 2.
The proposed control scheme based on ADRC and the stability analysis of it is presented in Section 3.
Moreover, the effectiveness of the control scheme is verified by experiments in Section 4. Finally,
some conclusions are drawn in Section 5, and an Appendix A is given after that.
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Figure 1. Schematic of three-phase VSR cascaded with a DC-input converter. 
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2. Large-Signal Stability Analysis Based on Mixed Potential Theory under PI Control

2.1. Introduction to the Mixed Potential Theory

The mixed potential theory is a method to study the stability of nonlinear circuits by constructing
Lyapunov functions, especially for circuits with CPLs [32,33]. The mixed potential functions are
functions related to energy, which are composed of current potential functions and voltage potential
functions. The core content of the theory is to establish mixed potential functions to satisfy certain
stability theorems, and finally, to obtain the ranges of the system parameters to ensure stability.

The mixed potential function P consists of resistance, capacitance, and inductance in a nonlinear
network. Assume i1, . . . , ir represents inductor currents, and vr+1, . . . , vr+s are capacitor voltages. P is
defined as:

P =
∫

∑
µ>r+s

vµdiµ +
r+s

∑
σ=r+1

iσvσ (1)

In Equation (1), the first item on the right is the current potential of all the non-storage elements;
the second is the sum of energy in capacitors. If vµ can not be represented by iµ, the current potential
can be written by voltage potential and Equation (2):∫

vµdiµ = vµiµ −
∫

iµdvµ (2)

The relationship between P and the system state equation can be described as:{
L diρ

dt = ∂P
∂iρ

−C dvσ
dt = ∂P

∂vσ

(3)

where L and C are inductance and capacitance respectively in the circuit.
Equation (3) gives the criterion to verify the validity of the mixed potential functions.

Generally speaking, the unified form of P is:

P(i, v) = −A(i) + B(v) + (i, γv− α) (4)

where A(i) and B(v) represents the current potential and voltage potential of the non-storage elements
in the circuit respectively, (i, γv − α) represents the energy of capacitors and parts of non-storage
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elements in the circuits, where γ is a constant matrix not necessarily associated with circuit topology
with elements ±1, 0, and α is constant vector.

2.2. Stability Problems of the Three-Phase VSR with CPL

Because VSRs are often used as grid interface converters, their loads are usually not resistors,
but power electronic converters. Power electronic converters are usually controlled by closed loops;
therefore, they are regarded as CPLs. Taking the DC/DC converter as an example of the load, when the
input current suddenly rises, the input voltage will decrease in order to maintain the output constant.
The characteristic of maintaining constant power is called the CPL characteristic. This characteristic is
bad for the stability, which will be explained below.

Take the voltage source in series with CPL as an example, as shown in Figure 2. When the CPL is
disturbed to cause the input current iCPL to rise, in order to maintain its output constant, the input
voltage vCPL of the CPL will decrease. However, this will lead to an increase in the voltage on the
resistance Rs to make the current iCPL rise again. This response, similar to positive feedback, takes
the circuit away from the operating point, and causes it to lose stability. The larger the disturbance,
the more significant stability problems caused by CPL will be.
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2.3. Analysis of Power Jump Range of Three-Phase VSR with CPL

The average model equivalent circuit of three-phase VSR with CPL in dq coordinates system is
shown in Figure 3. Neglecting the power loss, Equation (5) can be obtained based on the power balance.

io =
vdid + vqiq

vdc
(5)

where vd,q are the control voltage in the dq coordinates respectively, id,q are the grid current in the
dq coordinates respectively, io is the output current of the equivalent current source on the DC side,
and vdc is the output voltage of the VSR.

According to the mixed potential theory, the current potential function of non-storage elements in
the circuit is:∫

∑
µ>r+s

vµdiµ =
∫ id

0 eddid −
∫ id

0 Riddid −
∫ id

0 vddid +
∫ id

0 3ωLiqdid +
∫ iq

0 eqdiq

−
∫ iq

0 Riqdiq −
∫ iq

0 vqdiq −
∫ iq

0 3ωLiddiq +
∫ io

0 vdcdio −
∫ iL

0 vdcdiL

(6)

where vd,q are the control voltage in the dq coordinates respectively, R is the equivalent series resistance
of the grid side, iL is the load current of the VSR.

The potential energy stored in the capacitor in the circuit is:

r+s

∑
δ=r=1

iδvδ = −iovdc + PCPL (7)

where PCPL is the power of the CPL.
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From Equations (6) and (7), the mixed potential function of the system can be obtained as:

P(v, i) =
∫

∑
µ>r+s

vµdiµ +
r+s
∑

δ=r=1
iδvδ = edid + eqiq − 1

2 Ri2d −
1
2 Ri2q −

∫ id
0 vddid −

∫ iq
0 vqdiq

+
∫ id

0 3ωLiqdid −
∫ iq

0 3ωLiddiq −
∫ vdc

0 iodvdc +
∫ vdc

0
PCPL
vdc

dvdc

(8)

According to Equation (3), the relationship between P and the state equations of the circuit can be
used to verify the correctness of the function:

∂P
∂id

= ed − Rid − vd + 3ωLiq = L did
dt

∂P
∂iq

= eq − Riq − vq − 3ωLid = L diq
dt

∂P
∂vdc

= −io +
Pcpl
vdc

= −C dvdc
dt

(9)

Energies 2018, 11, x FOR PEER REVIEW  5 of 14 

 

δ δ
δ

+

= =

= − +
1

r s

o dc CPL
r

i v i v P  (7)

where PCPL is the power of the CPL. 
From Equations (6) and (7), the mixed potential function of the system can be obtained as: 

( ) 2 2
0 0

1

0 0 0 0

1 1,
2 2

                                                          3 3

d q

d q dc dc

r s i i
d d q q d q d d q q

r s r

i i v v CPL
q d d q o dc dc

dc

P v i v di i v e i e i Ri Ri v di v di

P
Li di Li di i dv dv

v

μ μ δ δ
μ δ

ω ω

+

> + = =

= + = + − − − −

+ − − +

   

   
 (8)

According to Equation (3), the relationship between P and the state equations of the circuit can 
be used to verify the correctness of the function: 

3

3

d
d d d q

d

q
q q q d

q

cpl dc
o

dc dc

diP e Ri v Li L
i dt

diP e Ri v Li L
i dt

P dvP i C
v v dt

ω

ω

 ∂
 = − − + =

∂


∂ = − − − =∂


∂ = − + = −∂

 (9)

3L

C

Rs

3L Rs

PCPL

io

vd

id

iq vdc

vq

ed

eq

3ωLiq

3ωLid

 
Figure 3. The equivalent circuit of three-phase VSR with CPL in dq coordinates. 

This indicates that Equation (9) satisfies the form Equation (3), which proves that the mixed 
potential function P is correct. 

The proportional integral (PI) regulators are commonly used to control voltage and current of 
the three-phase VSR, as shown in Figure 4. The control loop equations are: 

Vdcref

PI

PI

+
−

+

+

−

PI
+

− vdc

−

−
3ωLid

3ωLiq

id

iq − vq 

vd 

Iqref

idref

 
Figure 4. Control block diagram of the three-phase VSR with conventional PI control. 

Figure 3. The equivalent circuit of three-phase VSR with CPL in dq coordinates.

This indicates that Equation (9) satisfies the form Equation (3), which proves that the mixed
potential function P is correct.

The proportional integral (PI) regulators are commonly used to control voltage and current of the
three-phase VSR, as shown in Figure 4. The control loop equations are:
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vd = −
(

Kip

(
idre f − id

)
+ Kii

∫ (
idre f − id

)
dt
)
+ 3ωLiq (10a)

vq = −
(

Kip

(
Iqre f − iq

)
+ Kii

∫ (
Iqre f − iq

)
dt
)
− 3ωLid (10b)

idre f = Kvp

(
Vdcre f − vdc

)
+ Kvi

∫ (
Vdcre f − vdc

)
dt (10c)

where Vdcref is the output voltage reference of the VSR, Iqref is the current reference of the q axis, ω is
the frequency of the grid, Kip and Kii are the proportion and integral coefficients of PI regulator of d
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axis current and q axis current respectively, Kvp, Kvi are the proportion and integral coefficients of PI
regulator in voltage loop, respectively.

According to Appendix A, the current potential function of the circuit is a second order matrix:

A(i) =

[
−edid +

1
2 Ri2d +

∫ id
0 vddid +

∫ id
0 3ωLiqdid 0

0 −eqiq + 1
2 Ri2q +

∫ iq
0 vqdiq −

∫ iq
0 3ωLiddiq

]
(11)

and the voltage potential function is a first order matrix:

B(v) = −
∫ vdc

0
iodvdc +

∫ vdc

0

PCPL
vdc

dvdc (12)

In order to analyze the stability, the second order partial derivatives of A(i) and B(v) are solved as:

Aii_PI(i) =
∂2A(i)

∂i2
=

[
R + Kip 0

0 R + Kip

]
(13)

Bvv_PI(v) =
∂2B(v)

∂v2 =
KviKipidC

(
Vdcre f − vdc

)
edid − PCPL

−
KvpKipid

vdc
+

vdid − PCPL

v2
dc

(14)

According to the mixed potential stability theorem in the Appendix A, the sufficient condition for
the stability of the three-phase VSR with CPL under large-signal perturbation is:

PCPL_PI <
C(R + Kip)

3L
v2

dc − KvpKipvdcid + vdid +
KviKipCvdc

edid − PCPL_PI

(
Vdcre f − vdc

)
︸ ︷︷ ︸

M

(15)

By Equation (15), the maximum power jump range of the three-phase VSR with CPL can be
estimated. This result is used on the one hand to measure the performance of the VSR, and on the other
hand, as a technical requirement to improve the parameter design. It is worth noting that because this
result is a sufficient condition for large-signal stability, it is somewhat conservative.

3. Control Scheme and Stability Analysis Based on ADRC

In the case of disturbance, the principle of PI regulators is to compensate for errors which occur
in the integrator. However, when the disturbance is large, the delay effect of the integrator makes
the regulator unable to quickly and accurately obtain the disturbance information and compensate,
which easily leads to instability. Therefore, a control scheme based on ADRC with excellent immunity
is proposed to enhance the stability of VSR with CPL under large-signal disturbance.

The general structure of ADRC is shown in Figure 5. It includes the expanded state observer
(ESO), the state error feedback (SEF), the transient profile generation (TPG) and the rejection. ADRC is
not dependent on the mathematical model of the controlled plant. All the uncertain disturbances acting
on the controlled plant are considered as “uncertain disturbances”, and the input and output signals
are used to estimate and compensate for them. Thanks to the ESO and rejection, ADRC has omitted
the integral part compared with the conventional PI regulator. This characteristic coincided with the
need to improve the stability under large-signal disturbance. In this paper, a linear ADRC is proposed
and the parameters can be simplified by ESO bandwidth and system bandwidth, which makes it easy
to set.
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3.1. Voltage Loop Control Scheme Based on the First Order ADRC

The control block of the voltage loop of three-phase VSR based on ADRC is shown in Figure 6.
For the three-phase VSR with CPL, the DC side voltage equation is:

C
dvdc
dt

=
edid − Ri2d

vdc
− PCPL

vdc
(16)

Ignoring the equivalent series resistance R and matching the form of ADRC plant, Equation (16)
is rewritten as a first order differential equation:

.
y = w + bu (17)

where w = −2PCPL/C is the external disturbance, u = idre f is the reference of d-axis current, b = 2ed/C
is the control gain, and y = v2

dc is the input of ADRC.
Assume b0 ≈ b is the estimation of control gain. Let x1 = y, uncertain disturbance (including

external disturbance and internal disturbance) f
(
y,

.
y, u
)

= w + (b− b0)u. Then, extending the
uncertain disturbance to the state variable x2 = f

(
y,

.
y, u
)
, the state equations of voltage loop are:

.
x1 = x2 + b0u
.
x2 = h
y = x1

(18)

where x1, x2 is the state variables, and h =
.
f
(
y,

.
y, u
)
.

A liner ESO can be established from Equation (18) as:{ .
z1 = z2 + β1(x1 − z1) + b0u
.
z2 = β2(x1 − z1)

(19)

Suitable gains β1 and β2 make z1 and z2 in ESO achieve good tracking effect on x1 and x2. Ignore
the estimation error of ESO, that is, z1 → x1 and z2 → x2 . Meanwhile, if we let

u =
−z2 + u0

b0
(20)

Equation (17) can be simplified as:

.
y =

(
f
(
y,

.
y, u
)
− z2

)
+ b0u = u0 (21)

The SEF of ADRC is designed as a proportional term:

u0 = Kp(v− z1) (22)

where v = V2
dcre f .
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3.2. Parameters Simplification and Stability Proof

First, the key parameters of ESO and SEF in ADRC are designed. For the ESO as Equation (19),
the characteristic polynomial is given by:

λ(s) = s2 + β1s + β2 (23)

Setting the pole of the characteristic equation as ESO bandwidth ω0, which results in:

β1 = 2ω0, β2 = ω2
0 (24)

Let the proportional gain
Kp = ωc (25)

where ωc is the system bandwidth.
Therefore, the parameters design of the ADRC is simplified as the design of system bandwidth

and ESO bandwidth. In this paper, taking ωc = 100. According to engineering experience, ω0 is
generally five to ten times ωc, and is set as ω0 = 800 here.

In order to prove the VSR based on ADRC stable, the convergence of ESO should be proven first.
From Equations (19) and (24), the transfer functions of the variables z1 and z2 of ESO in the frequency
domain are given by:

z1 =
β1s + β2

s2 + β1s + β2
y +

b0s
s2 + β1s + β2

u =
2ω0s + ω2

0
s2 + 2ω0s + ω2

0
y +

b0s
s2 + 2ω0s + ω2

0
u (26)

z2 =
β2s

s2 + β1s + β2
y− b0β2

s2 + β1s + β2
u =

ω2
0s

s2 + 2ω0s + ω2
0

y−
b0ω2

0
s2 + 2ω0s + ω2

0
u (27)

Let the tracking error e1 = z1 − y and e2 = z2 − f
(
y,

.
y, u
)
, then

e1 = − s2

s2 + 2ω0s + ω2
0s

y +
b0s

s2 + 2ω0s + ω2
0s

u (28)

e2 = −
(

1−
ω2

0
s2 + 2ω0s + ω2

0

)
ys +

(
1−

ω2
0

s2 + 2ω0s + ω2
0

)
b0u (29)

Without loss of generality, y and u are all set as step signals of magnitude K, that is, y = K/s and u
= K/s. Then the steady-state errors are: e1s = lim

s→0
se1 = 0

e2s = lim
s→0

se2 = 0
(30)
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This indicates that the ESO has good convergence and estimation. On this basis and from
Equations (17)–(22), the voltage closed loop transfer function of VSR based on ADRC is given by:

G(s) =
Kp

s + Kp
(31)

Obviously, if only Kp > 0, the three-phase VSR based on ADRC is stable.

3.3. Large Sigal Stability Analysis of Three-Phase VSR with CPL Based on ADRC

The power jump range is still analyzed by mixed potential theory in this section to discuss the
stability of three-phase VSR with CPL based on ADRC. Assume z1 = v2

dc and b0 = b, then

z2 = f
(
y,

.
y, u
)
= −2PCPL/C (32)

The control function of voltage loop is given by:

idre f =
u0 − z2

b0
=

CKp(V2
dcre f − v2

dc) + 2PCPL

2ed
(33)

The control loop equations of a three-phase VSR based on ADRC are constructed by Equations
(10a), (10b) and (33). The current potential function and the voltage potential function are still Equations
(11) and (12) respectively. In the same way as in Section 2.3, the stability is analyzed by the theorem in
the Appendix A. According to the control loop Equations (10a), (10b) and (33), the second order partial
derivatives of A(i) and B(v) are solved as:

Aii_ADRC(i) =

[
R + Kip 0

0 R + Kip

]
(34)

Bvv_ADRC(v) = −
KpKipCid

ed
+

vdid − PCPL

v2
dc

(35)

According to the mixed potential stability theorem in the Appendix A, the sufficient condition for
the stability of the three-phase VSR with CPL based on ADRC under large-signal perturbation is:

PCPL_ADRC <
C(R + Kip)

3L
v2

dc −
KpKipCv2

dcid
ed

+ vdid (36)

Compared with the Equation (15), it can be seen that the power jump range under large-signal
disturbance is different from that of PI control. Specifically, on the premise that the two methods have
the same gain (i.e., Kp = Kvp), the difference between Equations (15) and (36) is determined by item
M in Equation (15). The instability leads by large-signal disturbance mainly refers to the shock and
divergence of the bus voltage when the CPL power increases. Therefore, under the premise of restoring
stability, the minimum bus voltage must appear at the first oscillatory trough after the disturbance,
as shown in Figure 7. In the process, the bus voltage reduces from Vdcref to the minimum value Vdcmin,
energy in the capacitor is continuously extracted to meet the power requirement of the CPL, so edid
− PCPL_PI < 0, or M < 0. It can be concluded that when there is a large-signal disturbance, the power
jump range of VSR based on ADRC is larger than PI control. In other words, the stability is better.
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4. Experiments

To verify the proposed control methods, a prototype of the three-phase VSR with CPL as shown
in Figure 8 is built and tested. The system configuration is shown in Figure 1. Detailed parameters of
the three-phase VSR are listed in Table 1, and the control circuit is based on the digital signal processor
(TMS320F28335). The CPL is a full bridge DC/DC converter, of which the input voltage is 650 V,
the output voltage vCPL_o is 300 V, and switching frequency is 20 kHz.

Figure 9a shows the main operating waveforms of the VSR with conventional PI control. At the
beginning, the load power of VSR was 2 kW, and the system operated under light load. When the load
power suddenly increased to 10 kW, the bus voltage vdc and grid current ia, ib, and ic begin to oscillate
until the protection was triggered and the system shut down. This indicates that this large-signal
disturbance (load power suddenly increases by five times) caused the system to lose stability, and that
the conventional PI control failed.

Figure 9b shows the main operating waveforms of the VSR with proposed ADRC. The other
experimental conditions are the same as PI control. When the load power suddenly increased from
2 kW to 10 kW, the bus voltage vdc was quickly regulated back to the reference 650 V. In this case,
the cascade system composed of VSR and CPL ran well, and the steady performance was good.
The THD of grid currents was 3.5%, 3.9%, and 4% respectively. Compared with Figure 9a, the power
jump range of the VSR with CPL had been effectively expanded and stability had been improved.

Figure 10 shows the main operating waveforms of the CPL when load power is changed from 2
kW to 10 kW. It can be seen that after the load power jumped, the closed-loop control of CPL makes
the output voltage vCPL_o quickly back to 300 V, and the oscillation is very small. The CPL output
current iCPL_o and output power PCPL also quickly reached the target value, which satisfies the CPL
characteristic. This shows that the results of Figure 9 is meaningful and sufficient.

Table 1. Circuit Parameters of the Three-phase VSR.

Symbol Quantity Value

Eabc Grid phase voltage 220 V
fg Grid frequency 50 Hz
fs PWM frequency 16 kHz
L Input inductance 3.2 mH

Vdcref Bus voltage 650 V
R Equivalent resistance 0.2 Ω
C Bus capacitance 100 µF

Kip Proportional gain of the current PI regulator 5
Kii Integral gain of the current PI regulator 100
Kvp Proportional gain of the voltage PI regulator 0.2
Kvi Integral gain of the voltage PI regulator 80
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5. Conclusions

In this paper, the problem that three-phase VSRs with CPL are unstable under large-signal
disturbance is discussed first. Then, based on the mixed potential theory, the stability boundary of VSR
with CPL when load power jumps (a typical large-signal disturbance) is analyzed. In order to improve
the large-signal stability of the system, a voltage loop control scheme based on ADRC is proposed.
It was shown that the scheme expands the power jump range of the VSR effectively, and improves
the disturbance rejection performance, so that it is more suitable for applications with heavy load
frequently switching. Finally, the validity of the control scheme is demonstrated by experiments.

Author Contributions: B.L. analyzed the method, designed the experiments and wrote the paper. H.B. proposed
the main idea. X.Z. was responsible for the theoretical derivation.

Funding: This study was supported by the National Natural Science Foundation of China (NSFC) (grants 51377036).

Acknowledgments: The authors would like to thank Yuxuan Zhu for her support and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix Mixed Potential Theory Stability Theorem 3

Define i =

[
iL1

iL2

]T

, v =

[
vC1
vC2

]T

, Aii(i) = ∂2A(i)
∂i2 , Bvv(v) = ∂2B(v)

∂v2 , Pv = ∂P(i,v)
∂v , Pi =

∂P(i,v)
∂i , L =

[
L1 0
0 L2

]
and C =

[
C1 0
0 C2

]
. Define µ1 is the minimum eigenvalue of matrix

L−1/2Aii(i)L−1/2, µ2 is the minimum eigenvalue of matrix C−1/2Bvv(v)C−1/2. If all the i and v in the
circuits meet

µ1 + µ2 > 0 (A1)

and when |v|+ |i| → ∞ , there is

P(i, v) =
µ1 − µ2

2
P(i, v) +

1
2

PT
i

(
L−1Pi

)
+

1
2

PT
v

(
C−1Pv

)
→ ∞ (A2)

Then when t→ ∞ , all variables of the circuit will approach the operating point, that is, no matter
how the voltage and current change, the system will eventually become stable.
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