Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks
Abstract
:1. Introduction
2. Selection of Strength Criteria for Rocks with Strength Anisotropy Related to the Weakness Planes
2.1. The Weakness Plane Model and the Ubiquitous Joint Model (FLAC)
2.2. The Hoek and Brown Criterion Applied to Transversely Isotropic Rocks
2.3. The Nova and Zaninetti Criterion
3. Definition of the Strength Parameters from Triaxial Tests and Brazilian Tests
4. Identification of the Critical Conditions for Slip and Tensile Failure and Related Mud Pressures
5. Case Studies for the Prediction of Mud Pressures to Prevent Slip and Tensile Failure: Results and Discussion
5.1. Mud Pressures to Prevent Slip
5.2. Mud Pressures to Avoid Tensile Failure. Identification of the Critical Mud Pressure Windows
6. Prediction of Mud Pressures in Wellbores Drilled in the Pedernales Field and in Bohai Bay
6.1. Stability of Wellbores Drilled in the Pedernales Field (Venezuela)
6.2. Determination of Mud Pressures in Wellbores Drilled in Bohai Bay (China)
7. Stability Charts to Predict Mud Pressures to Avoid Slip in Critical Condition
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Symbols
A | Mud pressure term related to friction of weakness planes |
B | Mud pressure term related to cohesion of weakness planes |
C | Mud pressure term related to far-field pore pressure |
D | Denominator of Mud pressure terms |
E | Mud pressure term related to Coβw and mβw |
F | Mud pressure term related to Coβw |
Coβw | Instantaneous uniaxial compressive strength of the anisotropic rock |
c’w | Cohesion of the weakness planes |
i | Wellbore deviation from the vertical direction |
K = σMAX/σmin | Ratio of the in situ stresses |
mβw | Instantaneous constant of the Hoek & Brown criterion for anisotropic rock |
Pf | In situ pore pressure |
Mud pressure to prevent slip (Jaeger criterion) | |
Mud pressure to prevent slip (Hoek & Brown criterion) | |
Mud pressure to prevent fracturing | |
S | Tangential state of stress at the wall of a wellbore |
To | Uniaxial compressive strength of the intact rock |
Toβw | Instantaneous uniaxial tensile strength of the anisotropic rock |
βw | Angle between the maximum principal stress and the normal to the weakness plane |
βwcrit | Critical inclination βw = 45° + φ’w/2 |
δ | Inclination of the weakness planes in the wellbore cross section (clockwise from σMAX) |
δcrit | Critical inclination for slip |
δfrac | Critical inclination for fracturing |
φ’w | Friction angle of the weakness planes |
φ’ | Friction angle of the intact rock |
ϑ | Wellbore azimuth |
σ1 | Maximum principal stress |
σ3 | Minimum principal stress |
σaxis | Principal stress acting in the direction of the borehole axis |
σII | In situ principal stress acting in the direction of the borehole axis |
σMAX | Maximum in situ stress (principal stress) |
σmin | Minimum in situ stress (principal stress) |
σθ | Tangential stress |
σr | Radial stress |
Appendix A
Appendix B
Appendix C
References
- Chen, X.; Tan, C.P.; Detournay, C. A study on wellbore stability in fractured rock masses with impact of mud infiltration. J. Pet. Sci. Eng. 2003, 38, 145–154. [Google Scholar] [CrossRef]
- Younessi, A.; Rasouli, V. A fracture sliding potential index for wellbore stability analysis. Int. J. Rock Mech. Min. Sci. 2010, 47, 927–939. [Google Scholar] [CrossRef]
- Last, N.C.; McLean, M.R. Assessing the impact of trajectory on wells drilled in an overthrust region. J. Pet. Tech. 1996, 48, 620–626. [Google Scholar] [CrossRef]
- Twynam, A.J.; Shaw, D.; Heard, M.; Wilson, K.J. Successful use of a synthetic drilling fluid in eastern Venezuela. In Proceedings of the International Conference on Health, Safety, and Environment in Oil and Gas Exploration and Production, Caracas, Venezuela, 7–10 June 1998. [Google Scholar]
- Willson, S.M.; Last, N.C.; Zoback, M.D.; Moos, D. Drilling in South America: A wellbore stability approach for complex geologic conditions. In Proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Caracas, Venezuela, 21–23 April 1999. [Google Scholar]
- Økland, D.; Cook, J.M. Bedding-related borehole instability in high-angle wells. In Proceedings of the Eurock’98-Rock Mechanics in Petroleum Engineering, Trondheim, Norway, 8–10 July 1998. [Google Scholar]
- Brehm, A.; Ward, C.D.; Bradford, D.W.; Riddle, D.E. Optimizing a deepwater subsalt drilling program by evaluating anisotropic rock strength effects on wellbore stability and near wellbore stress effects on the fracture gradient. In Proceedings of the Drilling Conference Society of Petroleum Engineers, Miami, FL, USA, 21–23 February 2006. [Google Scholar]
- Wu, B.; Tan, C.P. Effect of shale bedding plane failure on wellbore stability-example from analyzing stuck-pipe wells. In Proceedings of the 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, Salt Lake City, UT, USA, 27–30 June 2010. [Google Scholar]
- Narayanasamy, R.; Barr, D.; Mine, A. Wellbore-instability predictions within the cretaceous mudstones, clair field, West of Shetlands. SPE Drill. Complet. 2010, 25, 518–529. [Google Scholar] [CrossRef]
- Jaeger, J.C. Shear failure of anisotropic rocks. Geol. Mag. 1960, 97, 65–72. [Google Scholar] [CrossRef]
- Aadnoy, B.S.M.E. Stability of highly inclined boreholes. SPE Drill. Eng. 1988, 3, 259–268. [Google Scholar] [CrossRef]
- Lee, H.; Ong, S.H.; Azeemuddin, M.; Goodman, H. A wellbore stability model for formations with anisotropic rock strengths. J. Pet. Sci. Eng. 2012, 6, 109–119. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Tang, G.; She, C.; Guo, J.; Zhang, J. Effect of weak bedding planes on wellbore stability for shale gas wells. In Proceedings of the Asia Pacific Drilling Technology Conference and Exhibition, Tianjin, China, 9–11 July 2012. [Google Scholar]
- Zhang, J. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. Int. J. Rock Mech. Min. Sci. 2013, 60, 160–170. [Google Scholar] [CrossRef]
- Lee, H.; Chang, C.; Ong, S.H.; Song, I. Effect of anisotropic borehole wall failures when estimating in situ stresses: A case study in the Nankai accretionary wedge. Mar. Pet. Geol. 2013, 48, 411–422. [Google Scholar] [CrossRef]
- Yan, G.; Karpfinger, F.; Prioul, R.; Tang, H.; Jiang, Y.; Liu, C. Anisotropic wellbore stability model and its application for drilling through challenging shale gas wells. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 9–11 December 2014. [Google Scholar]
- He, S.; Wang, W.; Zhou, J.; Huang, Z.; Tang, M. A model for analysis of wellbore stability considering the effects of weak bedding planes. J. Nat. Gas Sci. Eng. 2015, 27, 1050–1062. [Google Scholar] [CrossRef]
- Kanfar, M.F.; Chen, Z.; Rahman, S.S. Risk-controlled wellbore stability analysis in anisotropic formations. J. Pet. Sci. Eng. 2015, 134, 214–222. [Google Scholar] [CrossRef]
- Fekete, P.; Dosunmu, A.; Anyanwu, C.; Odagme, S.B.; Ekeinde, E. Wellbore stability management in weak bedding planes and angle of attack in well planing. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 5–7 August 2014. [Google Scholar]
- Konstantinovskaya, E.; Laskin, P.; Eremeev, D.; Pashkov, A.; Semkin, A.; Karpfinger, F.; Trubienko, O. Shale stability when drilling deviated wells: Geomechanical modeling of bedding plane weakness, field X, russian platform. In Proceedings of the SPE Russian Petroleum Technology Conference and Exhibition, Moscow, Russia, 24–26 October 2016. [Google Scholar]
- Brady, B.H.; Brown, E.T. Rock Mechanics: For Underground Mining, 3rd ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2005. [Google Scholar]
- Ma, T.; Wu, B.; Fu, J.; Zhang, Q.; Chen, P. Fracture pressure prediction for layered formations with anisotropic rock strengths. J. Nat. Gas Sci. Eng. 2017, 38, 485–503. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, Q.B.; Chen, P.; Yang, C.; Zhao, J. Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths. J. Pet. Sci. Eng. 2017, 149, 393–408. [Google Scholar] [CrossRef]
- Ma, T.; Peng, N.; Zhu, Z.; Zhang, Q.; Yang, C.; Zhao, J. Brazilian tensile strength of anisotropic rocks: Review and new insights. Energies 2018, 11, 304. [Google Scholar] [CrossRef]
- Hobbs, D.W. Rock tensile strength and its relationship to a number of alternative measures of rock strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1967, 4, 115–127. [Google Scholar] [CrossRef]
- Barron, K. Brittle fracture initiation in and ultimate failure of rocks: Part I—Anisotropic rocks: Theory. Int J. Rock Mech. Min. Sci. Geomech. Abstr. 1971, 8, 553–563. [Google Scholar] [CrossRef]
- Nova, R.; Zaninetti, A. An investigation into the tensile behaviour of a schistose rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1990, 27, 231–242. [Google Scholar] [CrossRef]
- Lee, Y.K.; Pietruszczak, S. Tensile failure criterion for transversely isotropic rocks. J. Rock Mech. Min. Sci. 2015, 79, 205–215. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Empirical strength criterion for rock masses. J. Geotech. Geoenviron. Eng. 1980, 106, 1013–1035. [Google Scholar]
- Tien, Y.M.; Kuo, M.C. A failure criterion for transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 2001, 38, 399–412. [Google Scholar] [CrossRef]
- Colak, K.; Unlu, T. Effect of transverse anisotropy on the Hoek–Brown strength parameter ‘mi’ for intact rocks. Int. J. Rock Mech. Min. Sci. 2004, 41, 1045–1052. [Google Scholar] [CrossRef]
- Donath, F.A. A strength variation and deformational behavior of anisotropic rocks. In State of Stress in The Earth’s Crust; Elsevier: New York, NY, USA, 1964; pp. 281–298. [Google Scholar]
- Horino, F.G.; Ellickson, M.L. A Method of Estimating the Strength of Rock Containing Planes of Weakness; Report investigation 7449; US Bureau of Mines: Washington, DC, USA, 1970.
- Crawford, B.R.; De Dontney, N.L.; Alramahi, B.; Ottesen, S. Shear strength anisotropy in fine-grained rocks. In Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, 24–27 June 2012. [Google Scholar]
- Fjær, E.; Nes, O.M. The impact of heterogeneity on the anisotropic strength of an outcrop shale. Rock Mech. Rock Eng. 2014, 47, 1603–1611. [Google Scholar] [CrossRef]
- Gholami, R.; Rasouli, V. Mechanical and elastic properties of transversely isotropic slate. Rock Mech. Rock Eng. 2014, 47, 1763–1773. [Google Scholar] [CrossRef]
- MacLamore, R.; Gray, K.E. The mechanical behavior of anisotropic sedimentary rocks. J. Eng. Ind. Trans. ASME 1967, 89, 62–73. [Google Scholar] [CrossRef]
- Nasseri, M.H.; Rao, K.S.; Ramamurthy, T. Anisotropic strength and deformational behavior of Himalayan schists. Int. J. Rock Mech. Min. Sci. 2003, 40, 3–23. [Google Scholar] [CrossRef]
- Niandou, H.; Shao, J.F.; Henry, J.P.; Fourmaintraux, D. Laboratory investigation of the mechanical behaviour of Tournemire shale. Int. J. Rock Mech. Min. Sci. 1997, 34, 3–16. [Google Scholar] [CrossRef]
- Saroglou, H.; Tsiambaos, G. A modified Hoek–Brown failure criterion for anisotropic intact rock. Int. J. Rock Mech. Min. Sci. 2008, 45, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Tien, Y.M.; Kuo, M.C.; Juang, C.H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 2006, 43, 1163–1181. [Google Scholar] [CrossRef]
- Jaeger, J.C. Elasticity, Fracture and Flow, 2nd ed.; Barnes & Noble: New York, NY, USA, 1964. [Google Scholar]
- Walsh, J.; Brace, J.F. A fracture criterion for brittle anisotropic rock. J. Geophys. Res. 1964, 69, 3449–3456. [Google Scholar] [CrossRef]
- Eberhardt, E. The Hoek–Brown failure criterion. Rock Mech. Rock Eng. 2012, 45, 981–988. [Google Scholar] [CrossRef]
- Priest, S.D. Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock Mech. Rock Eng. 2005, 38, 299–327. [Google Scholar] [CrossRef]
- Ottesen, S. Wellbore stability in fractured rock. In Proceedings of the Drilling Conference and Exhibition, New Orleans, LA, USA, 2–4 February 2010. [Google Scholar]
- Zhang, L.; Cao, P.; Radha, K.C. Evaluation of rock strength criteria for wellbore stability analysis. Int. J. Rock Mech. Min. Sci. 2010, 47, 1304–1316. [Google Scholar] [CrossRef]
- Maleki, S.; Gholami, R.; Rasouli, V.; Moradzadeh, A.; Riabi, R.G.; Sadaghzadeh, F. Comparison of different failure criteria in prediction of safe mud weigh window in drilling practice. Earth Sci. Rev. 2014, 136, 36–58. [Google Scholar] [CrossRef]
- Elyasi, A.; Goshtasbi, K. Using different rock failure criteria in wellbore stability analysis. Geomech. Energy Environ. 2015, 2, 15–21. [Google Scholar] [CrossRef]
- Gholami, R.; Moradzadeh, A.; Rasouli, V.; Hanachi, J. Practical application of failure criteria in determining safe mud weight windows in drilling operations. J. Rock Mech. Geotech. Eng. 2014, 6, 13–25. [Google Scholar] [CrossRef]
- Coviello, A.; Lagioia, R.; Nova, R. On the measurement of the tensile strength of soft rocks. Rock Mech. Rock Eng. 2005, 38, 251–273. [Google Scholar] [CrossRef]
- Ambrose, J. Failure of Anisotropic Shales Under Triaxial Stress Conditions. Ph.D. Thesis, Imperial College, London, UK, April 2014. [Google Scholar]
- Wu, Y.; Li, X.; He, J.; Zheng, B. Mechanical properties of Longmaxi black organic-rich shale samples from south China under uniaxial and triaxial compression states. Energies 2016, 9, 1088. [Google Scholar] [CrossRef]
- Chuanliang, Y.; Jingen, D.; Shujie, L.; Xiaofei, S.; Baitao, F. In-situ stress and wellbore stability of Bohai oilfield in China. Electr. J. Geotech. Eng. 2013, 18, 2575–2594. [Google Scholar]
Rock | c’w (MPa) | φ’w (°) |
---|---|---|
Artificial rock (*) | 11 | 18 |
Martinsburg Slate (**) | 9 | 21 |
Top seal shale (§) | 4.7 | 18 |
Bossier shale (×) | 14.1 | 24 |
Green River I shale (#) | 38 | 30 |
Longmaxi shale (°°) | 19 | 25 |
βw (°) | Artificial Rock | Top Seal Shale | Green River I Shale | Longmaxi Shale |
---|---|---|---|---|
0 | 3.6 | 0.45 | 7.33 | 1.78 |
15 | 2.94 | 2.33 | 7.91 | 5.22 |
30 | 2.6 | 3.1 | 6.75 | 3.60 |
45 | 4.3 | 2 | 6.82 | 5.00 |
60 | 2.9 | 9 | 8.67 | 12.00 |
75 | 3.5 | 3.5 | 7.08 | 9.68 |
90 | 2.78 | 5.1 | 5.45 | 7.00 |
σMAX (MPa) | σmin (MPa) | Pf (MPa) | Criterion | Rock |
---|---|---|---|---|
45 | 35 | 20 | WPM 1 − UJM 2 − H&B 3 | Artificial rock |
45 | 35 | 20 | WPM 1 − UJM 2 − H&B 3 | Martinsburg slate |
45 | 35 | 20 | WPM 1 − H&B 3 | Top seal shale |
45 | 35 | 20 | H&B 3 | Bossier shale |
35 | 35 | 20 | H&B 3 | Bossier shale |
50 | 70 | 35 | H&B 3 − N&Z 4 | Longmaxi shale |
50 | 70 | 35 | H&B 3 − N&Z 4 | Green River I shale |
σv (MPa) | σH (MPa) | σh (MPa) | Pf (MPa) | Depth (m) | α-σH1 (°) | α-WP 2 (°) | Ψ-WP 3 (°) | c’w (MPa) | φ’w (°) | Co (MPa) | φ’ (°) |
---|---|---|---|---|---|---|---|---|---|---|---|
37.2 | 45.5 | 35 | 17.7 | 1676 | 315 | 315 | 45 | 2.1 | 26.6 | 28.96 | 31 |
σv (MPa) | σH (MPa) | σh (MPa) | Pf (MPa) | Depth (m) | c’w (MPa) | φ’w (°) |
---|---|---|---|---|---|---|
30 | 27.5 | 25 | 15 | 1540 | 2.75 | 20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deangeli, C.; Omwanghe, O.O. Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks. Energies 2018, 11, 1944. https://doi.org/10.3390/en11081944
Deangeli C, Omwanghe OO. Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks. Energies. 2018; 11(8):1944. https://doi.org/10.3390/en11081944
Chicago/Turabian StyleDeangeli, Chiara, and Omoruyi Omoman Omwanghe. 2018. "Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks" Energies 11, no. 8: 1944. https://doi.org/10.3390/en11081944
APA StyleDeangeli, C., & Omwanghe, O. O. (2018). Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks. Energies, 11(8), 1944. https://doi.org/10.3390/en11081944