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Abstract: This study presents an aerodynamic design optimization of a micro radial compressor
impeller on a turbocharger used in a 0.8 L two-cylinder gasoline engine. In the conventional design
optimization of the impeller, the hub and shroud curve of the main blade is commonly parameterized
with a beta distribution, and splitter blades are generally considered short versions of the full blade.
However, geometrical parameterizations in our study mainly focus on the beta distribution of a full
blade, and it is parameterized differently from the conventional way. Eight parameters are selected
as design variables for the beta distribution. To maximize the isentropic efficiency, design points
that are created by Design of Experiment (DOE) are evaluated through single-objective optimization
coupled with a non-parametric regression surrogate model. Furthermore, the splitter leading edge
location on the meridional plane is investigated to enhance the performance of the impeller after the
optimization process. The results show that total efficiency enhancement of approximately 2.2% is
achieved. Furthermore, the findings show that a full blade beta distribution and the splitter leading
edge location are sufficient parameters to optimize the impeller, and, with the proposed optimization,
splitter blades are no longer copies of the full blade for each application.
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1. Introduction

Centrifugal compressors are widely utilized in many engineering disciplines, such as
turbochargers, industrial gas and steam turbines, and small gas turbines in the aviation field. Due to
their higher compression ratio in a single stage with a low mass flow rate and lower installation
space requirements compared with axial compressors, centrifugal compressors have become more
attractive to researchers. Therefore, several optimization techniques have been suggested to improve
compressor design [1–6]. In particular, metamodel coupled optimization techniques incorporating
three-dimensional Reynold-average Naver-Stokes (RANS) analyses have been suggested by several
authors to enhance performance parameters such as efficiency, pressure ratio, and operation
range [7–11].

Geometry parameterization is a critical stage in the optimization process; design of compressors
greatly depends on the hub and shroud profiles of the blades (main and splitter), beta distribution,
and lean angle [12–14]. To define the centrifugal compressor, all the design variables can be taken
into account. In addition to the already mentioned design parameters, the leading edge location of
the splitter blade also can be considered to reduce flow blockage and to improve flow guidance [15].
However, including all the design parameters in an optimization process could lead to an unexpected
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result. Therefore, selecting the most influential design parameters could lead to better optimization
performance [16].

In the conventional design optimization process of the impeller, the hub and shroud profiles of
the main blade, which are defined by the Bezier curve method [17], are commonly examined, and
splitter blades are considered as short versions of the main blade to provide equal flow passage in the
impeller. In this study, however, we mainly focused on the full (main) blade itself by considering the
beta distribution and splitter blades as being fixed as given in the reference design. Eight parameters
(four for the hub, four for the shroud) were therefore selected to define the beta distribution of the
main blade. Furthermore, the leading edge location on the meridional plane of the splitter blade was
also added as an additional parameter. The hub and shroud locations (two parameters) of the leading
edge were selected to further find an optimal compressor [15].

In the current study, RANS analyses were first carried out for the design of the centrifugal
compressor, which was selected through one of the DOE [18] methods (optimal space filling (OSF))
based on the design parameters (for beta distribution) to acquire numerical results. Afterward,
single-objective (isentropic efficiency) optimization using a screening method coupled with a
non-parametric regression metamodel [19–21] was applied to find an optimal design. Following
this, optimization of the splitter location at the leading edge was investigated. To do so, the hub and
shroud locations of the splitter blade on the meridional contour were parameterized. The central
composite design (CCD) of the DOE method was generated accordingly. Similarly, for the main
blade, RANS was conducted and a screening optimization technique coupled with a non-parametric
regression surrogate model was utilized. Finally, the objective function (isentropic efficiency) was
investigated and compared with the reference design.

2. Geometry Parameterization

In the standard geometry definition of the radial impeller, the parameterized hub and shroud
curves coupled with beta distribution, which is the angle between the meridional plane (m) and blade
camber line (s) (Figure 1), are generally considered [16]. In this study, in particular, the beta distribution
itself on the main blade is parameterized and investigated with additional parameters of the splitter
leading edge to optimize the compressor aerodynamically.
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2.1. Parameterization of the Main Blade by the Beta Distribution

The beta angle distributions at the hub and shroud are defined by four-degree Bezier polynomials
with three internal points (Figure 2) as follows:

βh = βh,LE (1−m)4 + 4βh1m(1−m)3 + 6βh2 m2(1−m2) + 4βh3m3(1−m) + βh,TEm4 (1)

βs = βs,LE (1−m)4 + 4βs1m(1−m)3 + 6βs2 m2(1−m2) + 4βs3m3(1−m) + βs,TEm4 (2)

whereby m is the normalized meridional distance (length), which varies from 0 to 1 along the
meridional contour of the impeller from the leading edge (LE) to trailing edge (TE) [2], and βh,LE and
βh,TE are the blade angles at the hub leading edge and trailing edge, respectively; similarly, βs,LE and
βs,TE are the blade angles of the shroud curve. Figure 2 shows that the beta distribution are controlled
by five points for both the hub and shroud curves. However, instead of selecting all five points as
design parameters for the optimization process, some of them can be removed owing to creating
other design parameters in Figure 2, such as βh,max and ∆βh. These mentioned parameters are mostly
controlled by βh1, βh2, βh3 at the hub profile; likewise, βs1, βs2, βs3 control points direct to βs,max and
∆βs. Therefore we set four parameters (βh,LE, ∆βh, βh,max, and βh,TE) to define the hub profile and four
parameters (βs,LE, ∆βs, βs,max, βs,TE) to define the shroud profile.
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Figure 2. Beta distribution at hub and shroud curve.

Nevertheless, controlling the maximum point of the beta angle is limited by the meridional length.
On the hub curve, βh,max is fixed as 50% of the meridional length; correspondingly, βs,max is fixed as
75% of the meridional length. In addition, another limitation is considered for the lean angle (rake
angle) during the designing of the compressor (Figure 3). The maximum lean angle is set as 45◦ [16]
from axial owing to a manufacturing issue. To calculate the lean angle, first, the blade camber line
circumferential angle θ needs to be obtained by Equation (3).

rdθ = dm tan β (3)

Afterward, restriction on a lean angle is easily adapted using Equation (4):

(tan α)b2 = r(θTE, hub − θTE, shr) (4)

whereby θTE, hub and θTE, shr are the circumferential angles of the trailing edge of the hub and shroud
curves, respectively (determined in Figure 3 as orange and green markers), and b2 is the blade height
of trailing edge.
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2.2. Parameterization of Splitter Blade by LE Location

As the number of the blades in the centrifugal compressor is increased, it is expected that pressure
and efficiency will also increase. However, this results in increased fluid blockage and skin friction
in the impeller, thereby decreasing effciency. It is mainly losses and blockages that occur inlet of the
impeller [22]. To avoid this situation, instead of reducing the number of the blades, some blades are
shortened, which creates the same blockage characteristic observed in impellers with fewer blades but
yields a higher efficiency and pressure. Therefore, splitter blades are used as shortening blades that are
generally located in the middle of the blade passage. It is essential to select the best location of the
splitter leading edge to improve the impeller. Thus, in this study, we parameterized the leading edge
location of the splitter blade; the hub (dmhub) and shroud location (dmshr) with respect to the meridional
length (m%) were selected as design parameters to find the optimal leading edge position of the splitter
blade (Figure 4). This was investigated after the first optimization process of a beta distribution.

A general mathematical form of the meridional length (dm) is as follows:

dm =
√

dr2 + dz2 (5)

where r is the axial length and z is the radial length of the impeller (Figure 4).
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3. Numerical Analysis

3-D Modelling: Numerical analyses started with the 3-D design of the reference micro radial
compressor (Table 1), which is obtained through the DOE of the assigned parameters, which are
bounded as shown in Table 2. BladeGen [23] was used to design the impeller based on the selected
parameters. Following this, the computational grid and flow analysis were generated through
TurboGrid (for impeller)-Mesh(for volute) and ANSYS-CFX 18.2, respectively.

Table 1. Geometric specifications of original micro compressor.

Geometric Specifications Value

Impeller inlet hub diameter 9 mm
Impeller inlet tip diameter 24 mm
Impeller exit tip diameter 32.5 mm

Impeller exit width 2.4 mm
Number of blades main/splitter 5/5

Table 2. Bounded values of design parameters.

Design Parameters Boundary Values

βh,LE 55◦ ≤ βh,LE ≤ 65◦

∆βh 30◦ ≤ ∆βh ≤ 60◦

βh,max 70◦ ≤ βh,max ≤ 76◦

βh,TE 50◦ ≤ βh,TE ≤ 60◦

βs,LE 25◦ ≤ βs,LE ≤ 35◦

∆βs 0◦ ≤ ∆βs ≤ 5◦

βs,max 45◦ ≤ βs,max ≤ 55◦

βs,TE 35◦ ≤ βs,TE ≤ 50◦

dmhub 0% ≤ dmhub ≤ 55%
dmshr 0% ≤ dmshr ≤ 55%

Computational Grid: The discretization of the computational domain is an important issue owing
to its effect on the quality of the solution and also computational cost. Therefore, grid-independency
analyses were evaluated to reduce the computational time with a good quality of mesh. To do so,
five grid sizes with different size factors were investigated on the reference impeller, as the size factor
controls the resolution of mesh in the TurboGrid [24]. Table 3 shows that reducing the size factor
(from 1 to 0.7) provided a significant reduction on the computational time; however, it also resulted in
reduced isentropic efficiency (appx. 2%) and pressure ratio (by 0.03 points). As is commonly known, an
impeller mesh with less than 400,000 elements (Table 3—size factor 0.7) compromises the accuracy of
the computational fluid dynamics (CFD) simulation, and a higher mesh number yields a better-quality
solution. Therefore, higher size factor (1.1) was also investigated to achieve a more efficient result.
However, even though approximately 0.5% efficiency improvement was observed in comparison with
the standard size factor (1), the computational time was increased by up to 1 hour. As a result, a
standard size factor “1”, which provided a mesh with 952,786 elements for both the main and splitter
blades of the reference impeller that was provided by Keyyang Precision Co., was selected in the CFD
simulation. (Each design based on DOE had a different element size, even though the size factor
was “1”, owing to different geometries of the blade). An H/J/C/L grid hexahedral mesh type was
used for the inducer (inlet), vaneless diffuser, and other regions, while the O-grid mesh type was
used for the nearby LE and other blade surface regions [7,8] (Figure 5). Owing to periodicity, these
meshes were applied only for one blade passage consisting of one main blade and one splitter blade to
reduce computational time. Regarding volute, a tetrahedral mesh type with 3,100,000 elements was
utilized, and five layers inflation was generated near the wall to confirm the value of y+ was under 100
(Figure 6).
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Table 3. Mesh-Independency and computational time.

Size Factor in
Mesh Size Tab

Total Element
Size

Computational
Time Iteration Isentropic

Efficiency Pressure Ratio

1.1 1,272,054 364 min 670 74.64% 1.99
1 952,786 301 min 570 74.15% 1.98

0.9 680,744 282 min 635 73.58% 1.97
0.8 408,109 184 min 528 73.02% 1.96
0.7 300,372 176 min 571 72.8% 1.95
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Near-wall spacing to y+ for the impeller was calculated in the TurboGrid by setting the Reynolds
number of the flow. Equation (6) [24] describes the y+ with respect to the Reynolds number as follows:

∆y = L∆y+
√

80Rex
1/14 1

ReL
(6)

where L is the chord length of each blade and is approximated as the algebraic average in the TurboGrid,
∆y+ is the specified target of y+ value, Rex is the Reynolds number based on the distance along the
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chord (LE to TE), and ReL is the Reynolds number based on the chord length. Rex is estimated as
a specified value of ReL [24]. Therefore, it is enough to set ReL to the specified y+. In our study,
the Reynolds number of flow was set as 4.4 × 105 so that a shear-stress transport (SST) turbulence
model [25] was adopted near by the wall. Turbulence modelling is an important criterion to acquire
precise wall shear stresses. The SST model is a combination of and has smooth transition between the
k-ω and k-ε turbulence model; k-ω provides better compromises near the wall and k-ε gives a better
solution in the bulk domain [25]. When using the SST model in ANSYS-CFX, y+ should be under
300, so that the wall function approach is valid [26]. In this research, automatic wall function, which
automatically switches from the wall-functions to low-Re near wall formulation as the mesh is refined,
is used for the SST model [26].

Boundary Conditions and CFD Solver: To solve the fluid domain computationally, setting the proper
boundary conditions and solver types are critical concerns for an accurate result. At the inlet, air as
an ideal gas was considered as the working fluid. Total pressure and total temperature were selected
as 1.0 atm and 293.15 K, respectively. At the outlet, the designed mass flow rate was set as 0.05 kg/s,
and other boundaries were selected as No-slip Wall type, except for the blade shroud, which had a
counter-rotating wall. A stage interface was used between the rotor-stator, and a periodic interface
was selected for other connections. Tip clearance was set as 0.3 mm, and heat transfer was chosen as
total energy, which is appropriate for Mach numbers higher than 0.3 in the fluid domain (Figure 7).

In the CFD simulation, governing equations were discretized using the three-dimensional
finite-volume method; a high-resolution advection scheme is used to solve the equations more
accurately in this study. Furthermore, convergence criteria were determined by ensuring the
root-mean-square(RMS) values of mass and momentum were under 1 × 10−5 and imbalances in
mass, momentum, and energy were below 1 × 10−2. An auto time scale was used with a scale factor
of 10 to control the convergence of the solution. After approximately 600 iterations, the converged
solution was obtained. Simulations were performed by a PC with a 2.00 GHz Intel Xeon CPU, and
it took almost six hours to complete the simulation, depending on the geometry and convergence of
the solution.
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4. Surrogate Method with Single-Objective Optimization and Results

4.1. Optimization of Main Blade

Based on the assigned design parameters of the main blade, a hundred DOE points were generated
by the OSF sampling method, which distributes the design parameters equally throughout space and



Energies 2018, 11, 1827 8 of 18

provides better insight with a small number of points [27]. Then, CFD simulations were carried out
for one hundred cases, and the results were used to start the metamodel coupled single-objective
optimization. The metamodel provides a simplified algorithm to approximate the computationally
expensive objective function in a computationally cheaper way [28]. In this study, a metamodel with
non-parametric regression, which provides improved response quality and predictably high nonlinear
behavior of the objective functions with respect to the design parameters, was selected to create the
response surface [27] (Figure 8). The quality of the response surface based on simulation values was
investigated through goodness-of-fit. Owing to the well-fitted design points, as shown in Figure 8,
we can say that the response surface was constructed correctly. Furthermore, the effect of each design
parameter on the objective functions was examined by referring to the local sensitivity chart. Figure 9
shows that even though each parameter did not equally affect the output parameters, each of them
had reasonable effect on the efficiency.
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The following steps were implemented in the optimization method based on the created response
surface: A screening optimization method which is usually used for preliminary designs was selected
to maximize the isentropic efficiency [27,29]. According to this method, three candidate points are
obtained after generating 1000 samples. The candidate with the highest isentropic result was then
chosen for an optimal beta distribution (Table 4). To verify the result, a CFD simulation was performed
using the optimal beta angle in the next step. Figure 10 summarizes the full optimization procedure.
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Table 4. Optimal values of the beta distribution.

Design Parameters βh,LE ∆βh βh,max βh,TE βs,LE ∆βs βs,max βs,TE

Optimal Values 55.3◦ 53.8◦ 71.9◦ 54.6◦ 25.6◦ 2.3◦ 52.9◦ 45.9◦
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4.2. Optimization of Splitter Blade

In this optimization process, the reference impeller was considered as the previous beta
distribution optimized impeller. The optimization of the leading edge location of the splitter blade was
also performed as described in Figure 10. Nevertheless, the central composite design (CCD) sampling
method, which is a capable alternative to the second-order response surface method [27], with a
combination of some customized location points, was generated for the twenty-five design points in
the DOE step of the optimization flow chart. Then, CFD simulations were conducted for twenty-five
different impellers to obtain the value of the objective function. The non-parametric regression coupled
single-objective screening method was then used to find the optimal location at the leading edge.
The effect of each design parameter and quality of response surface was evaluated through local
sensitivity and the goodness-of-fit graph, respectively, at the metamodel stage (Figure 11). Among the
three candidates, the one that achieved the highest isentropic efficiency, with dmhub = 48% and
dmshr = 50%, was evaluated through CFD analysis at the final stage. Eventually, after two consecutive
optimization processes, the main blade and splitter blade were optimized on the compressor.
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5. Results and Discussion

5.1. Comparison of the Baseline (Base Main-Base Splitter) and Optimized Impeller (Optimized Main-Base Splitter)

The total-to-total isentropic efficiency of the optimal impeller was predicted as 76.23% at the
design point (0.05 kg/s) by the screening optimization method and was validated as 75.98% by a RANS
simulation. Therefore, we can say that the screening method provided close prediction in comparison
with CFD. Furthermore, the efficiency of the baseline impeller at the design point was calculated as
74.15% by RANS. Thus, isentropic efficiency was improved by 1.8% considering optimization of the
beta distribution on the main blade. The baseline and optimized impeller were compared at several
off-design points [7,8]. To do so, flow simulations were carried out at an additional five mass flow
rates for reference, and the optimized impeller and results are shown in Figure 12. According to the
result similar efficiency results were observed at 0.025 kg/s and 0.03 kg/s design points for both the
reference and optimal impeller. However, a higher efficiency was detected in the optimal impeller from
0.04 kg/s to 0.07 kg/s in comparison with the baseline impeller. Therefore, we can say that efficiency
was increased not only at the design point but also at the near-choke point, at which significant
improvement was observed. However, there was no improvement at the near-surge point.
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Total-to-total pressure ratio is another performance criterion of the compressor. The pressure
ratio was obtained through RANS simulation at the design point as 1.98 and 2.04 for the baseline and
optimal impellers, respectively. The pressure ratio was also compared to several off-design points for
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both the reference and optimal impellers. Figure 13 shows that the pressure ratio increased by 0.06
at the design point. However, the improvement occured not only at the design point, but also in the
wide operation range of the compressor (from 0.025 kg/s to 0.07 kg/s). Therefore, we can say that
the pressure ratio gradually increased from the near-surge point to near-choke point on the optimal
impeller in comparison with the baseline (Figure 13).
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The values of beta parameters on the baseline impeller were compared with those of the optimized
impeller (Table 5). Figure 14 indicates that there was no significant alteration on hub side except βh,LE.
However, the shroud side changed significantly in all points. We actually expected to reasonable
change both hub and shroud; however, as the efficiency of the reference impeller had already been
maximized by the Keyyang Precision Co., it was difficult to obtain an optimized impeller that differed
greatly from the reference impeller.

Table 5. Value of Beta distribution parameters of reference and optimized impellers.

Design Parameters Baseline Impeller Optimized Impeller

βh,LE 58◦ 55.3◦

∆βh 44◦ 53.8◦

βh,max 71◦ 71.9◦

βh,TE 54◦ 54.6◦

βs,LE 28◦ 25.6◦

∆βs 3◦ 2.3◦

βs,max 48◦ 52.9◦

βs,TE 42.5◦ 45.9◦
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Figure 14. Beta distribution comparison between the optimal and baseline impellers.

The Mach number distributions on the blade surface and passage could aid in understanding how
the efficiency of the compressor increased owing to optimization of the beta distribution. The lower
suction side Mach number distribution at the shroud leads to a reduction in shock losses, and shock
boundary layer interaction losses in the blade passage therefore improved efficiency, as expected [16].
In this study, remarkable changes were observed in the shroud rather than in the hub. Therefore,
the Mach number distribution near the shroud was examined. In Figures 15–17, the Mach number
distribution is showed near the hub (span 0.2), mid-span (span 0.5) and near the shroud (span 0.8)
for both the baseline and optimized impellers. It is evident that the Mach distributions for the base
and optimized impellers are identical near the hub and mid-span owing to no noticeable changes in
the hub. However, at span 0.8, even though shockwaves similarly appear at the leading edge of the
main blade, a lower Mach number become visible from the middle of the suction surface of the main
blade until the trailing edge. Furthermore, in the optimized blade, the flow enters more slowly into the
blade passage, which is near the pressure side of the main blade, than in the baseline impeller and
propagates in the passage with a lower Mach number.
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The efficiency improvement may also be determined by investigating the energy losses through
static entropy. Static entropy judges the energy losses quite well through vortices in the blade
passage [30]. In Figures 18–20, it is obvious that the static entropy distribution on the blade-to-blade
contour is similar at span 0.2 and span 0.5 for both the baseline and optimized impellers. However,
there is significant reduction in the static entropy at span 0.8. Specifically, in the blade passage between
the suction surface of main blade and pressure surface of the splitter blade, flow vortex disappears,
and lower static entropy is observed at the entrance of this blade passage. Furthermore, a reasonable
reduction in static entopy is observed on the suction surface of the splitter blade. As a result, efficiency
might increase.
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5.2. Comparison of the Baseline Splitter (Optimized Main-Base Splitter) and Optimized Splitter Impeller
(Optimized Main-Optimized Splitter)

The LE position of the splitter blades was investigated on the beta distribution optimized (main
blade optimized) impeller. As an optimization result, total-to-total isentropic efficiency was predicted
as 76.6%, and RANS verified this result as 76.4% by CFD simulation. The results showed that the
optimized LE location (dmhub = 48% and dmshr = 50%) was shifted downstream by almost 20% in
comparison with the baseline LE (dmhub = 30% and dmshr = 30%), and efficiency improvement was
observed as 0.4% at the design point. Furthermore, CFD simulations were carried out for several
off-design points to investigate the effect of splitter position on the wide operation range. Figure 21
indicates that the baseline splitter achieved a higher efficiency at lower mass-flow rates (near-surge
point). However, the optimized splitter achieved a higher efficiency at the design point and higher
mass flow rates (near-choke point). Therefore, we can conclude that the optimized splitter blade cannot
affect positively for wide operation range of compressor impeller.
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The total-to-total pressure ratio was also compared for both the baseline and optimized splitters at
the wide operation range. The pressure ratio was calculated at design point as 2.036 and 2.044 for the
baseline splitter and optimized splitter, respectively. These negligible changes in pressure ratio were
also observed at the wide operation range (Figure 22). Therefore, we can say there was no pressure
ratio improvement based on optimization of the splitter.
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The Mach number and blade loading were examined at near shroud (span 0.8) to find the reasons
for efficiency improvement based on the shortened splitter blade. Figure 23 shows that flow was
better captured with a lower Mach number by the shortened splitter blade than with the baseline one.
Therefore, reduction in flow blockage and skin friction could be expected. These reductions, therefore,
might have led to improved efficiency.

Furthermore, smoother flow was observed at the LE of the short splitter blade. Consequently,
better blade loading was created around that region (Figure 24). This better flow stream might have
affected the efficiency improvement.
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6. Conclusions

This research aimed to increase the total-to-total isentropic efficiency of a compressor with wide
operation range. Therefore, a single-objective optimization technique was performed by the screening
method coupled with the non-parametric regression metamodel through three-dimensional RANS
analyses. Initially, the full blade was optimized considering only beta distribution. Subsequently, the
LE location of splitter blade was investigated to find the optimal LE position. As a result, the following
were observed:
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1. After two consecutive optimization processes, a 2.2% efficiency improvement (1.8% based on
main blade optimization, 0.4% based on LE location optimization of splitter blade) was observed
at the design point as well as the near-choke point. However, similar improvements were not
seen in the near-surge region.

2. Beta distribution of the main blade and LE location of the splitter blade are adequate parameters
to achieve dramatic aerodynamic performance by the optimization process.

3. Significant aerodynamic improvement in the micro impeller after the main blade focused
optimization procedure indicated that splitter blades could be independently investigated; it was
not necessary to assume they were short versions of the main blade.

4. Considering different parameterization method on the beta distribution could reduce design
points on the fourth and higher-order Bezier curves in comparison to conventional method.
Therefore, optimization performance would be increased.

5. The LE location of the splitter blade is also an important parameter that enables researchers to
better capture the flow and provide better blade loading at the LE, even though it does not have
significant impact on the efficiency.
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