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Abstract

:

To improve the accuracy of the day-ahead load forecasting predictions of a single model, a novel modular parallel forecasting model with feature selection was proposed. First, load features were extracted from a historic load with a horizon from the previous 24 h to the previous 168 h considering the calendar feature. Second, a feature selection combined with a predictor process was carried out to select the optimal feature for building a reliable predictor with respect to each hour. The final modular model consisted of 24 predictors with a respective optimal feature subset for day-ahead load forecasting. New England and Singapore load data were used to evaluate the effectiveness of the proposed method. The results indicated that the accuracy of the proposed modular model was higher than that of the traditional method. Furthermore, conducting a feature selection step when building a predictor improved the accuracy of load forecasting.
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1. Introduction


The main idea of short-term load forecasting (STLF) is to predict future loads with horizons of a few hours to several days. Accurate STLF predictions play a vital role in electrical department load dispatch, unit commitment, and electricity market trading [1]. With the permeation of renewable resources in grids and the technological innovation of electric vehicles, load components become more complex and make STLF difficult; therefore, strict requirements of stability and accuracy are needed [2,3,4,5,6].



STLF is an old but worthy theme for research. General forecasting methods can be divided into two branches: the statistical method and the artificial intelligence method. Statistical methods such as regression analysis, exponential smoothing, Kalman filter, and autoregressive integrated moving average (ARIMA) are easy to apply but modeling is difficult for complex loads [7,8,9]. Artificial intelligence methods show better performance than statistical methods in load forecasting and include fuzzy logic, the artificial neural network (ANN), the support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF) [10,11,12,13,14,15,16,17]. The relationship of input and output is confirmed by a list of rules by fuzzy logic. However, the prior knowledge required to select the parameters in the membership function and the rules makes the modeling process complex [18]. The artificial neural network method is applied to the STLF of power systems owing to its self-learning ability and robustness to data noise. However, shortcomings such as the difficulty in determining initial network parameters and over-fitting still exist [19]. By adopting a structural risk minimization principle, the complexity and the learning ability of an SVM can be balanced. With low-dimension conditions and few samples, the SVM can maintain its generalization ability. Compared to the artificial neural network, the SVM has many advantages. The parameters of the SVM should be determined through a computational optimization by algorithm such as the genetic algorithm or the particle swarm optimization algorithm [20,21]. GPR is a kernel-function-based algorithm whose transcendental function is established in the form of probability distribution, and the posterior function can be acquired by Bayesian logic. The parameter of kernel function in GPR is obtained automatically in the process of training [22]. RF is a type of integrated machine-learning algorithm based on a decision tree. The main advantages of RF are immunity to noise and insensitivity to its parameters [23].



In addition to the forecasting method, input feature selection is a vital factor that influences the accuracy and efficiency of load forecasting. A model using a few features has difficulty analyzing the effect of external conditions on the load. However, as the complexity of a model increases, the accuracy and efficiency will be influenced. Feature selection is a process of selecting a subset of variables from an original high-dimensionality variable set that retains the most efficient variables while reducing the effects of the irrelevant variables [24]. Feature selection methods can be classified as wrapper, filter, and embedded [25]. In the wrapper method, the performance of a predictor is chosen as the criterion for feature selection. An exhaustive search is performed to identify the optimal feature subset from numerous combinations of features at which the predictor performs best. However, the wrapper method needs to evaluate 2N subsets which leads to an NP-hard problem with too many features [26]. Therefore, evolutionary algorithms such as the memetic algorithm [27], the genetic algorithm [28], and the particle swarm optimization algorithm [29] can reduce the complexity of computation. Filter methods, such as mutual information (MI) and RreliefF, are ranking methods that evaluate features by analyzing the relationship between the inputs and outputs and a feature score or weight is given to each feature for ranking. To acquire an optimal feature subset, the accuracy of the predictor is used as the criterion [30]. Compared to wrapper methods, filter methods do not rely on other learning algorithms and the computational cost is light [31,32,33]. Embedded methods, such as the classification and regression tree (CART) and RF, which combine feature selection with a learning algorithm, analyze and compute the importance value of features in a training process [25]. Experiments need to be performed according to a specific forecasting case that considers the advantages and disadvantages of different kinds of feature selection methods, the size of training sets, and the performance of a predictor to determine the most-accurate forecasting method.



Although the performance of a predictor can be provided by feature selection, it should be noted that the load time series presents a day-cycle characteristic, which means the load characteristics at the same time on different days are similar [34]. In addition, the load at different hours of a day is affected by consumption behavior and leads to significantly different feature responses. A single predictor with a feature selection for forecasting all future load periods may not reach the load requirement of different hours, and the accuracy of the total forecast result will decrease. Therefore, a modular model that consists of several single predictors used for forecasting the load of different hours is needed. The relation of the load at different hours to be forecast and a feature could be analyzed by a modular predictor with a feature selection for a specific hour of load, and thus the accuracy can be improved [35]. In addition, in electric power dispatching, for different electric power departments, the demand of the time of submission of the STLF result is different. Therefore, when constructing a candidate feature set for STLF, the time factor should be considered.



Considering the construction of a feature set, feature selection, and modeling objects, a novel modular parallel forecasting model with feature selection for day-ahead load forecasting was proposed. First, to meet the requirement of the dispatch department and electricity market, the load time series which records every hour according to different forecasting moments was reconstructed to a different load sub-time series. Second, the candidate feature set included 173 features extracted from historic load and calendar. Then, five feature selection methods—MI, conditional mutual information (CMI), RreliefF, CART, and RF—were used to analyze the importance between each feature and different prediction targets and to rank the features in descending order. Third, combined with various predictors, the sequential forward-selection algorithm and a decision criterion based on the mean absolute percentage error (MAPE) were utilized to obtain optimal feature subsets corresponding to different prediction targets. Finally, the optimal modular predictor including several optimal sub-predictors with optimal feature subsets for different forecasting periods was built. The optimal combination method was determined by comparing the forecast results. The proposed method was tested through a day-ahead load forecasting experiment using actual load data from New England and Singapore.




2. Feature Selection


The input feature (variable), as one of the key factors in a predictor build, has a significant influence on the accuracy of the predictor in day-ahead load forecasting. In this study, the filter method and embedded method were adopted for feature selection before building the predictor.



2.1. Filter Method of Feature Selection


The filter method is a feature ranking method that computes a feature’s numerical value to evaluate its importance. Therefore, the estimation of a feature is important to the feature selection result. MI, CMI, and RreliefF methods were used as filters in this study.



2.1.1. Mutual Information


The Mutual Information (MI) method measures the common information between two random variables. For two random variables X and Y, the MI between X and Y can be estimated as:


   I ( X , Y ) =   ∑  X , Y    P ( x , y ) log   P ( x , y )   P ( x ) P ( y )       



(1)




where P(x) and P(y) are the marginal density functions corresponding to X and Y, respectively. P(x,y) is the joint probability density function. In load forecasting, the feature is defined as X, the target variable is defined as Y, and I(X,Y) represents their strength of relevance. The larger I(X,Y) is, the more dependent X is. If I(X,Y) is zero, X and Y are independent. The MI method can measure the relevance between a feature and a target variable effectively; however, the redundancy is analyzed differently.




2.1.2. Conditional Mutual Information


The Conditional Mutual Information (CMI) method measures the relevance of two variables when the variable Z is known. In the feature selection of load forecasting, let us suppose the selected feature set is S and the CMI between feature Xi and target Y is defined as:


   I ( Y ;  X i  | S ) = I ( Y ; S |  X i  ) − I ( Y ; S )   



(2)




where I(Y;Xi|S) represents the new information that Xi supplies to S. The larger I(Y;Xi|S) is, the more information Xi can supply, and the less is the redundancy to S. Compared to the MI method, the redundancy among features can be reduced by CMI.




2.1.3. RreliefF


RreliefF is the extended version of relief for regression [36]. By evaluating the feature weight, the feature quality is measured. Relief works by randomly selecting an instance and searching the nearest neighbor from the same class and from a different class. The weight W[Xi] of feature Xi estimated by relief is an approximation of the difference of probabilities:


     W [  X i  ]   =   P ( d i f f ,   v a l u e   o f    X i  | n e a r e s t   i n s t .   f r o m   d i f f .   c l a s s )      −   P ( d i f f ,   v a l u e   o f    X i  | n e a r e s t   i n s t .   f r o m   s a m e .   c l a s s )     



(3)







For RreliefF, the probability of two instances belonging to different classes can be evaluated by their relative distances for classification. However, for STLF, the predicted value is continuous; therefore, Equation (3) should be reformulated. By using Bayes’ theorem, W[Xi] can be obtained as:


   W [  X i  ] =    P  d i f f C | d i f f  X i     P  d i f f  X i       P  d i f f C     −   ( 1 −  P  d i f f C | d i f f  X i    )  P  d i f  f   X i        1 −  P  d i f f C       



(4)









2.2. Embedded Method for Feature Selection


In the embedded method, feature selection is performed during the training process where the contribution of the feature combination is efficiently evaluated. The embedded method can be directly applied to STLF and can collaborate with other feature selection methods according to their estimated importance.



2.2.1. Classification and Regression Tree


The Classification and Regression Tree (CART) method uses a binary recursive partitioning algorithm [37]. By splitting the current samples into two sub-samples, a father node generates two child nodes. The final model of CART is a simple binary tree.



The generation of the CART can be divided into two steps:



Step one: first, the root node is split. A best feature Xbset chosen from the feature set serves as the criterion for node splitting. To select the best feature, the minimum variance of child nodes is the objective function. The variance of the child node of Xi is defined as:


   var ( q ) =     ∑   X i  ∈ q    (  y i  −   y ¯  q  )    2    



(5)




where     y ¯  q    is the average of observation values yi at node q. The importance of feature Xi according to the variance is defined as:


    V C  (  X i  ) =  1      ∑   X i  ∈ q    (  y i  −   y ¯  q  )    2      



(6)







Step two: for each child node, repeat Step one until the CART grows completely. The predictive model can be expressed as t(x, T), where T = (xi, yi), i = 1,2,…,n and x ∈ R is the training set. For STLF, the forecasting value of load   y ^   is obtained when inputting the new   x ^  .


    y ^  = t (  x ^  , T )   



(7)








2.2.2. Random Forest


Random Forest (RF) is a machine-learning algorithm that uses a combination of CART with a bootstrap sample for classification and regression [38]. For a training set T with n samples, the bootstrap sample means randomly selecting n samples from T replacements. The probability that each sample selected is 1/n, means one sample may appear several times. After a complete bootstrap sample, the samples that were not sampled form the out-of-bag (OOB) dataset. Different from CART, the feature for node splitting in RF is selected from m features which are chosen from the original feature set. The basis of selecting the best feature for node splitting is Equation (5). The predictive output of RF is obtained by averaging the results of the trees:


    y ^  =  1   N t      ∑  i = 1    N t     t (  x ^  ,  T i  )     



(8)




where Nt is the number of trees.



In addition, the OOB error and the importance of each feature are computed in the process of modeling. Each tree has an OOB dataset, and the OOB error is evaluated by predicting the OOB dataset using the tree model corresponding to the OOB dataset. The OOB error is defined as:


   e =  1   N t      ∑  i = 1    N t       (  y i  −   y ^  i  )  2      



(9)







A feature’s importance is estimated by permutating the feature and averaging the difference of OOB errors before and after the permutation of all trees. For instance, for the ith tree whose OOB data is OOBi and OOB error is    e i   , after permutation, the new OOB data will be   O O  B i ′    and the OOB error will be    e i ′   . The feature’s importance in this tree is computed as:


   V  I i  =  e i ′  −  e i    



(10)










3. The Short-Term Load Forecasting (STLF) Predictor


Selecting an appropriate predictor is key to improving the accuracy of STLF. Five state-of-the-art predictors were applied in this study: support vector regression (SVR), back-propagation neural network (BPNN), CART, GPR, and RF. The SVR, BPNN, and GPR are introduced briefly in this section. The detailed mathematical theories of these algorithms are shown in the references [39,40,41].



3.1. Support Vector Regression


By using the non-sensitive loss function, an Support Vector Regression (SVM), which is used only for classification, is extended for regression to be applied for load forecasting in power systems and is called support vector regression (SVR).



Given a training set T, the model for the load that decreases the difference between the predictive value f(x) and the true load y as much as possible is expected to be:


   f ( x ) =  ω T  x + b   



(11)







In SVR, the maximum difference that can be tolerated between f(x) and y is  ε . The mathematical model can be expressed as:


    {        max   α ,  α ∗     [  −  1 2    ∑  i = 1  n     ∑  j = 1  n   (  α i  −  α i ∗  ) (  α j  −  α j ∗  ) K (  x i  ,  x j  ) −   ∑  j = 1  n   (  α i  +  α i ∗  ) ε +   ∑  i = 1  n   (  α i  −  α i ∗  )  y i           ]        s . t .  {        ∑  i = 1  n   (  α i  −  α i ∗  ) = 0         0 ≤  α i  ,  α i ∗  ≤ C               



(12)




where C is the regularization parameter,   K (  x i  ,  x j  ) = φ (  x i  ) φ (  x j  )   is the kernel function, and    α i  ,  α i ∗    are Lagrange factors.



The radial basis function selected in this study is expressed as:


   K (  x i  ,  x j  ) = exp  (  −      ‖   x i  −  x j   ‖   2    2  σ 2     )    



(13)




where    σ 2    is the kernel width.



The SVR model is obtained by solving Equation (12):


   f ( x ) =   ∑  i = 1  n   (  α i  −  α i ∗  )   K (  x i  , x ) + b   



(14)




where b is the bias value.




3.2. Back-Propagation Neural Network


The Back-Propagation Neural Network (BPNN) is a type of artificial neural network consisting of an input layer, a hidden layer, and an outer layer trained by a back-propagation algorithm with the mean squared error (MSE) as the objective function. The main idea of the BPNN is to deliver the output-layer error from back to front by which the error of the hidden layer is computed. The learning process of BPNN is divided into two steps:



Step 1: The output of each neural unit in the input and hidden layers is estimated.



Step 2: By using the output error, the error of each neural unit which is used for updating the former layer weight is computed.



The objective function of the gradient minimization is based on:


    e f  =  1 2      ∑ i   (  y i  −   y ^  i  )    2    



(15)




where    y i    is the actual value of neural unit i and     y ^  i    is the predictive value. To compute the minimum value of    e f   , a modification value is needed to correct the weight. The modification value is defined as:


   Δ  w i    j   ( t )  = − η   ∂ e   ∂  w  i j     + α Δ  w  i j    (  t − 1  )  = − η   ∂ e   ∂ n e  t i      ∂ n e  t i    ∂  w  i j     + α Δ  w  i j    (  t − 1  )  = − η  δ i   O j  + α Δ  w  i j    (  t − 1  )    



(16)






   n e  t i  =   ∑ j    w  i j    O j      



(17)






    O i  =  1  1 +  e  − n e  t i        



(18)




where  η  is the learning rate, neti is the input of neuron i, Oi is the output of neuron i, and  α  is the momentum factor.



The modified weight is:


    w  i j    (  t + 1  )  =  w  i j    ( t )  + Δ  w  i j     



(19)







The final output     y ^  i    of neuron i can be estimated by the iteration of weight    w  i j     when meeting precision requirements.




3.3. Gaussian Process Regression (GPR)


Gaussian Process Regression (GPR) is a random process in which the random variables obey the Gaussian distribution and is used to establish the input and output maps. For STLF, the load data collected is polluted by noise. Assuming that the noise follows a normal distribution   ε ~ N  (  0 ,  σ n 2   )   , then the joint prior distribution of observation y and the predictive value    f ∗    are defined as:


    [     y       f ∗       ]  ~ N  (  0 ,  [      K  (  X , X  )  +  σ n 2   I n      K  (  X ,  x ∗   )        K  (   x ∗  , X  )      k  (   x ∗  ,  x ∗   )       ]   )    



(20)




where n is the number of training samples,   K  (  X , X  )    is the covariance matrix, and    I n    is the unit matrix.



The posterior distribution of    f ∗    is defined as:


    f ∗  | X , y ,  x ∗  ~ N  [    f ¯  ∗  , cov  (   f ∗   )   ]    



(21)




where     f ¯  ∗    is the mean value of    f ∗    and   cov  (   f ∗   )    is the variance of    f ∗   .



Then,     f ¯  ∗    and   cov  (   f ∗   )    can be computed as:


    {        f ¯  ∗  = K  (  x , X  )     [  K ( X , X ) +  σ n 2   I n   ]    − 1   y       cov  (   f ∗   )  = k  (   x ∗  ,  x ∗   )  − K  (   x ∗  , X  )  ×    [  K ( X , X ) +  σ n 2   I n   ]    − 1   K  (  X ,  x ∗   )          



(22)







The covariance function of GPR is the squared exponential function:


   k  (  x , x ′  )  =  σ f 2  e x p  [  −  1 2   (  x − x ′  )   M  − 1    (  x − x ′  )   ]    



(23)




where   θ =  {  M ,  σ f 2  ,  σ n 2   }    is a hyper-parameter that can be solved by the maximum likelihood method [41].





4. Data Analysis


4.1. Load Analysis


Affected by different factors, load sequence appears as a type of complicated non-linear time series. To construct a reasonable original feature set and achieve better forecasting for a region, the load characteristics and other factors should be analyzed.



Figure 1 shows the power load of New England in different time lengths. By observing Figure 1a,b, the load patterns from 2011 to 2013 are similar. Influenced by climate, load patterns differ by season. In Figure 1c, the load curves of two continuous weeks in four seasons are presented (the first day is Monday). It is easy to see that the weekday and weekend load demands differ, and the load demand presented a cycling mode with a period of seven days. The Tuesday load curves of the different seasons shown in Figure 1d shows that the Tuesday load pattern of different weeks is similar. The load increased rapidly from 6:00 am to 11:00 am, which corresponds to the beginning of work, and reached the first peak load. The second peak load occurred from 19:00 pm to 20:00 pm.



As analyzed above, the load characteristics can be summarized as



(1) The same-day load patterns are similar and represent the week-cycle of the load.



(2) The weekday and weekend load patterns were similar respectively and represent the day-cycle of the load.




4.2. Candidate Feature Set


An appropriate feature set plays a significant role in modeling an uncomplicated but outstanding predictor. However, a candidate feature set that contains sufficient information must be found to ensure that effective features can be selected by the feature selection method. The two main feature types are the endogenous predictor (load feature) and the exogenous predictor (calendar feature).



The time interval before the predictive moment before submission of the dispatch department’s forecasting result should be considered when extracting features. To ensure the universality of the original feature set, we used the interval time p = 24. A feature set consisting of 145 internal historic load features (from lag 24 to lag 168) from a one-week data window was chosen as a part of the candidate feature set. The maximum, minimum, and mean loads were also included. Except for the load feature, calendar features such as hour of day, day type, working day, and non-working day were also considered. The candidate feature set with 173 features was formed as shown in Table 1.



Feature explanation:



Endogenous predictor:



   F  L ( max , d − k )      is the maximum power load k days before, k = 2, 3, 4, 5, 6, 7.



   F  L ( min , d − k )      is the minimum power load k days before, k = 2, 3, 4, 5, 6, 7.



   F  L ( m ean , d − k )      is the average power load k days before, k = 2, 3, 4, 5, 6, 7.



   F  L ( t − i )     is the historic power load i hours before the forecasting hour t, and i = 24, 25, 26, …, 168.



Exogenous predictor:



   F D W    is the day of week, which is signed by 0 or 1 (W = 1, 2, 3, 4, 5, 6, 7 represents Monday to Sunday).



   F W    is work day or non-work day (0 is a work day and 1 is a non-work day).



   F  Hour      is the moment of hour (1 to 24).





5. Experimental Setup


5.1. Proposed STLF Process with Feature Selection


Figure 2 provides an overview of the proposed method which covers the construction of the feature set, the dataset separation, and the feature selection for the load with respect to the different hours and the modeling for different hours. Figure 2a shows the one-day structure of a sample. The inputs include 173 features, and the output is the predicted load.



The diagram of the proposed method is displayed in Figure 2b. The training set was separated into 24 training subsets corresponding to each hour. The features in each training subset were ranked in descending order according to their feature scores as computed by the feature selection method. Then, the optimal feature subset was selected using the predictor and the MAPE-based criteria. Finally, the modular predictor was constructed based on 24 predictors with the obtained optimal subsets.



The process of selecting the optimal feature subset in modeling is shown in Figure 2c. According to the ranked feature order, the predictor was used to test the feature subset consisting of the top i features, and the criteria based on the MAPE was used to select the optimal feature subset.




5.2. Dataset Split


The data used in this study were from New England [42] and Singapore [43]. The New England data were recorded every hour from 2011 to 2013 for a total of 26,304 data points. The Singapore data were recorded every half hour from 2014 to 2015 for a total number of 35,040 data points. To apply the proposed method, the hourly load of Singapore was extracted to form a new load time series. The data used for training and testing the predictor consisted of the feature set (173 features) and the predictive object (the load corresponding to different hours) as shown in Figure 2.



Each dataset was split into three parts: a training set (14,616 New England samples, 11,712 Singapore samples), a validation set (2928 New England samples, 2094 Singapore samples), and a test set (8760 New England samples, 2904 Singapore samples). The training and the validation sets were used to build the predictor and to select an optimal feature subset. The test set was used to examine the performance of the feature subset and the predictor. Detailed information about the datasets is shown in Table 2.




5.3. Evaluation Criterion


To evaluate the performance of the proposed method, three criteria, the MAPE, the mean absolute error (MAE), and the root mean square error (RMSE) were used as follows:


   M A P E =  1 n    ∑  i = 1  n    |     y i  −   y ^  i     y i     |    × 100 %   



(24)






   M A E =  1 n   |   y i  −   y ^  i   |    



(25)






  R M S E =    1 n     (   y i  −   y ^  i   )   2     



(26)




where    y i    is the actual load,     y ^  i    is the predictive load, and n is the number of predictive loads.





6. Results


The software used were MATLAB 2016b (Version 9.1.0.441655, Mathworks Inc., Natick, MA, USA) and Rx64 3.3.2 (Version 3.3.2, GUN Project, developed at Bell Laboratories). It is noted that the CART algorithm in the rpart package in R identifies part of the features whose total importance value is 100. The parameter of each predictor was set by:



BPNN: the number of neurons in the hidden layer was Nneu = 2 × Nfeature + 1, iteration T = 1000 [44].



SVR: the regularization parameter C = 1, the non-sensitive loss function ε = 0.1, the kernel width δ2 = 2 [15].



RF: m = Nfeature/3 and NTree = 500 [16,23].



CART: no pruning parameter was set because the tree grows completely.



GPR: the parameter of GPR was tuned by learning the training data.



6.1. Load Forecasting for New England


6.1.1. Feature Selection for Different-Hour Loads


Feature Score for Feature Analysis


Feature selection methods rate the importance of a feature by assigning a numerical value to represent the relation between the feature and the target. For example, the value of a feature computed by MI is called an MI value, while that computed by RF and CART is called its permutation importance. The feature score is used for easy description. Parts of normalized feature score curves computed by different feature selection methods are shown in Figure 3. The feature score curves of typical hours (hour 5, hour 6, hour 10, and hour 11 when the valley and peak loads appear) were chosen for analysis. The feature score curves that used the same feature score calculation method were different at various hours. For example, the MI curves were much different for hour 5, hour 6, hour 10, and hour 11, and the features with the highest scores were different from each other (marked by a red circle).



The feature score shows the importance between the feature and the target variable. When selecting a feature subset, the feature with the highest score should be retained and one with the lowest should be eliminated.



The top 10 features after ranking are shown in Table 3, where it is clear that the top 10 features for the same hour were similar. For example, for hour 5, the same top 10 features were selected by the various methods such as FL(t−24), FL(t−25), FL(t−26), and FL(t−27) and similar features such as FL(t−28), FL(t−29), FL(t−30), and FL(t−31). However, there was an obvious difference in the features of hour 5 and hour 6 which may have been caused by the different load characteristics shown in Figure 1d.



Therefore, a feature analysis for each hour is required to choose the best features for improving the accuracy of STLF.




Optimal Feature Subset Selection Process


According to the trend of feature score curves of diverse feature selection methods, the first 36 to 50 features are chosen as the optimal features for modeling [30]. By analyzing the autocorrelation of the lag variables, 50 features were selected for very-short-term load forecasting [41]. When selecting a feature subset, most studies did not give a specific threshold for selecting the optimal feature subset. In this study, the performance of features which ranked in descending order based on feature score were estimated by the MAPE which was chosen as the threshold for selecting the optimal feature subset by adding features one-by-one to the feature subset.



Figure 4 shows the MAPE curves of different feature selection methods and predictor-based feature selection processes. As shown in each subplot in Figure 4, the MAPE was reduced and reached a minimum value with an increase in the number of features. For example, the MAPE of MI for hour 5 and the MAPEs of BPNN, CART, GPR, RF, and SVR when using the top feature were 4.587%, 4.743%, 4.618%, 5.196%, and 4.718%, respectively. When 20 features were used, the MAPEs were reduced to 3.901%, 4.555%, 4.008%, 4.160%, and 3.831%, respectively. The MAPEs of different predictors decreased in different levels, indicating that the 20 features made a positive contribution to a better prediction model build. A similar conclusion can be summarized by analyzing other curves. The dimension of each optimal feature subset and its MAPE is marked by different colored circles corresponding to different predictors.



The following conclusions can be drawn from Table 3 and Figure 4:



(1) The feature permutation estimated by different feature selection methods varies.



(2) The dimension of the optimal feature subset and its MAPE depends on the predictor-based feature selection method.



(3) The optimal feature subset selected by the same predictor-based feature selection method for the predictive target of different hours is different.



Table 4 shows the MAPE and the dimension of the optimal feature subset corresponding to using MI as the feature selection method and RF as the prediction model. The Table shows that 1 to 6 am, the dimension of optimal feature subset is less than at 7 to 19 pm, as the same as the forecasting error. This is because people are less active at night and there are fewer factors affecting the load than during the day.



The MAPE and the dimension of optimal feature subset corresponding to 1:00 were carried out by different feature selection methods and forecasting methods shown in Table 5. The MAPEs are in 3% to 4% which means the performance of forecasters were similar after feature selection. By analysis of the feature dimension, we could find there is huge difference between the number of the feature of the optimal feature subset that selected by different feature selection methods, which caused by the different evaluation criterions.



The details of the dimension of the optimal feature subset and its MAPE are shown in Appendix A Table A1 to Table A2. Based on a longitudinal comparison, the dimension of optimal feature subsets selected by different feature selection methods with same-hour predictors were different. For instance, the horizon of the hour-2 MAPE calculated by various methods was from 3.107% to 4.050%. The combination RreliefF + SVR method had the smallest MAPE and lower feature subset dimension.



By the horizontal comparison, the dimension of optimal feature subsets selected by the same feature selection method with the same-hour predictor varied. For example, the horizon of dimension of the feature subset corresponding to different hours selected by the RreliefF + SVR method ranged from 13 to 109 and the MAPE range was 3.043% to 4.558%. In addition, the number of features for a night hour was less than the day hour, indicating that the day load components were more complex and more difficult to forecast.



In conclusion, the characteristic of the load to predict for different hours varies; therefore, the load needs a special feature set to build a predictor for special hours. The necessity of using one kind of structure of modular time-scale prediction and feature selection for the load of different hours was verified.





6.1.2. Forecasting Result of Method Combinations with Optimal Feature Subsets for New England Load Data


To test the performance of diverse method combinations with the optimal feature subset, we used a special week for our experiment.



The effect of temperature on the loads in summer and winter is large, and severe fluctuations make accurate forecasting difficult. Therefore, two weeks were chosen randomly from the summer and winter of 2013 for testing. The summer period was from 28 July to 3 August, and the winter period was from 22 to 28 December. As shown in Figure 5, the predictive load of each combined method was fit with the true summer load. The average error of the various methods are shown in Table 6. The top-three combined methods were CART + SVR, RreliefF + RF, and RreliefF + SVR, and the MAPEs were 3.634%, 3.710%, and 4.204%, respectively. The predictive load of each combined method in winter is shown in Figure 6, each of the predicted loads matched the actual load except for Tuesday and Wednesday which corresponded to Christmas day and the day before. As is shown in Table 7, the first three combined methods were RreliefF + SVR, CART + GPR, and CART + SVR, and the MAPEs were 4.207%, 4.754%, and 4.770%, respectively.



For the full verification of different method combinations, the entire test set was used for the contrast experiment. The results of different evaluated criteria for the proposed forecasting approach applied by 25 method combinations are presented for day-ahead load forecasting in Table 8. The forecast errors of the different methods varied. For example, the error of MI-based SVR was close to that of the GPR. The MAPEs for the MI-based SVR and GPR were 4.872% and 4.785%, the RMSEs were 1196.775 MW and 1141.372 MW, and the MAEs were 773.447 MW and 755.325 MW, respectively. Based on these observations, the forecast errors of the SVR with any feature selection method was below 5% (marked in bold) except with RF. In addition, the MAPEs of GPR with CMI and RF were below 5% as well.



By comparison of the results, the RreliefF + SVR method showed the best performance with the least MAPE.





6.2. Load Forecasting for Singapore


To further verify the applicability of the proposed approach, the load data from Singapore was used to perform the load forecasting experiments.



6.2.1. Feature Selection for Hour Loads


First, using the same method used in Section 6.1.1, the score of the feature corresponding to the predictive target at different hours was computed by different feature selection methods. Then, the optimal feature subset was obtained based on the MAPE of different subsets forecast by a predictor.



Table 9 shows the MAPE and the dimension of the optimal feature subset corresponding to using MI as the feature selection method and RF as the prediction model. The Table shows that 1 to 7 am, the dimension of optimal feature subset is less than at 8 to 19 pm, as the same as the forecasting error. Similar to the analysis result of 4, this is because people are less active at night and there are fewer factors affecting the load than during the day.



The MAPE and the dimension of optimal feature subset corresponding to 1:00 were carried out by different feature selection methods and forecasting methods shown in Table 10. The MAPEs are in 1.0% to 1.6% which means the performance of forecasters were similar after feature selection. While by analysis the feature dimension, we could find there is huge difference between the number of the feature of the optimal feature subset and that selected by different feature selection methods, which is caused by the different evaluation criteria.



As is shown in Appendix A Table A3 to Table A4, considering both the MAPEs and the dimensions, the optimal feature subsets were used for the load forecasting of the Singapore data. Similar to the conclusion summarized in Table 4, the different optimal feature subsets employed various feature selection methods and forecasters.




6.2.2. Forecasting Results of Method Combinations with Optimal Feature Subsets for Singapore Load Data


To test the performance of diverse combined methods with the optimal feature subset, the data of special weeks were used for the experiment.



Two weeks were chosen randomly from the summer and winter of 2015 for testing as is shown in Figure 7 and Figure 8. The summer week included the days from 21 to 27 June and the winter week included days from 8 to 14 November. The results are shown in Figure 7 and Table 11. It was found that the GPR, RF, and SVR methods showed a better ability to forecast the summer loads. The MAPEs of the combinations of MI + GPR, CMI + GPR, RF + GPR, RreliefF + GPR, CMI + SVR, and RreliefF + SVR were less than 1.5%. The outstanding combined method was RreliefF + GPR whose MAPE was 1.402%, MAE was 74.400 MW, and RMSE was 93.092 MW. By observing Figure 8 and Table 12, the RreliefF + GPR method showed the best performance with an MAPE of 3.567%, an MAE of 200.711 MW, and an RMSE of 224.017 MW. The predictive results of GPR and SVR with different feature selection methods were better than those of the CART, BPNN, and RF methods.



To further verify the superiority of the proposed method based on feature subsets of different hours, the entire test data from Singapore was used for validation. Detailed information about the test data is shown in Table 2 in Section 5.2. Table 13 shows the average predictive error of the different combined methods. It indicates that, based on MI, the CMI, RF, RreliefF, and SVR methods achieved the minimum errors with MAPEs of 1.471%, 1.440%, 1.387%, and 1.373%, respectively. Of all the combined methods, the RreliefF + SVR method worked best with an MAPE of 1.373%, an MAE of 75.118 MW, and an RMSE of 147.585 MW.



By analyzing the load forecasting results for Singapore, the combination of RreliefF and SVR was the most accurate method.





6.3. Comparison and Discussion


6.3.1. Comparison of Forecasting Methods without Feature Selection for New England and Singapore


In this section, a comparison of the proposed method and the traditional method (which only builds a single predictor for forecasting without feature selection) based on the data of New England and Singapore was carried out to verify the necessity of forecasting by a modular predictor.



The histograms of the error and the training time duration of different forecasting methods using New England data are displayed in Figure 9. As shown in Figure 9a, the MAPE of the SVR that adopted the proposed method was almost half that of the SVR using the traditional method. The MAPE of other predictors employing the proposed method without the feature selection step decreased in different levels compared with the predictors employing the traditional method. By analyzing the MAE in Figure 9b and the RMSE in Figure 9c, a similar conclusion can be obtained. In addition, it is noted that the model training time of the proposed method decreased because of the smaller modeling training set. Therefore, the decreased error and training time reflect the advantages of the proposed method and confirms the necessity of employing a modular predictor.



The values of MAPE, MAE, and RMSE and the training time of each forecaster with different approaches based on the data of New England and Singapore are shown in Table 14. The results for New England indicate that the MAPE values of CART, RF, SVR, BPNN, and GPR with the proposed method were reduced by 0.182%, 2.253%, 4.294%, 1.953%, and 3.775% compared with the CART, RF, SVR, BPNN, and GPR with the traditional approach, respectively. Similarly, the results for Singapore also verified the superior performance of the proposed method.




6.3.2. Comparison of Forecasting Approaches with Feature Selection for New England and Singapore


A comparison between the proposed method and traditional method with feature selection was performed on the New England and Singapore datasets. The results of the proposed method with feature selection are shown in Table 8 (New England) and Table 13 (Singapore), and the results of the traditional method with feature selection are shown in Table 15. The results indicate that the error was reduced in different levels by adopting the proposed method. The largest reduction in MAPE resulted from the CMI + SVR and CART + BPNN methods with MAPEs of 2.799% and 3.072%, respectively. The minimum error was achieved by the RreliefF + SVR combination with MAPEs of 4.746% (New England) and 1.373% (Singapore). In conclusion, the forecasted results obtained by the proposed method were better than those of the traditional method regardless of the predictor used. The most accurate combined method was RreliefF + SVR.






7. Conclusions


Accurate day-ahead load forecasting enhances the stability of grid operations and improves the social benefits of power systems. To improve the accuracy of day-ahead load forecasting, a novel modular parallel forecasting model with feature selection was proposed. Load data from New England and Singapore were used to test the proposed method. The experimental results show the advantages of the proposed method as follows:



(1) A modular predictor consisting of 24 independent predictors can efficiently capture load characteristics with respect to different hours and thereby avoid the inaccurate analysis of a single predictor.



(2) The feature selection adopted for the load corresponding to different hours analyzes the relevance between the feature and a special load. Each optimal feature subset of different dimension benefits the building of a more-accurate predictor.



(3) To serve the demand of dispatch departments of different regions, the interval time p = 24 was chosen for structuring a general candidate feature set that met the requirements of the power system.



Future work will concentrate on predictor parameter optimization and improve the efficiency of forecasting in the modeling process and applying the proposed method to probabilistic load forecasting.
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Table A1. Optimal feature subset construction of different hours from 1:00 to 12:00 with different methods for New England.






Table A1. Optimal feature subset construction of different hours from 1:00 to 12:00 with different methods for New England.





	
Time Point

	
1:00

	
2:00

	
3:00

	
4:00

	
5:00

	
6:00

	
7:00

	
8:00

	
9:00

	
10:00

	
11:00

	
12:00




	
Error

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD






	
MI

	
CART

	
3.741

	
7

	
3.769

	
2

	
4.071

	
12

	
4.083

	
84

	
4.472

	
40

	
5.140

	
6

	
4.949

	
164

	
4.748

	
164

	
4.627

	
164

	
4.765

	
15

	
4.978

	
21

	
5.529

	
130




	
RF

	
3.294

	
34

	
3.419

	
22

	
3.632

	
9

	
3.783

	
30

	
4.008

	
9

	
4.828

	
18

	
5.456

	
61

	
5.314

	
59

	
4.526

	
64

	
4.171

	
45

	
4.147

	
42

	
4.414

	
67




	
SVR

	
3.064

	
10

	
3.167

	
28

	
3.189

	
27

	
3.314

	
23

	
3.553

	
59

	
3.852

	
38

	
4.353

	
57

	
4.327

	
47

	
3.682

	
61

	
3.510

	
58

	
3.598

	
72

	
3.789

	
23




	
ANN

	
3.226

	
8

	
3.329

	
7

	
3.422

	
26

	
3.897

	
27

	
3.521

	
30

	
4.215

	
16

	
4.889

	
40

	
4.345

	
29

	
3.891

	
23

	
3.848

	
31

	
3.911

	
11

	
4.342

	
32




	
GPR

	
3.087

	
119

	
3.226

	
115

	
3.359

	
9

	
3.381

	
99

	
3.629

	
96

	
4.087

	
36

	
4.476

	
54

	
4.432

	
102

	
3.805

	
65

	
3.645

	
49

	
3.781

	
36

	
3.852

	
31




	
CMI

	
CART

	
3.729

	
2

	
3.769

	
2

	
4.058

	
7

	
4.192

	
16

	
4.296

	
8

	
5.242

	
6

	
4.926

	
99

	
4.523

	
27

	
5.076

	
15

	
4.523

	
27

	
5.076

	
15

	
5.413

	
106




	
RF

	
3.447

	
20

	
3.447

	
23

	
3.590

	
12

	
3.717

	
13

	
3.848

	
6

	
4.505

	
57

	
4.750

	
40

	
4.531

	
130

	
4.136

	
49

	
3.949

	
159

	
4.009

	
159

	
4.281

	
124




	
SVR

	
3.043

	
13

	
3.126

	
12

	
3.238

	
12

	
3.341

	
4

	
3.375

	
48

	
3.722

	
91

	
4.008

	
60

	
3.972

	
73

	
3.469

	
88

	
3.351

	
68

	
3.448

	
93

	
3.667

	
88




	
ANN

	
3.062

	
47

	
3.123

	
42

	
3.134

	
28

	
3.329

	
53

	
3.365

	
23

	
3.821

	
64

	
4.178

	
83

	
4.167

	
35

	
3.590

	
78

	
3.341

	
75

	
3.418

	
57

	
3.576

	
63




	
GPR

	
3.052

	
134

	
3.189

	
23

	
3.288

	
18

	
3.366

	
16

	
3.593

	
21

	
4.017

	
18

	
4.128

	
150

	
3.911

	
158

	
3.517

	
168

	
3.352

	
91

	
3.455

	
106

	
3.612

	
88




	
CART

	
CART

	
3.729

	
3

	
4.050

	
6

	
4.071

	
4

	
4.134

	
5

	
4.558

	
6

	
5.596

	
13

	
4.958

	
9

	
4.751

	
4

	
4.634

	
7

	
4.725

	
10

	
4.524

	
19

	
5.512

	
10




	
RF

	
3.422

	
11

	
3.511

	
5

	
3.589

	
6

	
3.615

	
12

	
3.963

	
7

	
4.511

	
32

	
4.512

	
20

	
4.367

	
11

	
4.062

	
22

	
3.989

	
18

	
4.151

	
21

	
4.546

	
11




	
SVR

	
3.068

	
11

	
3.167

	
11

	
3.548

	
11

	
3.433

	
12

	
3.798

	
14

	
3.846

	
33

	
3.804

	
20

	
3.870

	
18

	
3.524

	
22

	
3.629

	
19

	
3.633

	
20

	
4.260

	
18




	
ANN

	
3.270

	
9

	
3.301

	
11

	
3.670

	
5

	
3.483

	
12

	
3.836

	
13

	
4.012

	
15

	
3.974

	
19

	
4.081

	
16

	
3.921

	
17

	
3.775

	
17

	
3.806

	
18

	
4.397

	
11




	
GPR

	
3.245

	
8

	
3.280

	
11

	
3.526

	
11

	
3.458

	
8

	
3.858

	
8

	
3.911

	
33

	
3.753

	
20

	
3.872

	
18

	
3.707

	
22

	
3.659

	
19

	
3.732

	
16

	
4.360

	
11




	
RF

	
CART

	
3.741

	
7

	
3.769

	
2

	
4.059

	
9

	
4.128

	
44

	
4.552

	
9

	
5.084

	
7

	
4.807

	
52

	
4.656

	
5

	
4.337

	
6

	
4.464

	
10

	
4.147

	
3

	
4.155

	
6




	
RF

	
3.533

	
51

	
3.679

	
27

	
3.790

	
28

	
3.777

	
11

	
3.991

	
25

	
4.522

	
30

	
4.624

	
12

	
4.416

	
9

	
3.973

	
26

	
3.922

	
15

	
3.801

	
28

	
4.227

	
7




	
SVR

	
3.140

	
41

	
3.512

	
14

	
3.312

	
42

	
3.469

	
11

	
3.5518

	
26

	
3.6554

	
19

	
3.9069

	
27

	
3.8594

	
46

	
3.3732

	
31

	
3.3966

	
44

	
3.376

	
43

	
3.7329

	
51




	
ANN

	
3.069

	
18

	
3.255

	
20

	
3.097

	
21

	
3.469

	
17

	
3.486

	
16

	
3.816

	
27

	
4.262

	
11

	
4.278

	
13

	
3.682

	
11

	
3.542

	
19

	
3.424

	
31

	
3.923

	
14




	
GPR

	
3.099

	
81

	
3.239

	
80

	
3.338

	
64

	
3.447

	
150

	
3.632

	
16

	
3.679

	
19

	
4.208

	
15

	
3.964

	
56

	
3.522

	
86

	
3.359

	
63

	
3.484

	
43

	
3.787

	
37




	
RreliefF

	
CART

	
3.741

	
10

	
3.769

	
2

	
4.059

	
8

	
4.156

	
42

	
4.475

	
20

	
4.917

	
4

	
4.729

	
38

	
4.646

	
15

	
4.443

	
7

	
4.030

	
15

	
4.417

	
4

	
4.448

	
20




	
RF

	
3.310

	
26

	
3.390

	
20

	
3.466

	
17

	
3.560

	
19

	
3.528

	
14

	
3.764

	
14

	
4.534

	
30

	
4.294

	
23

	
3.643

	
10

	
3.514

	
17

	
3.680

	
22

	
4.006

	
18




	
SVR

	
3.043

	
18

	
3.107

	
19

	
3.233

	
19

	
3.351

	
30

	
3.434

	
16

	
3.928

	
14

	
3.716

	
34

	
3.648

	
21

	
3.320

	
34

	
3.205

	
34

	
3.407

	
66

	
3.594

	
53




	
ANN

	
3.269

	
9

	
3.306

	
14

	
3.338

	
13

	
3.368

	
17

	
3.445

	
16

	
3.555

	
15

	
4.193

	
35

	
3.760

	
23

	
3.399

	
19

	
3.329

	
20

	
3.427

	
25

	
3.820

	
24




	
GPR

	
3.019

	
134

	
3.156

	
152

	
3.329

	
32

	
3.346

	
117

	
3.460

	
16

	
3.578

	
29

	
3.811

	
34

	
3.715

	
24

	
3.414

	
22

	
3.333

	
28

	
3.358

	
81

	
3.807

	
29
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Table A2. Optimal feature subset construction of different hours from 13:00 to 24:00 with different methods for New England.
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Time Point

	
13:00

	
14:00

	
15:00

	
16:00

	
17:00

	
18:00

	
19:00

	
20:00

	
21:00

	
22:00

	
23:00

	
24:00




	
Error

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPEE

	
FD

	
MAPEE

	
FD

	
MAPEE

	
FD

	
MAPE

	
FD

	
MAPEE

	
FD






	
MI

	
CART

	
4.654

	
164

	
5.143

	
164

	
5.764

	
164

	
5.406

	
164

	
6.170

	
41

	
6.313

	
6

	
6.066

	
12

	
5.388

	
9

	
5.166

	
14

	
5.105

	
12

	
5.198

	
6

	
5.086

	
8




	
RF

	
4.663

	
41

	
4.926

	
33

	
5.190

	
38

	
5.351

	
46

	
5.547

	
31

	
5.358

	
98

	
5.117

	
136

	
4.506

	
23

	
4.376

	
28

	
4.779

	
9

	
4.794

	
41

	
4.847

	
72




	
SVR

	
3.927

	
23

	
4.263

	
35

	
4.456

	
49

	
4.518

	
82

	
4.645

	
68

	
4.516

	
69

	
4.418

	
69

	
4.165

	
21

	
3.867

	
24

	
3.901

	
73

	
3.860

	
154

	
4.039

	
115




	
ANN

	
4.042

	
19

	
4.362

	
14

	
4.626

	
35

	
4.799

	
29

	
4.746

	
37

	
5.262

	
46

	
4.849

	
33

	
4.371

	
15

	
3.919

	
27

	
4.599

	
42

	
4.261

	
27

	
4.203

	
35




	
GPR

	
3.974

	
24

	
4.177

	
36

	
4.524

	
29

	
4.689

	
28

	
4.616

	
32

	
4.823

	
21

	
4.770

	
32

	
4.272

	
24

	
4.010

	
26

	
4.157

	
24

	
4.291

	
22

	
4.446

	
18




	
CMI

	
CART

	
5.459

	
14

	
5.045

	
53

	
5.519

	
24

	
5.406

	
91

	
5.985

	
18

	
6.382

	
5

	
5.973

	
5

	
5.299

	
19

	
5.134

	
20

	
5.178

	
19

	
5.164

	
8

	
4.994

	
14




	
RF

	
4.445

	
146

	
4.608

	
151

	
4.843

	
150

	
5.064

	
162

	
5.326

	
164

	
5.352

	
157

	
5.136

	
126

	
4.496

	
136

	
4.394

	
126

	
4.176

	
145

	
4.731

	
153

	
4.804

	
133




	
SVR

	
3.923

	
107

	
4.102

	
97

	
4.339

	
99

	
4.539

	
86

	
4.501

	
105

	
4.540

	
70

	
4.398

	
87

	
3.944

	
113

	
3.717

	
90

	
3.763

	
94

	
3.895

	
93

	
3.972

	
111




	
ANN

	
3.846

	
64

	
3.827

	
53

	
4.304

	
54

	
4.452

	
49

	
4.698

	
86

	
4.500

	
72

	
4.416

	
94

	
4.273

	
156

	
3.780

	
32

	
3.943

	
76

	
3.971

	
78

	
3.902

	
117




	
GPR

	
3.916

	
105

	
4.080

	
40

	
4.474

	
53

	
4.686

	
94

	
4.469

	
172

	
4.455

	
168

	
4.709

	
76

	
4.508

	
16

	
4.116

	
39

	
4.075

	
49

	
4.304

	
103

	
4.432

	
118




	
CART

	
CART

	
4.655

	
11

	
5.141

	
8

	
5.768

	
12

	
5.412

	
9

	
6.320

	
11

	
6.955

	
8

	
6.393

	
9

	
5.978

	
13

	
5.324

	
11

	
5.742

	
9

	
5.214

	
6

	
5.182

	
7




	
RF

	
4.587

	
19

	
4.846

	
15

	
5.113

	
28

	
5.409

	
22

	
5.390

	
25

	
5.720

	
22

	
5.444

	
17

	
4.634

	
15

	
4.665

	
24

	
5.001

	
29

	
4.700

	
7

	
4.806

	
7




	
SVR

	
4.105

	
15

	
4.371

	
21

	
4.393

	
28

	
4.882

	
22

	
4.804

	
24

	
5.515

	
22

	
4.804

	
26

	
4.236

	
30

	
4.099

	
24

	
4.256

	
21

	
4.228

	
18

	
4.168

	
20




	
ANN

	
4.205

	
15

	
4.713

	
18

	
4.666

	
18

	
4.931

	
20

	
5.248

	
16

	
5.205

	
22

	
4.986

	
26

	
4.302

	
26

	
4.248

	
24

	
4.441

	
18

	
4.152

	
17

	
3.988

	
22




	
GPR

	
4.174

	
13

	
4.507

	
21

	
4.573

	
28

	
5.109

	
22

	
5.054

	
23

	
5.124

	
21

	
4.864

	
28

	
4.424

	
32

	
4.304

	
21

	
4.545

	
18

	
4.405

	
17

	
4.321

	
21




	
RF

	
CART

	
4.448

	
12

	
5.022

	
23

	
5.476

	
6

	
5.350

	
7

	
5.678

	
5

	
6.129

	
5

	
6.040

	
22

	
5.273

	
11

	
4.820

	
26

	
5.175

	
98

	
4.980

	
5

	
5.080

	
45




	
RF

	
4.445

	
7

	
4.617

	
55

	
4.845

	
109

	
5.045

	
52

	
5.226

	
73

	
5.296

	
70

	
5.101

	
85

	
4.484

	
68

	
4.450

	
76

	
4.780

	
75

	
4.711

	
64

	
4.810

	
50




	
SVR

	
3.971

	
100

	
3.983

	
35

	
4.122

	
82

	
4.635

	
94

	
4.556

	
32

	
4.589

	
40

	
4.725

	
101

	
4.089

	
37

	
7.848

	
25

	
3.847

	
97

	
3.936

	
90

	
3.996

	
141




	
ANN

	
4.101

	
17

	
4.638

	
16

	
4.585

	
32

	
4.882

	
13

	
5.205

	
17

	
5.275

	
11

	
5.227

	
11

	
4.413

	
17

	
3.890

	
21

	
4.411

	
10

	
4.328

	
23

	
4.336

	
19




	
GPR

	
4.069

	
48

	
4.091

	
74

	
4.515

	
42

	
4.662

	
41

	
4.912

	
32

	
4.577

	
159

	
4.886

	
56

	
4.491

	
43

	
4.026

	
70

	
4.182

	
81

	
4.367

	
79

	
4.497

	
18




	
RreliefF

	
CART

	
4.574

	
20

	
4.949

	
21

	
5.529

	
29

	
5.405

	
108

	
5.817

	
22

	
6.238

	
23

	
5.860

	
17

	
5.321

	
24

	
4.796

	
37

	
4.721

	
23

	
5.005

	
9

	
4.986

	
20




	
RF

	
4.365

	
17

	
4.716

	
20

	
4.908

	
74

	
5.065

	
136

	
5.293

	
15

	
5.166

	
16

	
5.029

	
81

	
4.403

	
109

	
4.368

	
140

	
4.613

	
14

	
4.612

	
20

	
4.619

	
16




	
SVR

	
3.693

	
65

	
3.876

	
66

	
4.104

	
52

	
4.426

	
49

	
4.496

	
67

	
4.528

	
41

	
4.558

	
68

	
3.983

	
52

	
3.809

	
44

	
3.803

	
109

	
4.008

	
43

	
4.056

	
38




	
ANN

	
4.089

	
19

	
4.246

	
26

	
4.644

	
20

	
4.902

	
39

	
5.000

	
25

	
5.216

	
16

	
5.161

	
31

	
4.633

	
30

	
4.379

	
23

	
4.218

	
14

	
4.566

	
24

	
4.291

	
21




	
GPR

	
3.980

	
40

	
4.161

	
34

	
4.411

	
33

	
4.632

	
36

	
4.748

	
45

	
4.472

	
160

	
4.391

	
170

	
4.301

	
45

	
3.976

	
43

	
4.284

	
34

	
4.001

	
172

	
4.324

	
16








Remark. The FD in Table 4 means feature dimension.
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Table A3. Optimal feature subset construction of different hours from 1:00 to 12:00 with different methods for Singapore.






Table A3. Optimal feature subset construction of different hours from 1:00 to 12:00 with different methods for Singapore.





	
Time Point

	
1:00

	
2:00

	
3:00

	
4:00

	
5:00

	
6:00

	
7:00

	
8:00

	
9:00

	
10:00

	
11:00

	
12:00




	
Error

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD






	
MI

	
CART

	
1.595

	
59

	
1.479

	
57

	
1.402

	
4

	
1.482

	
10

	
1.535

	
6

	
1.624

	
108

	
2.041

	
29

	
2.727

	
62

	
2.515

	
48

	
2.526

	
43

	
2.615

	
59

	
2.451

	
58




	
RF

	
1.349

	
72

	
1.138

	
64

	
1.112

	
61

	
1.137

	
66

	
1.201

	
79

	
1.453

	
75

	
1.836

	
57

	
2.229

	
55

	
2.389

	
55

	
2.359

	
52

	
2.379

	
59

	
2.332

	
58




	
SVR

	
1.225

	
74

	
1.057

	
61

	
1.056

	
58

	
1.025

	
57

	
1.114

	
59

	
1.377

	
90

	
1.401

	
57

	
1.565

	
43

	
1.749

	
44

	
1.723

	
55

	
1.796

	
58

	
1.738

	
57




	
ANN

	
1.349

	
47

	
1.179

	
56

	
1.133

	
10

	
1.276

	
59

	
1.262

	
76

	
1.453

	
33

	
1.558

	
30

	
1.926

	
48

	
2.323

	
58

	
2.319

	
53

	
2.321

	
48

	
2.424

	
21




	
GPR

	
1.170

	
75

	
0.955

	
109

	
0.904

	
92

	
0.963

	
86

	
1.025

	
110

	
1.281

	
101

	
1.452

	
94

	
1.859

	
110

	
2.021

	
113

	
2.039

	
41

	
1.952

	
98

	
1.876

	
99




	
CMI

	
CART

	
1.528

	
11

	
1.470

	
4

	
1.386

	
4

	
1.396

	
9

	
1.475

	
4

	
1.632

	
62

	
1.998

	
72

	
2.752

	
108

	
2.709

	
135

	
2.534

	
124

	
2.531

	
114

	
2.485

	
125




	
RF

	
1.266

	
31

	
1.093

	
15

	
1.305

	
33

	
1.052

	
30

	
1.133

	
50

	
1.416

	
44

	
1.847

	
23

	
2.191

	
49

	
2.333

	
42

	
2.345

	
38

	
2.353

	
43

	
2.237

	
43




	
SVR

	
1.209

	
43

	
1.027

	
28

	
0.950

	
33

	
1.082

	
35

	
1.123

	
55

	
1.316

	
65

	
1.387

	
39

	
1.508

	
34

	
1.651

	
52

	
1.732

	
33

	
1.692

	
44

	
1.631

	
44




	
ANN

	
1.239

	
17

	
1.062

	
21

	
1.034

	
28

	
1.072

	
31

	
1.149

	
29

	
1.312

	
27

	
1.542

	
23

	
1.979

	
31

	
2.202

	
23

	
2.107

	
28

	
2.037

	
24

	
2.129

	
47




	
GPR

	
1.148

	
122

	
0.930

	
138

	
0.882

	
163

	
0.900

	
167

	
1.037

	
73

	
1.090

	
122

	
1.470

	
27

	
1.879

	
36

	
2.054

	
43

	
2.012

	
48

	
1.925

	
135

	
1.892

	
50




	
CART

	
CART

	
1.559

	
14

	
1.528

	
14

	
1.403

	
3

	
1.482

	
12

	
1.608

	
2

	
1.675

	
143

	
2.323

	
50

	
2.718

	
7

	
2.950

	
18

	
2.875

	
19

	
2.593

	
102

	
2.478

	
102




	
RF

	
1.303

	
26

	
1.113

	
12

	
1.100

	
21

	
1.105

	
32

	
1.214

	
25

	
1.431

	
38

	
1.917

	
44

	
2.289

	
19

	
2.417

	
45

	
2.458

	
45

	
2.544

	
56

	
2.477

	
19




	
SVR

	
1.103

	
56

	
0.995

	
36

	
1.031

	
17

	
1.001

	
73

	
1.038

	
22

	
1.138

	
32

	
1.575

	
83

	
1.653

	
25

	
1.803

	
73

	
1.863

	
46

	
1.916

	
53

	
1.845

	
53




	
ANN

	
1.210

	
16

	
1.061

	
21

	
1.043

	
15

	
1.037

	
24

	
1.122

	
32

	
1.252

	
31

	
1.876

	
22

	
1.981

	
27

	
2.082

	
23

	
2.158

	
19

	
2.254

	
28

	
2.274

	
13




	
GPR

	
1.169

	
60

	
1.015

	
74

	
0.902

	
120

	
0.918

	
115

	
1.066

	
25

	
1.216

	
33

	
1.415

	
173

	
1.813

	
172

	
1.959

	
172

	
1.903

	
172

	
1.893

	
172

	
1.851

	
173




	
RF

	
CART

	
1.594

	
72

	
1.583

	
19

	
1.425

	
2

	
1.525

	
11

	
1.577

	
9

	
1.672

	
14

	
2.147

	
8

	
2.456

	
4

	
2.754

	
10

	
2.710

	
21

	
2.615

	
42

	
2.488

	
29




	
RF

	
1.371

	
5

	
1.089

	
24

	
1.081

	
22

	
1.105

	
31

	
1.190

	
35

	
1.381

	
21

	
1.608

	
10

	
2.042

	
9

	
2.336

	
10

	
2.239

	
18

	
2.334

	
41

	
2.238

	
19




	
SVR

	
1.186

	
58

	
0.993

	
13

	
0.904

	
30

	
0.972

	
38

	
1.035

	
27

	
1.080

	
39

	
1.370

	
20

	
1.483

	
27

	
1.617

	
30

	
1.588

	
29

	
1.682

	
30

	
1.649

	
23




	
ANN

	
1.242

	
17

	
1.016

	
18

	
0.926

	
28

	
1.014

	
44

	
1.033

	
24

	
1.149

	
23

	
1.461

	
11

	
1.689

	
14

	
1.945

	
25

	
1.930

	
31

	
1.953

	
9

	
1.952

	
15




	
GPR

	
1.163

	
38

	
0.949

	
76

	
0.897

	
76

	
0.897

	
60

	
0.946

	
105

	
1.115

	
39

	
1.427

	
27

	
1.835

	
30

	
1.982

	
31

	
1.966

	
26

	
1.952

	
35

	
1.882

	
31




	
RreliefF

	
CART

	
1.530

	
7

	
1.506

	
9

	
1.283

	
10

	
1.395

	
8

	
1.513

	
9

	
1.574

	
13

	
1.754

	
24

	
2.579

	
38

	
2.579

	
38

	
2.464

	
40

	
2.412

	
43

	
2.295

	
42




	
RF

	
1.300

	
10

	
1.083

	
18

	
1.042

	
38

	
1.070

	
31

	
1.178

	
12

	
1.173

	
14

	
1.448

	
18

	
2.109

	
19

	
2.248

	
57

	
2.216

	
59

	
2.204

	
64

	
2.191

	
9




	
SVR

	
1.197

	
21

	
1.019

	
13

	
1.003

	
14

	
1.047

	
14

	
1.098

	
59

	
1.080

	
26

	
1.343

	
38

	
1.464

	
24

	
1.620

	
42

	
1.671

	
43

	
1.679

	
42

	
1.678

	
34




	
ANN

	
1.242

	
17

	
1.016

	
18

	
0.926

	
28

	
1.014

	
44

	
1.033

	
24

	
1.149

	
23

	
1.645

	
11

	
1.689

	
14

	
1.945

	
25

	
1.930

	
31

	
1.953

	
9

	
1.952

	
15




	
GPR

	
1.159

	
95

	
0.950

	
94

	
0.910

	
95

	
0.925

	
96

	
0.989

	
88

	
1.128

	
16

	
1.442

	
22

	
1.780

	
18

	
1.886

	
34

	
1.901

	
37

	
1.876

	
41

	
1.778

	
42
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Table A4. Optimal feature subset construction of different hours from 13:00 to 24:00 with different methods for Singapore.






Table A4. Optimal feature subset construction of different hours from 13:00 to 24:00 with different methods for Singapore.





	
Time Point

	
13:00

	
14:00

	
15:00

	
16:00

	
17:00

	
18:00

	
19:00

	
20:00

	
21:00

	
22:00

	
23:00

	
24:00




	
Error

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD






	
MI

	
CART

	
2.501

	
75

	
2.522

	
37

	
2.700

	
43

	
2.637

	
45

	
2.619

	
58

	
2.398

	
51

	
2.113

	
87

	
1.884

	
49

	
1.790

	
64

	
1.588

	
90

	
1.614

	
66

	
1.820

	
13




	
RF

	
2.353

	
49

	
2.376

	
42

	
2.387

	
48

	
2.486

	
44

	
2.534

	
57

	
2.258

	
62

	
2.049

	
49

	
1.793

	
43

	
1.632

	
64

	
1.526

	
59

	
1.485

	
45

	
1.529

	
55




	
SVR

	
1.795

	
49

	
1.850

	
42

	
1.878

	
43

	
1.898

	
43

	
2.010

	
54

	
1.883

	
54

	
1.629

	
111

	
1.469

	
39

	
1.317

	
94

	
1.372

	
40

	
1.337

	
41

	
1.301

	
75




	
ANN

	
2.280

	
25

	
2.362

	
36

	
2.466

	
23

	
2.334

	
32

	
2.259

	
44

	
2.324

	
29

	
1.936

	
45

	
1.797

	
52

	
1.682

	
65

	
1.482

	
41

	
1.450

	
38

	
1.390

	
33




	
GPR

	
1.912

	
95

	
2.036

	
40

	
2.032

	
43

	
2.098

	
43

	
2.095

	
102

	
1.821

	
170

	
1.752

	
101

	
1.554

	
44

	
1.357

	
94

	
1.304

	
91

	
1.283

	
102

	
1.253

	
119




	
CMI

	
CART

	
2.368

	
111

	
2.749

	
126

	
2.517

	
127

	
2.665

	
113

	
2.481

	
125

	
2.423

	
110

	
1.983

	
115

	
1.884

	
139

	
1.779

	
66

	
1.587

	
121

	
1.580

	
7

	
1.667

	
5




	
RF

	
2.263

	
37

	
2.307

	
36

	
2.309

	
36

	
2.349

	
28

	
2.342

	
35

	
2.160

	
31

	
1.933

	
40

	
1.672

	
41

	
1.593

	
30

	
1.466

	
29

	
1.456

	
8

	
1.451

	
53




	
SVR

	
1.702

	
49

	
1.768

	
34

	
1.792

	
45

	
1.914

	
42

	
1.937

	
41

	
1.806

	
33

	
1.646

	
32

	
1.442

	
27

	
1.359

	
33

	
1.301

	
41

	
1.324

	
54

	
1.352

	
37




	
ANN

	
2.232

	
27

	
2.125

	
30

	
2.163

	
43

	
2.300

	
36

	
2.381

	
23

	
2.218

	
39

	
1.761

	
31

	
1.851

	
21

	
1.488

	
15

	
1.405

	
34

	
1.358

	
22

	
1.377

	
25




	
GPR

	
1.913

	
48

	
1.978

	
45

	
1.994

	
44

	
2.055

	
40

	
2.054

	
102

	
1.884

	
128

	
1.667

	
171

	
1.448

	
172

	
1.296

	
172

	
1.244

	
171

	
1.239

	
125

	
1.282

	
92




	
CART

	
CART

	
2.486

	
103

	
2.557

	
4

	
2.630

	
4

	
2.734

	
4

	
2.626

	
151

	
2.398

	
104

	
2.132

	
15

	
1.940

	
20

	
1.911

	
86

	
1.591

	
58

	
1.638

	
156

	
1.734

	
7




	
RF

	
2.414

	
22

	
2.463

	
18

	
2.493

	
46

	
2.622

	
7

	
2.653

	
8

	
2.352

	
17

	
1.909

	
20

	
1.903

	
27

	
1.760

	
24

	
1.448

	
25

	
1.499

	
23

	
1.503

	
45




	
SVR

	
1.871

	
52

	
1.935

	
54

	
1.885

	
54

	
2.115

	
40

	
2.188

	
39

	
1.843

	
54

	
1.601

	
87

	
1.606

	
87

	
1.511

	
69

	
1.322

	
29

	
1.284

	
47

	
1.227

	
85




	
ANN

	
2.218

	
19

	
2.213

	
18

	
2.202

	
19

	
2.387

	
19

	
2.404

	
31

	
2.179

	
19

	
1.832

	
32

	
1.773

	
19

	
1.754

	
12

	
1.438

	
33

	
1.453

	
22

	
1.351

	
17




	
GPR

	
1.871

	
172

	
1.950

	
173

	
1.948

	
168

	
1.981

	
171

	
2.011

	
169

	
1.824

	
168

	
1.663

	
172

	
1.442

	
168

	
1.285

	
169

	
1.235

	
168

	
1.205

	
166

	
1.203

	
169




	
RF

	
CART

	
2.501

	
67

	
2.759

	
27

	
2.673

	
7

	
2.651

	
34

	
2.617

	
38

	
2.416

	
35

	
1.999

	
13

	
1.794

	
27

	
1.750

	
17

	
1.583

	
52

	
1.638

	
41

	
1.692

	
2




	
RF

	
2.272

	
36

	
2.323

	
33

	
2.328

	
35

	
2.364

	
34

	
2.396

	
39

	
2.098

	
26

	
1.881

	
25

	
1.628

	
19

	
1.527

	
10

	
1.427

	
16

	
1.410

	
15

	
1.478

	
24




	
SVR

	
1.670

	
28

	
1.751

	
23

	
1.857

	
22

	
1.853

	
39

	
1.944

	
36

	
1.789

	
16

	
1.577

	
57

	
1.394

	
22

	
1.299

	
56

	
1.240

	
15

	
1.195

	
12

	
1.244

	
38




	
ANN

	
1.972

	
11

	
2.256

	
10

	
2.224

	
8

	
2.245

	
10

	
2.326

	
13

	
1.949

	
21

	
1.822

	
33

	
1.551

	
7

	
1.419

	
12

	
1.323

	
17

	
1.244

	
19

	
1.396

	
32




	
GPR

	
1.876

	
44

	
1.981

	
30

	
2.125

	
34

	
2.023

	
54

	
2.108

	
42

	
1.893

	
91

	
1.767

	
35

	
1.502

	
32

	
1.377

	
13

	
1.269

	
16

	
1.244

	
18

	
1.265

	
47




	
RreliefF

	
CART

	
2.323

	
41

	
2.532

	
41

	
2.662

	
42

	
2.533

	
24

	
2.366

	
58

	
2.220

	
42

	
1.949

	
66

	
1.766

	
7

	
1.674

	
15

	
1.605

	
21

	
1.624

	
12

	
1.642

	
10




	
RF

	
2.201

	
84

	
2.298

	
9

	
2.243

	
17

	
2.262

	
14

	
2.271

	
35

	
1.998

	
14

	
1.713

	
18

	
1.468

	
21

	
1.366

	
17

	
1.308

	
15

	
1.337

	
17

	
1.400

	
24




	
SVR

	
1.714

	
41

	
1.768

	
20

	
1.799

	
37

	
1.801

	
15

	
1.815

	
14

	
1.646

	
23

	
1.564

	
20

	
1.409

	
11

	
1.258

	
16

	
1.265

	
24

	
1.252

	
24

	
1.299

	
21




	
ANN

	
1.972

	
11

	
2.256

	
10

	
2.224

	
8

	
2.244

	
10

	
2.326

	
13

	
1.949

	
21

	
1.822

	
33

	
1.551

	
7

	
1.419

	
12

	
1.322

	
12

	
1.244

	
19

	
1.396

	
32




	
GPR

	
1.856

	
29

	
1.882

	
41

	
1.861

	
31

	
1.937

	
41

	
1.936

	
30

	
1.789

	
33

	
1.645

	
95

	
1.450

	
35

	
1.316

	
56

	
1.296

	
41

	
1.279

	
72

	
1.208

	
170
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Figure 1. The power load of New England. 
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Figure 2. Overview of the proposed method. 
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Figure 3. Normalized feature score of features evaluated by kinds of feature selection methods. 
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Figure 4. Mean absolute percentage error (MAPE) curves of combinations of feature selection methods and forecasting methods for selecting feature subset. 
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Figure 5. Prediction from 28 July to 3 August 2013. 
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Figure 6. Prediction from 22 to 28 December 2013. 
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Figure 7. Prediction from 21 to 27 June 2015. 
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Figure 8. Prediction from 8 to 14 November 2015. 
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Figure 9. Comparison of error and time of training a model with traditional and proposed approaches. 
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Table 1. The feature information.






Table 1. The feature information.





	
Feature Type

	
Feature Name

	
Feature Number






	
Endogenous predictor

	
   F  L ( t − i )    , i = 24, 25, …, 168

	
145




	
   F  L ( max , d − k )     ,    F  L ( min , d − k )     ,    F  L ( mean , d − k )     , k = 2, 3, 4, 5, 6, 7

	
18




	
Exogenous predictor

	
   F D W   , W = 1, 2, 3, 4, 5, 6, 7

	
7




	
    F W    

	
2




	
    F  Hour      

	
1
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Table 2. Experimental data description.






Table 2. Experimental data description.





	
Data Set

	
Detail Information of Experimental Data (New England)

	
Detail Information of Experimental Data (Singapore)




	
2011

	
2012

	
2013

	
2014

	
2015






	
Training set

	
Jan., Feb., Mar., Apr., May, Jun., Jul., Aug., Sept., Oct., Nov., Dec.

	
Jan., Feb., Apr., Jun., Jul., Aug., Oct., Dec.

	
-

	
Jan., Feb., Mar., Apr., May, Jun., Jul., Aug., Sept., Oct., Nov., Dec.

	
Jan., Apr., Aug., Dec.




	
Validation set

	
-

	
Mar., May, Sept., Nov.

	
-

	
-

	
Feb., May, Jul., Oct.




	
Test set

	
-

	
-

	
Jan., Feb., Mar., Apr., May, Jun., Jul., Aug., Sept., Oct., Nov., Dec.

	
-

	
Mar., Jun., Sept., Nov.
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Table 3. Top 10 features of ranked of feature by different feature selection corresponding to Figure 3.
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	MI
	CMI
	RreliefF
	RF
	CART





	Hour 5
	FL(t−24), FL(t−25), FL(t−26), FL(t−27), FL(t−28), FL(t−29), FL(min, d−2), FL(t−30), FL(mean, d−2), FL(t−44)
	FL(t−24), FL(t−25),

FL(t−29), FL(t−28),

FL(t−160), FL(t−26),

FL(t−161), FL(t−162),

FL(t−27), FL(max, d−2)
	FL(t−24), FL(t−25),

FL(t−26), FL(t−27),

FL(t−28),    F W 0   ,    F W 1   ,

FL(t−28), FL(max, d−2),

FL(t−31)
	FL(t−24), FL(t−25),

FL(t−163), FL(t−162),

FL(t−26), FL(t−164),

FL(t−30), FL(t−29),

FL(t−160), FL(t−27)
	FL(t−24), FL(t−25), FL(t−26), FL(t−27), FL(t−28), FL(t−30), FL(t−163), FL(t−160),

FL(t−161), FL(t−162)



	Hour 6
	FL(t−160), FL(t−162),

FL(t−161), FL(t−24),

FL(t−164), FL(mean, d−7),

FL(t−163), FL(t−159),

FL(t−28), FL(t−29)
	FL(t−161), FL(t−162),

FL(t−160), FL(t−163),

FL(t−159), FL(t−29),

FL(t−145), FL(t−158),

FL(t−141), FL(t−65)
	   F W 0   ,    F W 1   ,    F D 7   ,

FL(t−24), FL(t−25),

FL(t−26),    F D 1   ,

FL(t−28), FL(t−27),

FL(t−29)
	FL(t−24), FL(t−162),

FL(t−161), FL(t−160),

FL(t−30), FL(t−29),

FL(t−25),    F W 0   ,

FL(t−163), FL(mean, d−7)
	FL(mean, d−7), FL(t−159),

FL(t−147), FL(t−146),

FL(t−148), FL(max, d−7),

FL(t−24), FL(t−25),

FL(t−30), FL(t−26)



	Hour 10
	FL(t−158), FL(t−159),

FL(t−157), FL(mean, d−7),

FL(t−160), FL(t−156),

FL(t−24), FL(t−154),

FL(t−147), FL(t−153)
	FL(t−161), FL(t−160),

FL(t−162),    F W 0   ,    F W 1   ,

FL(t−159), FL(t−158),

FL(t−157), FL(t−154),

FL(t−155), FL(t−159)
	   F W 0   ,    F W 1   ,    F D 7   ,    F D 6   , FL(t−26), FL(t−25),

FL(t−27), FL(t−24),

FL(t−28),    F D 1   
	   F  W W  1   ,    F W 0   , FL(t−159), FL(t−25), FL(t−160),

FL(t−24), FL(t−161),

FL(t−26), FL(t−28),

FL(t−27)
	FL(t−159), FL(t−158),

FL(t−160), FL(t−157), FL(mean, d−7), FL(t−156),

FL(t−25), FL(t−27),

FL(t−28), FL(t−26)



	Hour 11
	FL(t−159), FL(t−157),

FL(t−158), FL(t−156), FL(mean, d−7), FL(t−153), FL(t−155), FL(t−152),

FL(t−160), FL(t−154)
	FL(t−160), FL(t−162),

FL(t−161), FL(t−159),

FL(t−158),    F W 0   ,    F W 1   ,

FL(t−154), FL(t−156),

FL(t−155)
	   F W 0   ,    F W 1   ,

   F D 7   , FL(t−26),

FL(t−27), FL(t−25),

FL(t−33), FL(t−24),

FL(t−34), FL(t−28)
	   F W 1   ,    F W 0   , FL(t−26),

FL(t−27), FL(t−25),

FL(t−161), FL(t−157),

FL(t−160), FL(t−24),

FL(t−158)
	FL(t−157), FL(t−156),

FL(t−155), FL(t−153),

FL(t−154), FL(t−158),

FL(t−26), FL(t−25),

FL(t−27), FL(t−28)
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Table 4. Optimal feature subset construction of different hours with mutual information (MI) + random forest (RF) for New England.
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	Time
	MAPE
	FD
	Time
	MAPE
	FD





	1
	3.294
	34
	13
	4.663
	41



	2
	3.419
	22
	14
	4.926
	33



	3
	3.632
	9
	15
	5.190
	38



	4
	3.783
	30
	15
	5.351
	46



	5
	4.008
	9
	17
	5.547
	31



	6
	4.828
	18
	18
	5.358
	98



	7
	5.456
	61
	19
	5.117
	136



	8
	5.314
	59
	20
	4.506
	23



	9
	4.526
	64
	21
	4.376
	28



	10
	4.171
	45
	22
	4.779
	9



	11
	4.147
	42
	23
	4.794
	41



	12
	4.414
	67
	24
	4.847
	72







Remark: FD means the feature dimension.
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Table 5. Optimal feature subset construction of 1:00 with different methods for New England.
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Method

	
CART

	
RF

	
SVR

	
ANN

	
GPR




	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD






	
MI

	
3.741

	
7

	
3.294

	
34

	
3.064

	
10

	
3.226

	
8

	
3.087

	
119




	
CMI

	
3.729

	
2

	
3.447

	
20

	
3.043

	
13

	
3.062

	
47

	
3.052

	
134




	
CART

	
3.729

	
3

	
3.422

	
11

	
3.068

	
11

	
3.270

	
9

	
3.245

	
8




	
RF

	
3.741

	
7

	
3.533

	
51

	
3.140

	
41

	
3.069

	
18

	
3.099

	
81




	
RreliefF

	
3.741

	
10

	
3.310

	
26

	
3.043

	
18

	
3.269

	
9

	
3.019

	
134
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Table 6. Comparison of different combined methods.
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Method

	
CART

	
RF

	
GPR

	
BPNN

	
SVR






	
MI

	
MAPE

	
5.027

	
4.376

	
4.223

	
5.705

	
4.286




	
MAE

	
849.194

	
732.926

	
709.848

	
962.649

	
720.361




	
RMSE

	
1191.968

	
871.897

	
988.378

	
1323.916

	
921.862




	
CMI

	
MAPE

	
4.672

	
4.423

	
4.299

	
4.457

	
4.880




	
MAE

	
784.550

	
719.337

	
699.910

	
566.609

	
809.988




	
RMSE

	
1016.001

	
931.743

	
942.492

	
715.524

	
1027.936




	
CART

	
MAPE

	
6.179

	
4.936

	
4.449

	
4.910

	
3.634




	
MAE

	
1034.009

	
833.712

	
752.653

	
823.088

	
599.284




	
RMSE

	
1282.515

	
1077.501

	
961.304

	
1142.275

	
753.655




	
RF

	
MAPE

	
4.936

	
4.231

	
4.381

	
4.291

	
4.262




	
MAE

	
833.712

	
711.268

	
815.776

	
711.438

	
705.789




	
RMSE

	
1077.501

	
855.686

	
915.139

	
969.156

	
916.701




	
RreliefF

	
MAPE

	
4.577

	
3.710

	
4.239

	
4.270

	
4.204




	
MAE

	
786.561

	
629.120

	
717.094

	
710.419

	
700.174




	
RMSE

	
1072.662

	
781.775

	
1045.609

	
922.320

	
910.103
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Table 7. Comparison of different combined methods.
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Method

	
CART

	
RF

	
GPR

	
BPNN

	
SVR






	
MI

	
MAPE

	
5.420

	
5.783

	
4.862

	
5.823

	
4.977




	
MAE

	
809.153

	
855.560

	
706.073

	
868.632

	
734.877




	
RMSE

	
1052.017

	
1038.861

	
875.357

	
1059.056

	
897.331




	
CMI

	
MAPE

	
5.479

	
5.515

	
4.862

	
5.072

	
5.262




	
MAE

	
814.890

	
821.482

	
710.464

	
733.701

	
788.030




	
RMSE

	
1029.141

	
983.674

	
867.158

	
941.800

	
956.224




	
CART

	
MAPE

	
6.876

	
5.154

	
4.754

	
5.206

	
4.770




	
MAE

	
1027.157

	
763.678

	
704.088

	
776.566

	
705.472




	
RMSE

	
1307.768

	
1031.547

	
892.356

	
1055.224

	
911.921




	
RF

	
MAPE

	
5.154

	
5.421

	
4.817

	
5.190

	
4.540




	
MAE

	
763.678

	
795.999

	
697.702

	
757.221

	
666.295




	
RMSE

	
1031.547

	
955.704

	
858.767

	
961.667

	
849.553




	
RreliefF

	
MAPE

	
4.985

	
4.830

	
5.026

	
4.689

	
4.207




	
MAE

	
741.379

	
713.534

	
749.809

	
702.243

	
628.159




	
RMSE

	
1019.697

	
893.103

	
1034.086

	
931.176

	
810.417
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Table 8. Error of load forecasting of different methods with proposed forecasting approach for the whole test set.
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Feature Selection Method

	
Forecaster

	
Evaluated Criterion




	
MAPE (%)

	
RMSE (MW)

	
MAE (MW)






	
MI

	
CART

	
6.021

	
1360.445

	
934.560




	
RF

	
5.536

	
1260.281

	
864.385




	
SVR

	
4.872

	
1196.775

	
773.447




	
BPNN

	
5.491

	
1320.809

	
865.842




	
GPR

	
4.785

	
1141.372

	
755.325




	
CMI

	
CART

	
6.088

	
1371.643

	
945.217




	
RF

	
5.364

	
1235.216

	
841.376




	
SVR

	
4.870

	
1225.231

	
776.654




	
BPNN

	
5.054

	
1179.931

	
793.064




	
GPR

	
4.758

	
1135.260

	
750.937




	
CART

	
CART

	
6.495

	
1493.344

	
1013.322




	
RF

	
5.364

	
1228.542

	
837.765




	
SVR

	
4.794

	
1158.022

	
758.601




	
BPNN

	
5.414

	
1270.671

	
847.104




	
GPR

	
5.018

	
1176.996

	
790.088




	
RF

	
CART

	
5.883

	
1322.730

	
911.334




	
RF

	
5.385

	
1236.724

	
843.334




	
SVR

	
5.534

	
1260.281

	
834.385




	
BPNN

	
5.287

	
1248.014

	
827.752




	
GPR

	
4.839

	
1244.614

	
761.119




	
RreliefF

	
CART

	
5.804

	
1898.190

	
1305.192




	
RF

	
5.202

	
1220.145

	
816.788




	
SVR

	
4.746

	
1229.229

	
759.143




	
BPNN

	
5.175

	
1244.537

	
812.642




	
GPR

	
5.543

	
1410.293

	
883.576
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Table 9. Optimal feature subset construction of different hours with MI + RF for Singapore.
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	Time
	MAPE
	FD
	Time
	MAPE
	FD





	1
	1.349
	72
	13
	2.353
	49



	2
	1.138
	64
	14
	2.376
	42



	3
	1.112
	61
	15
	2.387
	48



	4
	1.137
	66
	15
	2.486
	44



	5
	1.201
	79
	17
	2.534
	57



	6
	1.453
	75
	18
	2.258
	62



	7
	1.836
	57
	19
	2.049
	49



	8
	2.229
	55
	20
	1.793
	43



	9
	2.389
	55
	21
	1.632
	64



	10
	2.359
	52
	22
	1.526
	59



	11
	2.379
	59
	23
	1.485
	45



	12
	2.332
	58
	24
	1.529
	55
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Table 10. Optimal feature subset construction of 1:00 with different methods for Singapore.
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Method

	
CART

	
RF

	
SVR

	
ANN

	
GPR




	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD

	
MAPE

	
FD






	
MI

	
1.595

	
59

	
1.349

	
72

	
1.225

	
74

	
1.349

	
47

	
1.170

	
75




	
CMI

	
1.528

	
11

	
1.266

	
31

	
1.209

	
43

	
1.239

	
17

	
1.148

	
122




	
CART

	
1.559

	
14

	
1.303

	
26

	
1.103

	
56

	
1.210

	
16

	
1.169

	
60




	
RF

	
1.594

	
72

	
1.371

	
5

	
1.186

	
58

	
1.242

	
17

	
1.163

	
38




	
RreliefF

	
1.530

	
7

	
1.300

	
10

	
1.197

	
21

	
1.242

	
17

	
1.159

	
95
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Table 11. Comparison of different combined methods.
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Method

	
CART

	
RF

	
GPR

	
BPNN

	
SVR






	
MI

	
MAPE

	
2.321

	
2.145

	
1.439

	
2.719

	
1.662




	
MAE

	
128.596

	
119.058

	
79.453

	
153.693

	
91.493




	
RMSE

	
162.801

	
137.462

	
99.346

	
202.410

	
110.360




	
CMI

	
MAPE

	
2.117

	
1.867

	
1.419

	
3.165

	
1.482




	
MAE

	
115.395

	
103.810

	
78.407

	
180.786

	
81.177




	
RMSE

	
150.781

	
134.390

	
99.425

	
322.873

	
102.596




	
CART

	
MAPE

	
2.420

	
2.136

	
1.645

	
1.963

	
1.911




	
MAE

	
132.823

	
118.571

	
91.358

	
108.851

	
106.369




	
RMSE

	
175.615

	
143.584

	
139.408

	
160.930

	
152.349




	
RF

	
MAPE

	
2.213

	
2.000

	
1.435

	
1.702

	
1.404




	
MAE

	
123.568

	
112.369

	
77.803

	
94.085

	
77.236




	
RMSE

	
148.988

	
146.759

	
97.686

	
117.295

	
95.627




	
RreliefF

	
MAPE

	
2.720

	
1.862

	
1.428

	
1.917

	
1.402




	
MAE

	
154.605

	
103.586

	
79.134

	
105.902

	
74.400




	
RMSE

	
201.458

	
128.291

	
101.035

	
127.631

	
93.092
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Table 12. Comparison of different combined methods.
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Method

	
CART

	
RF

	
GPR

	
BPNN

	
SVR






	
MI

	
MAPE

	
3.895

	
3.854

	
3.806

	
4.273

	
3.637




	
MAE

	
217.339

	
217.647

	
215.942

	
243.454

	
204.362




	
RMSE

	
250.640

	
240.934

	
236.196

	
283.816

	
232.913




	
CMI

	
MAPE

	
3.573

	
3.518

	
3.899

	
5.023

	
3.585




	
MAE

	
200.803

	
197.387

	
221.095

	
288.472

	
200.942




	
RMSE

	
229.837

	
217.891

	
239.055

	
390.638

	
229.780




	
CART

	
MAPE

	
3.868

	
3.587

	
4.115

	
3.897

	
3.599




	
MAE

	
215.523

	
200.915

	
234.630

	
219.650

	
201.124




	
RMSE

	
260.178

	
225.501

	
272.193

	
254.684

	
235.158




	
RF

	
MAPE

	
3.799

	
3.711

	
3.851

	
3.871

	
3.599




	
MAE

	
212.788

	
209.019

	
218.327

	
218.218

	
201.083




	
RMSE

	
245.087

	
231.296

	
236.664

	
241.936

	
230.831




	
RreliefF

	
MAPE

	
3.981

	
3.895

	
4.104

	
3.935

	
3.567




	
MAE

	
222.013

	
219.243

	
233.919

	
221.717

	
200.711




	
RMSE

	
262.683

	
242.705

	
254.076

	
247.552

	
224.017
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Table 13. Error of load forecasting of different methods with proposed forecasting strategy for the whole test set.
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Feature Selection Method

	
Forecaster

	
Evaluated Criterion




	
MAPE (%)

	
RMSE (MW)

	
MAE (MW)






	
MI

	
CART

	
2.019

	
172.293

	
112.003




	
RF

	
1.668

	
157.946

	
92.817




	
SVR

	
1.474

	
154.191

	
80.67




	
BPNN

	
2.551

	
218.916

	
145.116




	
GPR

	
1.492

	
147.726

	
82.693




	
CMI

	
CART

	
2.174

	
189.964

	
121.050




	
RF

	
1.623

	
156.450

	
90.309




	
SVR

	
1.440

	
151.230

	
78.764




	
ANN

	
3.072

	
332.424

	
177.185




	
GPR

	
1.538

	
148.127

	
85.497




	
CART

	
CART

	
2.219

	
201.990

	
123.030




	
RF

	
1.733

	
164.604

	
96.589




	
SVR

	
1.748

	
188.225

	
96.562




	
BPNN

	
1.954

	
192.515

	
109.282




	
GPR

	
1.774

	
183.266

	
99.119




	
RF

	
CART

	
2.012

	
172.188

	
111.418




	
RF

	
1.641

	
160.659

	
91.235




	
SVR

	
1.387

	
148.926

	
75.885




	
BPNN

	
1.663

	
158.088

	
92.355




	
GPR

	
1.461

	
145.833

	
81.011




	
RreliefF

	
CART

	
2.075

	
177.441

	
116.199




	
RF

	
1.608

	
155.962

	
89.551




	
SVR

	
1.373

	
147.585

	
75.118




	
BPNN

	
1.669

	
157.988

	
92.890




	
GPR

	
1.446

	
144.170

	
80.283
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Table 14. Comparison of the error of different forecasting approaches with original feature set.
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Method

	
Forecaster

	
Test for New England

	
Test for Singapore




	

	

	
MAPE (%)

	
MAE (MW)

	
RMSE (MW)

	
Time (s)

	
MAPE (%)

	
MAE (MW)

	
RMSE (MW)

	
Time (s)






	
The proposed method

	
CART

	
5.348

	
738.641

	
1067.723

	
0.106

	
2.166

	
116.742

	
209.413

	
0.275




	
RF

	
4.867

	
671.261

	
941.661

	
10.445

	
1.930

	
105.306

	
199.974

	
10.776




	
SVR

	
4.228

	
580.80

	
849.806

	
0.431

	
1.914

	
103.356

	
196.145

	
0.405




	
BPNN

	
5.167

	
705.324

	
986.974

	
962.457

	
3.133

	
174.104

	
285.083

	
844.257




	
GPR

	
4.242

	
581.889

	
844.0766

	
2.102

	
1.523

	
82.573

	
170.478

	
1.569




	
The traditional method

	
CART

	
5.530

	
778.083

	
1076.316

	
7.976

	
3.597

	
196.391

	
273.112

	
2.601




	
RF

	
7.120

	
975.272

	
1235.783

	
486.263

	
2.088

	
114.732

	
209.064

	
402.743




	
SVR

	
8.522

	
1130.870

	
1556.371

	
123.394

	
5.067

	
267.048

	
361.547

	
91.623




	
BPNN

	
7.120

	
975.272

	
1235.783

	
6170.835

	
4.864

	
267.416

	
408.305

	
4686.007




	
GPR

	
8.017

	
1065.700

	
1387.252

	
1219.056

	
5.072

	
287.277

	
405.181

	
1054.359
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Table 15. Error of load forecasting of different methods with traditional forecasting approach for the whole test set.
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Feature Selection Method

	
Forecaster

	
Test for New England

	
Test for Singapore




	
MAPE (%)

	
MAE (MW)

	
RMSE (MW)

	
MAPE (%)

	
MAE (MW)

	
RMSE (MW)






	
MI

	
CART

	
8.452

	
1269.711

	
1701.808

	
3.247

	
178.082

	
239.891




	
RF

	
5.911

	
920.201

	
1339.227

	
1.855

	
103.612

	
168.744




	
SVR

	
7.587

	
1116.529

	
1521.691

	
4.246

	
222.376

	
314.547




	
BPNN

	
5.854

	
909.553

	
1390.574

	
2.103

	
115.674

	
176.764




	
GPR

	
5.680

	
881.310

	
1296.119

	
2.161

	
118.833

	
180.018




	
CMI

	
CART

	
8.420

	
1267.213

	
1705.926

	
3.320

	
182.186

	
241.884




	
RF

	
5.645

	
878.479

	
1281.361

	
1.838

	
102.269

	
164.790




	
SVR

	
7.669

	
1134.308

	
1560.853

	
4.206

	
219.965

	
313.680




	
BPNN

	
7.697

	
1173.160

	
1929.675

	
2.053

	
113.328

	
173.493




	
GPR

	
6.562

	
1029.708

	
1558.377

	
2.104

	
115.482

	
175.308




	
CART

	
CART

	
8.420

	
1267.213

	
1705.926

	
3.212

	
175.834

	
238.396




	
RF

	
5.970

	
921.976

	
1318.980

	
1.940

	
108.871

	
175.704




	
SVR

	
7.635

	
1127.940

	
1506.504

	
4.170

	
217.423

	
312.793




	
BPNN

	
6.044

	
922.497

	
1404.137

	
5.026

	
278.908

	
462.199




	
GPR

	
5.904

	
920.084

	
1372.375

	
2.860

	
161.948

	
250.843




	
RF

	
CART

	
8.056

	
1212.114

	
1653.079

	
3.262

	
179.431

	
242.135




	
RF

	
5.483

	
858.934

	
1306.136

	
1.833

	
102.516

	
167.013




	
SVR

	
7.316

	
1081.404

	
1482.864

	
4.147

	
216.703

	
310.201




	
BPNN

	
5.348

	
831.493

	
1196.481

	
1.790

	
99.181

	
160.264




	
GPR

	
5.774

	
902.872

	
1321.057

	
1.951

	
108.686

	
169.148




	
RreliefF

	
CART

	
8.056

	
1212.114

	
1653.079

	
3.188

	
174.799

	
237.592




	
RF

	
5.506

	
866.377

	
1333.577

	
2.003

	
111.688

	
176.002




	
SVR

	
7.350

	
1081.259

	
1464.366

	
4.319

	
226.854

	
319.170




	
BPNN

	
5.789

	
894.686

	
1320.901

	
1.958

	
107.762

	
168.592




	
GPR

	
6.015

	
967.163

	
1682.298

	
2.130

	
117.884

	
188.138
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