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Abstract

:

The economic load dispatch (ELD) problem is an optimization problem of minimizing the total fuel cost of generators while satisfying power balance constraints, operating capacity limits, ramp-rate limits and prohibited operating zones. In this paper, a novel multi-population based chaotic JAYA algorithm (MP-CJAYA) is proposed to solve the ELD problem by applying the multi-population method (MP) and chaotic optimization algorithm (COA) on the original JAYA algorithm to guarantee the best solution of the problem. MP-CJAYA is a modified version where the total population is divided into a certain number of sub-populations to control the exploration and exploitation rates, at the same time a chaos perturbation is implemented on each sub-population during every iteration to keep on searching for the global optima. The proposed MP-CJAYA has been adopted to ELD cases and the results obtained have been compared with other well-known algorithms reported in the literature. The comparisons have indicated that MP-CJAYA outperforms all the other algorithms, achieving the best performance in all the cases, which indicates that MP-CJAYA is a promising alternative approach for solving ELD problems.
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1. Introduction


With the issues of global warming and depletion of classical fossil fuels, saving energy and reducing the operational cost have become the key topics in power systems nowadays. The economic load dispatch problem (ELD) is a crucial issue of power system operation that minimizes the operational cost while satisfying a set of physical and operational constraints imposed by generators and system limitations [1]. A large number of conventional optimization methods have been applied successfully for solving the ELD problem such as gradient method [2], lambda iteration method [3], semi-definite programming [4], quadratic programming [5], dynamic programming [6], Lagrangian relaxation method [7] and linear programming [8]. However, they suffer from difficulties when dealing with problems with nonconvex objective function and complex constraints, which tends to exhibit highly non-linear, non-convex and non-smooth characteristics with a number of local optima [9].



To overcome these drawbacks, meta-heuristic methods are proposed, such as genetic algorithm (GA) [10], particle swarm optimization (PSO) [11], tabu search (TS) [12], artificial bee colony algorithm (ABC) [13], firefly algorithm [14], harmony search (HS) [15] and teaching-learning-based optimization (TLBO) [16]. Additionally, hybrid meta-heuristic optimization approaches built by the combination between conventional methods and meta-heuristic methods or among the meta-heuristic methods have also been reported to deal with the ELD problem, such as DE-PSO method [17], HS-DE method [18], GA-PS-SQP algorithm [19] and Quantum-PSO method [20]. Even though hybrid methods offer much faster convergence rates, the combination may lead to increased numbers of parameters which causes more difficulties in selecting the proper value for each one. Hence, a new method with strong searching ability and less number of control parameters is needed.



The JAYA algorithm is a newly developed yet advanced heuristic algorithm for solving constrained and unconstrained optimization problems [21]. Different from other algorithms requiring for algorithm-specific parameters in addition to common parameters, the JAYA algorithm does not require any algorithm-specific parameters except for two common parameters named the population size (Npop) and the number of iteration (Niter). This significant benefit makes it popular in various real-world optimization problems such as optimum power flow [22], heat exchangers [23], photovoltaic models [24], thermal devices [25], MPPT of PV system [26], constrained mechanical design optimization [27], modern machining processes [28] and PV-DSTATCOM [29]. However, as a newly developed algorithm, the JAYA algorithm still has some disadvantages even though the number of parameters is less and the convergence rate is accelerated. Since there is only guidance as approach to get close to the best solution and get away from the worst solution, the population diversity may not be maintained efficiently, easily leading to local optimal solutions.



The multi-population based optimization method (MP) is applied for improving the search diversity by dividing the whole population into a certain number of sub-populations and distributing them throughout the search area so that the problem changes can be monitored more effectively. The MP method is aimed at maintaining population diversity during the search period by distributing different sub-populations to different search spaces. Each population is used to either intensify or diversifying the search process [30,31]. The interaction among the sub-populations occurs by dividing and merging process as long as a change in the solution is detected. Branke proposed a multi-population evolutionary algorithm in [32]. Turky and Abdullah proposed a multi-population electromagnetic algorithm and a multi-population harmony search algorithm in [33,34]. Nseef proposed a multi-population artificial bee colony algorithm in [35]. The published literature have demonstrated that employing MP method is useful for maintaining the population diversity when dealing with various problem changes.



Its worthy to be noted that the MP optimization method has superior behaviors because [36]:




	(1)

	
By dividing the whole population into sub-populations, population diversity can be maintained since the sub-populations are located in different regions of the problem landscape.




	(2)

	
With the ability to search various regions simultaneously, it is able to track the movement of optimum value more effectively.




	(3)

	
Population-based optimization algorithms can be easily integrated with MP method.









At the same time the chaotic optimization algorithm (COA) which adopts chaotic sequences instead of random sequences is also employed here. Due to the non-repetitive characteristics of chaotic sequences, the COA can execute with shorter execution time and more robust mechanisms than stochastic ergodic searches that depending on random probabilities. It also has the feature of easy implementation in meta-heuristic algorithms, such as chaotic evolutionary algorithms [37], chaotic ant swarm optimization [38], chaotic harmony search algorithm [39], chaotic particle swarm optimization [40], chaotic firefly algorithm [41]. The choice of chaotic sequences is justified theoretically by their unpredictability, i.e., by their spread-spectrum characteristic, non-periodic, complex temporal behavior and ergodic properties. Simulation results from the abovementioned literature have demonstrated that the application of deterministic chaotic signals to meta-heuristic algorithms is a promising strategy in engineering applications. In this paper, COA has been applied twice:




	(1)

	
During the initialization step, chaotic sequences generated by a chaotic map are used to initialize the initial solutions.




	(2)

	
During the iteration step, COA is conducted to search further around the solution obtained by former algorithm to enhance the global convergence and to prevent to be trapped on local optima.









Based on the descriptions above, a novel multi-population based chaotic JAYA algorithm (MP-CJAYA) is proposed in this paper. It is a modified version of JAYA algorithm where the total population is divided into sub-populations by the MP method to control the exploration and exploitation rates, meanwhile a chaos perturbation is implemented on each sub-population during every iteration to keep on searching for the global optima. The MP-CJAYA algorithm is applied for solving the ELD cases with constraints including valve-point effects, power balance constraints, operating capacity limits, ramp-rate limits and prohibited operating zones. In all the experimented ELD cases, the proposed MP-CJAYA has produced the most competitive results.



The rest of this paper is arranged as follows: In Section 2, the problem formulation of ELD problem is constructed. The basic JAYA, the compared CJAYA and the proposed MP-CJAYA algorithms are described in Section 3. The experimental results and comparisons of MP-CJAYA with other algorithms are presented and analyzed in Section 4. Finally, the conclusions and future work are given in Section 5.




2. Problem Formulation


The ELD problem is described as an objective function to minimize the total fuel cost while satisfying different constraints, we adopt the problem formulation described in [16,42].



2.1. Objective Function


The objective function is to sum up all the costs of committed generators as expressed below:


   min F =   ∑  i = 1  n    F i  (  P i  )       



(1)




where  n  is the total generator number in power systems,    F i  (  P i  )   is the cost function of   i th   generator with output    P i   .



Approximately, the cost function can be expressed as a quadratic polynomial by the following equation:


   F i  (  P i  ) =  a i   P i    2  +  b i   P i  +  c i   



(2)




where    a i   ,    b i   ,    c i    are the cost coefficients of   i th   generator, which are constants.



In reality, a higher-order non-linearity rectified sinusoid contribution is usually added to the cost function to model the valve-point effect, which is given below:


    F i  (  P i  ) =  a i   P i    2  +  b i   P i  +  c i  +  |   e i  × sin (  f i  × (  P i     min   −  P i  ) )  |      



(3)




where    e i    and    f i    are cost coefficients of   i th   generator due to valve-point effect, while    P i     min     is the minimum output for generator  i .



According to the discussion above, the objective function of ELD problem considering the valve-point effect can be represented as:


   min F =   ∑  i = 1  n   (  a i   P i    2  +  b i   P i  +  c i  +  |   e i  × sin (  f i  × (  P i     min   −  P i  ) )  |  )       



(4)








2.2. Constrained Functions


2.2.1. Power Losses


The total power generated by available units must equal to the summation of the demanded power and the system power loss, which can be formulated as:


     ∑  i = 1  n    P i  =  P  d e m a n d   +  P  l o s s         



(5)




where    P  d e m a n d     and    P  l o s s     is the value of the demanded power and the whole power loss in the system respectively.    P  l o s s     is calculated by Kron’s formula:


    P  l o s s   =   ∑  i = 1  n     ∑  j = 1  n    P i   B  i j    P j      +   ∑  i = 1  n    B  i 0      P i  +  B  00       



(6)




where    B  i j    ,    B  i 0    ,    B  00     are the loss coefficients that generally can be assumed to be constants under a normal operating condition.




2.2.2. Generating Capacity


The real output    P i    generated by a available unit must be ranged between its minimum limit and maximum limit:


    P i min  ≤  P i  ≤  P i  ≤  P i max      



(7)




where    P i min    and    P i max    are the minimum and maximum limits of   i th   generator.




2.2.3. Ramp Rate Limit


In practical circumstances, the output power    P i    can not be adjusted immediately, the operating range is restricted by the ramp-rate limit constraint expressed below:


   max (  P i     min   ,  P i    0  − D  R i  ) ≤  P i  ≤ min (  P i     max   ,  P i    0  + U  R i  )     



(8)




where    P i    is the present power output,    P i    0    is the previous power output,   U  R i    and   D  R i    is the up-ramp and down-ramp limit of generator  i  respectively.




2.2.4. Prohibited Operating Zones


For generator with prohibited operating zones (POZs), which are the sets of output power ranges where the generator can not work, the feasible operating zones are as discontinuous as follows:


      P i     min   ≤  P i  ≤  P  i , 1      l o w e r        P  i , j − 1      u p p e r   ≤  P i  ≤  P  i , j      l o w e r        P  i ,  n i       u p p e r   ≤  P i  ≤  P i     max         



(9)




where  j  is the index of POZs,    n i    is the total number of POZs where   j ∈ [ 1 ,  n i  ]  ,    P  i , j      l o w e r     and    P  i , j      u p p e r     are the lower and upper bounds of the   j th   POZ of the   i th   unit, respectively.






3. The Proposed MP-CJAYA Algorithm


Since the proposed MP-CJAYA algorithm is a hybrid of the basic JAYA, COA and MP methods, it is quite necessary to observe the relative strength of each constituent when solving the ELD problem, so three different algorithms are studied:




	(1)

	
The basic JAYA algorithm: The classical JAYA algorithm with standard parameters; it is selected to compare its performance at solving different ELD cases with the other two algorithms.




	(2)

	
The compared CJAYA algorithm: The basic JAYA algorithm combined by COA but without the MP method.




	(3)

	
The proposed MP-CJAYA algorithm: The basic JAYA algorithm integrated with both the COA and MP methods.









3.1. The Basic JAYA Algorithm


The JAYA algorithm is a powerful heuristic algorithm proposed by Rao for solving optimization problems. It always attempts to get success to reach the best solution as well as move far away from the worst solution. Different from most of the other heuristic algorithms, JAYA is free from algorithm-specific parameters, only two common parameters named the population size Npop and the number of iterations Niter are required [21].



Suppose the objective function is   F ( X )   which is required to be minimized or maximized. Let   F   ( X )   b e s t     and   F   ( X )   w o r s t     represent the best value and the worst value of   F ( X )   among the entire candidate solutions during each iteration. Let    X  j , k , i     be the value of the   j th   variable for the   k th   candidate during the   i th   iteration, then the new modified value    X  j , k , i   ′   by JAYA algorithm is calculated by:


     X ′   j , k , i   =  X  j , k , i   +  r  1 , j , i   × (  X  j , b e s t , i   −  |   X  j , k , i    |  ) −  r  2 , j , i   × (  X  j , w o r s t , i   −  |   X  j , k , i    |  )     



(10)




where    X  j , k , i   ′   is the updated value of    X  j , k , i    .    X  j , b e s t , i     and    X  j , w o r s t , i     are the values of the   j th   variable for   F   ( X )   b e s t     and   F   ( X )   w o r s t     during the   i th   iteration respectively.    r  1 , j , i     and    r  2 , j , i     are two random numbers ranged in [0, 1]. The term ‘   r  1 , j , i   × (  X  j , b e s t , i   −  |   X  j , k , i    |  )  ’ indicates the tendency of the solution to move closer to the best solution and the term ‘   r  2 , j , i   × (  X  j , w o r s t , i   −  |   X  j , k , i    |  )  ’ indicates the tendency of the solution to avoid the worst solution. Suppose   F ( X ) ′   is the modified value of   F ( X )  , if   F ( X ) ′   provides better value than   F ( X )  , then    X  j , k , i     is replaced by    X  j , k , i   ′   and   F ( X )   is replaced by   F ( X ) ′  ; otherwise, keep the old value. All the values of new obtained    X  j , k , i     and   F ( X )   at the end of every iteration are maintained and become the inputs to the next iteration [21].



The procedure for the basic JAYA algorithm to solve ELD problem is described as follows:



Step 1: Set parameters. Common parameters of JAYA are initialized in this step. The first one is the population size (   N  p o p    ) which represents how many solutions will be generated; the second one is the maximum iteration number (   N  J A Y A _ i t e r    ) which indicates the stopping condition during the calculation; the last one is the total number of generators (   N  g e n    ) for    N  g e n    -units system.



Set the iteration counter as iter.



Step 2: Initialize the solution. A set of initial solutions are randomly generated as follows:


    X  j , k , i   =  X j     min   + (  X j     max   −  X j     min   ) . * r a n d (  N  p o p   ,  N  g e n   )     



(11)




where   j ∈ [ 1 ,  N  g e n   ] ,     k ∈ [ 1 ,  N  p o p   ]  ,   i ∈ [ 1 ,  N  J A Y A _ i t e r   ]  ,    X j     min     and    X j     max     are the lower and upper limits of   j th   generator given by generating capacity limits in Equation (7).



Step 3: Apply constraints. Apply the constraints in Section 2.2 by using Equations (5)–(9).



Step 4: Evaluate the solution. Calculate the objective function (cost function) by using Equation (3) with considering the valve-point effect or Equation (2) without considering the valve-point effect to obtain the initial value   F ( X )  .



Set iter = 1.



Step 5: Determine the best and worst. Choose    X  j , b e s t , i     and    X  j , w o r s t , i     according to the value of   F   ( X )   b e s t     and   F   ( X )   w o r s t    , which means the lowest and highest value among all the populations.



Step 6: Generate new solution. Generate new output    X  j , k , i   ′   by Equation (10).



Step 7: Apply constraints. Apply the constraints in Section 2.2 by using Equations (5)–(9).



Step 8: Evaluate the new solution. Calculate the new objective function value   F ( X ) ′   by Equation (3) with considering the valve-point effect or Equation (2) without considering the valve-point effect.



Step 9: Compare. The new   F ( X ) ′   is compared with the old   F ( X )  , the values are updated as follows:



If   F ( X ) ′ < F ( X )  



then   F ( X ) = F ( X ) ′   and    X  j , k , i   =  X  j , k , i   ′  ;



Otherwise, keep the old value.



Step 10: Check the stopping condition. If the current iteration number   i t e r <  N  J A Y A _ i t e r    , then   i t e r = i t e r + 1   and return to Step 5. Otherwise, stop the procedure.




3.2. The Compared CJAYA Algorithm


In this chapter, the Chaos Optimization Algorithm (COA) is combined with the basic JAYA algorithm to form the compared CJAYA algorithm. COA has used chaotic map for new search surface during every iteration, which is a discrete-time dynamical system running in chaotic state:


   Z ( k + 1 ) = f ( Z ( k ) )    ( k = 0 , 1 , 2 , 3 , ... )  



(12)







A widely used logistic map which appears in nonlinear dynamics of biological population evidencing chaotic behavior is shown below [43].


    Z i  ( k + 1 ) = α ×  Z i  ( k ) ( 1 −  Z i  ( k ) )     



(13)




where  i  is the serial number of chaotic variables,  k  is the iteration number. The initial value of the   i th   chaotic variable is    Z i  ( 0 )   where    Z i  ( 0 ) ∉    {  0 . 0 ,   0 . 25 ,   0 . 5 ,   0 . 75 ,   1 . 0  }   .   α = 4   is used in this paper. It is obvious that    Z i  ( k + 1 ) ∈ ( 0 , 1 )   under the conditions of    Z i  ( 0 ) ∈ ( 0 , 1 )  .



The procedure for the CJAYA algorithm to solve ELD problem is provided here, the symbol  ∗  denotes a new added step compared with the basic JAYA:



Step 1: Set parameters. Common parameters of CJAYA are initialized in this step. The population size (   N  p o p    ), the maximum iteration number (   N  J A Y A _ i t e r    ) and the total number of generators (   N  g e n    ) are as the same as basic JAYA. However, one more parameter (   N  C O A _ i t e r    ) is introduced which represents the maximum iteration number by COA.



Set the iteration counter as iter.



Step 2 ∗ : Generate chaotic sequence. The chaotic sequence    Z  j , k , q     is generated by Logistic map in this step, where  j  denoting the number of generators of the system,  k  denoting the population number and  q  denoting the number of iteration by COA, which is shown in the following equation:


    Z  j , k , q   = 4 ×  Z  j , k − 1 , q   ( 1 −  Z  j , k − 1 , q   )     



(14)







Here   j ∈ [ 1 ,  N  g e n   ]  ,   k ∈ [ 1 ,  N  p o p   ]  ,   q ∈ [ 1 ,  N  C O A _ i t e r   ]  .



Step 3: Initialize the solution. By the carrier wave method, the set of initial variable    X  j , k , i     can be transformed to chaos variables by:


    X  j , k , i   =  X j     min   + (  X j     max   −  X j     min   ) . *  Z  j , k , q       



(15)




where    X j     min     and    X j     max     are the lower and upper limits of   j th   generator given by generating capacity limits in Equation (7).



Step 4: Apply constraints. As the same as Step 3 in Section 3.1.



Step 5: Evaluate the solution. As the same as Step 4 in Section 3.1.



Step 6: Determine the best and worst. As the same as Step 5 in Section 3.1.



Step 7: Generate new solution. As the same as Step 6 in Section 3.1.



Step 8: Apply constraints. As the same as Step 7 in Section 3.1.



Step 9: Evaluate the new solution. As the same as Step 8 in Section 3.1.



Step 10: Compare. As the same as Step 9 in Section 3.1.



Step 11 ∗ : Apply COA. In the former step we have obtained the best set of solutions    X  j , k , i     up to now, then the second carrier wave method can be performed by:


    X  j , k , i   ′ =  X  j , k , i   + R ×  Z  j , k , q       



(16)




where  R  is a constant,   R ×  Z  j , k , q     generates chaotic states with small ergodic ranges around current    X  j , k , i     to seek further for improving the quality of current solutions. Then the generated neighborhood solutions will be compared with current solutions to check if they give better objective function values by the following steps:




	(1)

	
Apply constraints. As the same as Step 7 in Section 3.1.




	(2)

	
Evaluate the new solution. As the same as Step 8 in Section 3.1.




	(3)

	
Compare. As the same as Step 9 in Section 3.1.









Step 12: Check the stopping condition. If the current iteration number   i t e r <  N  J A Y A _ i t e r    , then   i t e r = i t e r + 1   and return to Step 6. Otherwise, stop the procedure.




3.3. The Proposed MP-CJAYA Algorithm


In this section, Multi-population based optimization method (MP) is combined with CJAYA algorithm to form the proposed MP-CJAYA algorithm. Figure 1 presents the flowchart of the proposed MP-CJAYA algorithm, the pseudo code of the proposed MP-CJAYA is described in Algorithm 1. The whole steps of MP-CJAYA to solve ELD problem is described as follows, the symbol  ∗  denotes a newly added step compared with CJAYA:



Step 1: Set parameters. Common parameters of MP-CJAYA are initialized in this step. The population size (   N  p o p    ), the maximum iteration number (   N  J A Y A _ i t e r    ), the total number of generators (   N  g e n    ) and the maximum COA iteration number (   N  C O A _ i t e r    ) are as the same as basic JAYA and CJAYA. However, another important parameter ( K ) is introduced which represents the divided number of sub-populations, so the population size of the sub-populations (   N  s u b _ p o p    ) is:


   N  s u b _ p o p   =  N  p o p   / K    



(17)







Set the iteration counter as iter.



Step 2: Generate chaotic sequence. As the same as Step 2 in Section 3.2.



Step 3: Initialize the solution. As the same as Step 3 in Section 3.2.



Step 4: Apply constraints. As the same as Step 3 in Section 3.1.



Step 5: Evaluate the solution. As the same as Step 4 in Section 3.1.



Step 6 ∗ : Divide the population. The entire population is divided into  K  sub-populations with population size of    N  s u b _ p o p     by Equation (17). It is noted that the solutions in the whole population are randomly assigned to a sub-population, each sub-population is arranged to explore a different area of the whole search space.



The following steps are performed on each sub-population:



Step 7: Determine the best and worst. As the same as Step 5 in Section 3.1.



Step 8: Generate new solution. As the same as Step 6 in Section 3.1.



Step 9: Apply constraints. As the same as Step 7 in Section 3.1.



Step 10: Evaluate the new solution. As the same as Step 8 in Section 3.1.



Step 11: Compare. As the same as Step 9 in Section 3.1.



Step 12: Apply COA. As the same as Step 11 in Section 3.2.



Step 13: Check the stopping condition. If the current iteration number   i t e r   reaches    N  J A Y A _ i t e r    , stop the loop and report the best solution; otherwise follow the next step and set   i t e r = i t e r + 1  .



Step 14 ∗ : Merge the sub-populations. All the sub-populations are merged together to form one population, then for re-divide the population go to Step 6.





	Algorithm 1 Pseudo code of the MP-CJAYA Algorithm



	Begin



	Initialize    N  p o p    ,   N  J A Y A _ i t e r    ,   N  g e n    ,   N  C O A _ i t e r     and  K ;



	Generate initial solution    X  j , k , i       by chaotic sequence;



	Calculate objective function value   F ( X )  ;



	Set   i t e r = 1  



	While   i t e r <  N  J A Y A _ i t e r     do



	Divide the whole population  P  into  K  sub-populations by Equation (17) randomly



	    P 1  ,  P 2  , ... ,  P  K − 1   ,  P K    



	For   m = 1 → K   do



	Confirm    X  j , b e s t , i     and    X  j , w o r s t , i     within    P m   



	For   k = 1 →  N  s u b _ p o p     do



	Generate new solution    X  j , k , i   ′     by Equation (10)



	End for



	If  F (  X  j , k , i   ′ )   is better than   F (  X  j , k , i   )   then



	    X  j , k , i   =  X  j , k , i   ′   



	   F (  X  j , k , i   ) = F (  X  j , k , i   ′ )   



	Else



	Keep the old value



	End if



	For   k = 1 →  N  s u b _ p o p     do



	Generate new solution    X  j , k , i   ′     by Equation (16)



	If  F (  X  j , k , i   ′ )   is better than   F (  X  j , k , i   )   then



	    X  j , k , i   =  X  j , k , i   ′   



	   F (  X  j , k , i   ) = F (  X  j , k , i   ′ )   



	Else



	Keep the old value



	End if



	End for



	End for



	Merge the sub-populations (   P 1  ,  P 2  , ... ,  P  K − 1   ,  P K   ) into  P 



	   i t e r = i t e r + 1   



	End while








4. Experimental Results and Analysis


In this section, the basic JAYA, the compared CJAYA and the proposed MP-CJAYA algorithms are applied on the following ELD cases to test their performances:




	Case I.

	
3-units system for load demand of 850 MW.




	Case II.

	
13-units system for load demand of 2520 MW.




	Case III.

	
40-units system for load demand of 10500 MW.




	Case IV.

	
6-units system for load demand of 1263 MW.




	Case V.

	
15-units system for load demand of 2630 MW.









Since for meta-heuristic algorithms, parameter setting is critical for the quality of their performances, so the parameters used in the cases above are all listed below. All the cases are run in MATLAB 2016 under windows 7 on Intel(R) Core(TM) i5-6500 CPU 3.20 GHz, with 8 GB RAM.



4.1. Case I: 3-Units System for Load Demand of 850 MW


All detailed data are provided in [44]. The common parameters and constraint conditions are given in Table 1. The cost value of    F  m e a n     and    F  b e s t     obtained by JAYA, CJAYA and MP-CJAYA are compared with GA [45], EP [45], EP-SQP [45], PSO [45], PSO-SQP [45], CPSO [46] and CPSO-SQP [46] in Table 2. The best cost are highlighted in bold font. Obviously, all the compared algorithms give the same best cost of 8234.07 $/h, except for GA who did not meet the load demand. However, JAYA, CJAYA and MP-CJAYA are able to give continuously decreasing values of Fbest and MP-CJAYA achieves the minimum value of 8223.29 $/h, as well as the minimum value of Fmean which is 8232.06 $/h. To observe the cost convergence characteristics more visually, Figure 2 depicts one randomly chosen convergence curve from 20 times of independent runs (Nruns). We can see that JAYA has been trapped into local optimum at about 320 iterations and CJAYA has also settled down at around 230 iterations, but MP-CJAYA has showed extraordinary fast convergence ability at the beginning of 10 iterations and reached global optimum at approximately 200 iterations. It reveals that MP-CJAYA has faster convergence rate compared with JAYA and CJAYA due to its strong searching ability. Figure 3 shows the distribution outlines of Fbest at each independent run time. In case of MP-CJAYA, the value of Fbest after each run remains more or less steady, whereas in CJAYA the value of Fbest varies much more than MP-CJAYA, while JAYA shows the worst stability of Fbest with maximum cost as much as 8800 $/h. This indicates that MP-CJAYA is more consistent and robust than CJAYA and JAYA.




4.2. Case II: 13-Units System for Load Demand of 2520 MW


As the same as case I, all detailed data are provided in [44]. Since the increasing number of generators causes more non-linearity and complexity, Npop, NJAYA_iter and Nruns have all increased in this case, which are given in Table 1. The best individual of dispatched outputs obtained by different methods including GA [47], SA [47], HSS [47], EP-SQP [45], PSO-SQP [45], CPSO [46], CPSO-SQP [46], JAYA, CJAYA and MP-CJAYA are reported in Table 3. The best cost are highlighted in bold font. It is observed that the minimum value of Fmean and Fbest are both achieved by MP-CJAYA, which is 24,228.1331 $/h and 24,175.5444 $/h respectively. In Figure 4 the convergence curve of MP-CJAYA is compared with JAYA and CJAYA, it can be observed that JAYA has been trapped into a local optimum in about 1300 iterations, while CJAYA has the same problem at around 1500 iterations. However, the proposed MP-CJAYA has greatly accelerated the convergence rate and reached the best value within only 750 iterations. Figure 5 is the distribution outlines of Fbest at each run time. Once again, it can be easily compared that MP-CJAYA shows the most robust characteristic among the three versions of JAYA due to most of its independent runs have achieved getting close to the best individual. All the comparisons above real that MP-CJAYA has greatly improved the best cost, the mean cost, the convergence rate and the consistency of the solution.




4.3. Case III: 40-Units System for Load Demand of 10,500 MW


In order to investigate the effectiveness of MP-CJAYA for larger scale power system, it is further evaluated by 40 generating units with load demand of 10,500 MW, which is the largest system of ELD problem considering the valve-point effect in the available literature. Considering the increased number of generators and the much more complex solution space, Npop, NJAYA_iter, NCOA_iter, Nsub_pop and Nruns have all increased, as shown in Table 1. The results comparison from methods PSO-LRS [48], NPSO [48], NPSO-LRS [48], SPSO [49], PC-PSO [49], SOH-PSO [49], JAYA, CJAYA and MP-CJAYA are shown in Table 4. The minimum value of Fmean and Fbest are highlighted in bold font. It is observed that MP-CJAYA has achieved the minimum value of Fbest among all the values by above-mentioned methods, which is 121,480.10 $/h. What’s more, the minimum value of Fmean is also achieved by MP-CJAYA, which is 121,861.08 $/h. In Figure 6 the convergence curve of MP-CJAYA is compared with JAYA and CJAYA, it can easily be observed that CJAYA performs better than JAYA due to the local searching ability provided by COA, while MP-CJAYA shows superiority over CJAYA due to the extra searching diversification provided by MP method.



Figure 7 is the distribution outlines of Fbest within 50 times of independent runs. Once again, it can be observed that MP-CJAYA shows the most robust characteristic among the three versions of JAYA because most of the Fbest value keeps steady and very close to the best individual. The comparisons have verified that MP-CJAYA get better results than all of the other algorithms in best cost, mean cost, convergence rate and consistency when dealing with larger scale power system.




4.4. Case IV: 6-Units System for Load Demand of 1263 MW


In this case, the three versions of JAYA are applied to 6-units system with constraints of ramp rate limit, prohibited operating zones (POZs) and transmission loss (   P  l o s s    ), as shown in Table 1. The generator data and B-coefficients have been taken from [50]. For every generator it has two   P O Z s  , this problem causes challenging complexity to find the global optima because of increasing number of non-convex decision spaces.



The best individual achieved by MP-CJAYA, as well the other algorithms such as SA [51], GA [51], TS [51], PSO [51], MTS [51], PSO-LRS [48], NPSO [48], NPSO-LRS [48], JAYA and CJAYA have been recorded in Table 5. It can be observed that MP-CJAYA provides the lowest Fbest among all the methods as 15,446.17 $/h, while CJAYA and JAYA provide the second and third lowest Fbest as 15,446.71 $/h and 15,447.09 $/h. Furthermore, the best cost Fbest, the worst cost Fworst and the mean cost Fmean of the three version of JAYA algorithms are also compared with those above-mentioned methods and summarized in Table 6. It can be found that MP-CJAYA is superior to all the other compared methods and achieves the minimum value of Fbest, Fworst and Fmean at the same time, which are highlighted in bold font. Figure 8 is the distribution outlines of Fbes, it can be noticed that MP-CJAYA shows the most robust characteristic and the value keeps almost steady within 20 independent runs, which has greatly surpassed JAYA and a little surpassed CJAYA. One randomly chosen convergence curve of fuel cost is shown in Figure 9, from which we can see that MP-CJAYA is extraordinary fast in convergence rate and approaches global optimum within only about 60 iterations. It all demonstrates that MP-CJAYA has the strongest capabilities of handling ELD problems with different constraint conditions.




4.5. Case V: 15-Units System for Load Demand of 2630 MW


In the last case, the three versions of JAYA are applied to a larger 15-units system with the same constraints as in case 4, the system data and B-coefficients have been taken from [50]. There are 4 generators having   P O Z s  . Generators 2, 5 and 6 have three   P O Z s   and generator 12 has two   P O Z s  . Considering that these   P O Z s   result in non-convex decision spaces consisting of 192 convex sub-spaces, the value of    N  p o p    ,    N  J A Y A _ i t e r    ,    N  C O A _ i t e r    ,    N  s u b _ p o p     and    N  r u n s     are all increased compared to Case IV to cope with the challenges.



The best outputs from JAYA, CJAYA, MP-CJAYA and other algorithms including SA [51], GA [51], TS [51], PSO [51], MTS [51], TSA [52], DSPSO-TSA [52] and AIS [53] are summarized in Table 7. From the table we can observe that DSPSO-TSA has provided lower    F  b e s t     than JAYA, but it is not as lowest as CJAYA and MP-CJAYA, which obtains 32,710.0768 $/h and 32,706.5158 $/h respectively and ranks the second and first best value among all the algorithms. Furthermore, in addition to the best cost    F  b e s t    , the worst cost    F  w o r s t     and the mean cost    F  m e a n     of the three version of JAYA algorithms are also compared with those above-mentioned methods in Table 8. It can be found that MP-CJAYA achieves the minimum value of    F  b e s t    ,    F  w o r s t     and    F  m e a n     at the same time, which are highlighted in bold font. Figure 10 is the distribution outlines of    F  b e s t    , we can notice that MP-CJAYA exhibits the best consistency in achieving minimum    F  b e s t     within 50 independent runs. One randomly chosen convergence curve is shown in Figure 11, from which we can see that CJAYA has improved the convergence rate and accuracy of basic JAYA, while MP-CJAYA has made further improvements of CJAYA in the rate of approaching the lowest cost. From the analysis above, it can be concluded that MP-CJAYA has the strongest capabilities of handling larger size of ELD problems with different constraint conditions.





5. Discussion and Conclusions


A novel multi-population based chaotic JAYA algorithm (MP-CJAYA) is proposed in this paper. By introducing the MP method and chaotic map to the basic JAYA algorithm, both the global exploration capability and the local searching capability have been greatly improved. MP-CJAYA is employed in five typical ELD cases to compare the performances with other well-established algorithms in terms of best solutions, convergence rate and robustness. The results have proved that MP-CJAYA algorithm has outstanding superiority to all the other compared algorithms in all cases.



It is noteworthy that for most of the meta-heuristic algorithms, parameter setting is critical for the quality of their results. But for MP-CJAYA, it does not require for specific algorithm parameters except for common parameters. What’s more, it is observed that the common parameter population size (Npop) does not affect the performance of its final optimal solution significantly, as shown in Figure 12. With increased Npop of 30, 50, 100 and 200 under the same circumstances, a slightly steady improvement of the convergence rate can be observed at initial part of the iteration. However, after about 5000 iterations, the differences among those curves become difficult to be observed and they all have reached the same best solution, which has proved that MP-CJAYA algorithm is not highly dependent on the common parameter Npop.



As a newly proposed meta-heuristic algorithm, even though MP-CJAYA has gained the most outstanding superiority in this paper, it still has not been used for solving other optimization issues, except for the ELD problem. Hence, authors are planning to apply it to different kinds of optimization issues in the future to broaden its applications, such as multiple fuel options, micro grid power dispatch problems and multi-objective scheduling optimization problems.
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Figure 1. Flow chart of the MP-CJAYA Algorithm. 
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Figure 2. Fuel cost convergence characteristic of 3-units system (   P D    = 850 MW). 
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Figure 3. Fuel cost for 20 independent runs of 3-units system (   P D    = 850 MW). 
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Figure 4. Fuel cost convergence characteristic of 13-units system (   P D    = 2520 MW). 
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Figure 5. Fuel cost for 30 independent runs of 13-units system (   P D    = 2520 MW). 
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Figure 6. Fuel cost convergence characteristic of 40-units system (   P D    = 10500 MW). 
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Figure 7. Fuel cost for 50 independent runs of 40-units system (   P D    = 10,500 MW). 
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Figure 8. Fuel cost for 20 independent runs of 6-units system (   P D    = 1263 MW). 
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Figure 9. Fuel cost convergence characteristic of 6-units system (   P D    = 1263 MW). 
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Figure 10. Fuel cost for 50 independent runs of 15-units system (   P D    = 2630 MW). 
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Figure 11. Fuel cost convergence characteristic of 15-units system (   P D    = 2630 MW). 
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Figure 12. Convergence characteristics of MP-CJAYA with varying population sizes for case V. 
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Table 1. Parameters and constraint conditions of the ELD cases.
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Case I

	
Case II

	
Case III

	
Case IV

	
Case V




	
JAYA

	
CJAYA

	
MP-CJAYA

	
JAYA

	
CJAYA

	
MP-CJAYA

	
JAYA

	
CJAYA

	
MP-CJAYA

	
JAYA

	
CJAYA

	
MP-CJAYA

	
JAYA

	
CJAYA

	
MP-CJAYA






	
    N  p o p     

	
20

	
20

	
20

	
50

	
50

	
50

	
100

	
100

	
100

	
20

	
20

	
20

	
100

	
100

	
100




	
    N  J A Y A _ i t e r     

	
500

	
500

	
500

	
3000

	
3000

	
3000

	
5000

	
5000

	
5000

	
1000

	
1000

	
1000

	
5000

	
5000

	
5000




	
    N  C O A _ i t e r     

	
-

	
20

	
20

	
-

	
20

	
20

	
-

	
30

	
30

	
-

	
20

	
20

	
-

	
30

	
30




	
    N  s u b _ p o p     

	
-

	
-

	
10

	
-

	
-

	
10

	
-

	
-

	
20

	
-

	
-

	
10

	
-

	
-

	
20




	
    N  r u n s     

	
20

	
20

	
20

	
30

	
30

	
30

	
50

	
50

	
50

	
20

	
20

	
20

	
50

	
50

	
50




	
Valve-point effect

	
●

	
●

	
●

	
-

	
-




	
Ramp-rate limit

	
-

	
-

	
-

	
●

	
●




	
POZ

	
-

	
-

	
-

	
●

	
●




	
    P  l o s s     

	

	
-

	
-

	
●

	
●
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Table 2. Best outputs for 3-units system (   P D    = 850 MW).
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	Unit
	GA [45]
	EP [45]
	EP-SQP [45]
	PSO [45]
	PSO-SQP [45]
	CPSO [46]
	CPSO-SQP [46]
	JAYA
	CJAYA
	MP-CJAYA





	1
	398.700
	300.264
	300.267
	300.268
	300.267
	300.267
	300.266
	350.3314
	350.0254
	350.2464



	2
	399.600
	400.000
	400.000
	400.000
	400.000
	400.000
	400.000
	400.0000
	400.0000
	400.0000



	3
	50.100
	149.736
	149.733
	149.732
	149.733
	149.733
	149.734
	99.6453
	99.9511
	99.7576



	   P  t o t a l    (MW)
	848.400
	850.000
	850.000
	850.000
	850.000
	850.000
	850.000
	849.977
	849.977
	850.004



	   F  m e a n    ($/h)
	8234.72
	8234.16
	8234.09
	8234.72
	8234.07
	NA
	NA
	8382.10
	8289.41
	8232.06



	   F  b e s t    ($/h)
	8222.07
	8234.07
	8234.07
	8234.07
	8234.07
	8234.07
	8234.07
	8230.23
	8226.18
	8223.29







NA indicates the cost value is not found.
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Table 3. Best outputs for 13-units system (   P D    = 2520 MW).
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	Unit
	GA [47]
	SA [47]
	HSS [47]
	EP-SQP [45]
	PSO-SQP [45]
	CPSO [46]
	CPSO-SQP [46]
	JAYA
	CJAYA
	MP-CJAYA





	1
	628.32
	668.40
	628.23
	628.3136
	628.3205
	628.32
	628.31
	628.3185
	628.3185
	628.3183



	2
	356.49
	359.78
	299.22
	299.1715
	299.0524
	299.83
	299.83
	299.2009
	299.1992
	299.0170



	3
	359.43
	358.20
	299.17
	299.0474
	298.9681
	299.17
	299.16
	306.9105
	299.1993
	299.1428



	4
	159.73
	104.28
	159.12
	159.6399
	159.4680
	159.70
	159.73
	159.7339
	159.7330
	159.5714



	5
	109.86
	60.36
	159.95
	159.6560
	159.1429
	159.64
	159.73
	159.7337
	159.7331
	159.6930



	6
	159.73
	110.64
	158.85
	158.4831
	159.2724
	159.67
	159.73
	159.7338
	159.7331
	159.6801



	7
	159.63
	162.12
	157.26
	159.6749
	159.5371
	159.64
	159.73
	109.8673
	159.7330
	159.7270



	8
	159.73
	163.03
	159.93
	159.7265
	158.8522
	159.65
	159.73
	159.7342
	159.7330
	159.7328



	9
	159.73
	161.52
	159.86
	159.6653
	159.7845
	159.78
	159.73
	159.7340
	159.7331
	159.5119



	10
	77.31
	117.09
	110.78
	114.0334
	110.9618
	112.46
	109.07
	114.8012
	110.0403
	111.0288



	11
	75.00
	75.00
	75.00
	75.00
	75.00
	74.00
	77.40
	114.8001
	114.7994
	77.1661



	12
	60.00
	60.00
	60.00
	60.00
	60.00
	56.50
	55.00
	92.4018
	55.0000
	55.0014



	13
	55.00
	119.58
	92.62
	87.5884
	91.6401
	91.64
	92.85
	55.0027
	55.0000
	92.3862



	   P  t o t a l    (MW)
	2520
	2520
	2520
	2520
	2520
	2520
	2520
	2519.97
	2519.96
	2519.98



	   F  m e a n    ($/h)
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	24,476.5247
	24,385.7604
	24,228.1331



	   F  b e s t    ($/h)
	24,398.23
	24,970.91
	24,275.71
	24,266.44
	24,261.05
	24,211.56
	24,190.97
	24,220.7529
	24,178.8040
	24,175.5444







NA indicates the cost value is not found.
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Table 4. Best outputs for 40-units system (   P D    = 10,500 MW).
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	Unit
	PSO-LRS [48]
	NPSO [48]
	NPSO-LRS [48]
	SPSO [49]
	PC-PSO [49]
	SOH-PSO [49]
	JAYA
	CJAYA
	MP-CJAYA





	1
	111.9858
	113.9891
	113.9761
	113.97
	113.98
	110.80
	114.0000
	113.5264
	114.0000



	2
	110.5273
	113.6334
	113.9986
	114.00
	114.00
	110.80
	111.6651
	110.7998
	110.7998



	3
	98.5560
	97.5500
	97.4141
	109.19
	97.26
	97.40
	119.9876
	120.0000
	97.3999



	4
	182.9266
	180.0059
	179.7327
	179.77
	179.51
	179.73
	188.2606
	179.7331
	179.7331



	5
	87.7254
	97.0000
	89.6511
	97.00
	89.38
	87.80
	96.9763
	97.0000
	93.1276



	6
	139.9933
	140.0000
	105.4044
	91.01
	105.20
	140.00
	139.9488
	140.0000
	140.0000



	7
	259.6628
	300.0000
	259.7502
	259.87
	259.55
	259.60
	264.0949
	300.0000
	300.0000



	8
	297.7912
	300.0000
	288.4534
	286.99
	286.90
	284.60
	299.9814
	284.5997
	284.5997



	9
	284.8459
	284.5797
	284.6460
	284.09
	284.71
	284.60
	284.9042
	284.5997
	284.5997



	10
	130.0000
	130.0517
	204.8120
	204.05
	206.24
	130.00
	130.0908
	130.0000
	130.0000



	11
	94.6741
	243.7131
	168.8311
	168.40
	166.52
	94.00
	94.0011
	94.0000
	94.0000



	12
	94.3734
	169.0104
	94.00
	94.00
	94.00
	94.00
	94.0000
	94.0000
	94.0000



	13
	214.7369
	125.0000
	214.7663
	212.30
	214.56
	304.52
	125.1028
	125.0000
	125.0000



	14
	394.1370
	393.9662
	394.2852
	393.76
	392.76
	304.52
	394.2529
	394.2794
	394.2794



	15
	483.1816
	304.7586
	304.5187
	303.62
	306.24
	394.28
	484.1262
	394.2794
	394.2794



	16
	304.5381
	304.5120
	394.2811
	392.05
	394.88
	394.28
	304.5950
	394.2794
	394.2794



	17
	489.2139
	489.6024
	489.2807
	489.49
	489.26
	489.28
	490.8265
	489.2794
	489.2794



	18
	489.6154
	489.6087
	489.2832
	489.35
	489.82
	489.28
	489.3438
	489.2794
	489.2794



	19
	511.1782
	511.7903
	511.2845
	512.39
	510.62
	511.28
	511.3775
	511.2794
	511.2794



	20
	511.7336
	511.2624
	511.3049
	511.21
	511.68
	511.27
	512.1395
	511.2794
	511.2794



	21
	523.4072
	523.3274
	523.2916
	522.61
	523.52
	523.28
	523.6621
	523.2794
	523.2794



	22
	523.4599
	523.2196
	523.2853
	523.65
	523.26
	523.28
	523.3534
	523.2794
	523.2794



	23
	523.4756
	523.4707
	523.2797
	523.06
	523.98
	523.28
	524.9677
	523.2794
	523.2794



	24
	523.7032
	523.0661
	523.2994
	520.72
	523.21
	523.28
	524.2850
	523.2794
	523.2794



	25
	523.7854
	523.3978
	523.2865
	524.86
	523.54
	523.28
	522.9279
	523.2794
	523.2794



	26
	523.2757
	523.2897
	523.2936
	525.22
	523.10
	523.28
	523.2298
	523.2794
	523.2794



	27
	10.0000
	10.0208
	10.0000
	10.00
	10.00
	10.00
	10.0000
	10.0000
	10.0000



	28
	10.6251
	10.0927
	10.0000
	10.00
	10.00
	10.00
	10.0047
	10.0000
	10.0000



	29
	10.0727
	10.0621
	10.0000
	10.00
	10.00
	10.00
	10.0000
	10.0000
	10.0000



	30
	51.3321
	88.9456
	89.0139
	87.64
	89.05
	97.00
	97.0000
	97.0000
	87.7999



	31
	189.8048
	189.9951
	190.0000
	190.00
	190.00
	190.00
	190.0000
	190.0000
	190.0000



	32
	189.7386
	190.0000
	190.0000
	190.00
	190.00
	190.00
	189.9503
	190.0000
	190.0000



	33
	189.9122
	190.0000
	190.0000
	190.00
	190.00
	190.00
	190.0000
	190.0000
	190.0000



	34
	199.3258
	165.9825
	199.9998
	200.00
	200.00
	185.20
	169.8860
	164.7998
	200.0000



	35
	199.3065
	172.4153
	165.1397
	167.18
	164.78
	164.80
	199.8549
	200.0000
	200.0000



	36
	192.8977
	191.2978
	172.0275
	172.12
	172.89
	200.00
	199.9896
	200.0000
	200.0000



	37
	110.0000
	109.9893
	110.0000
	110.00
	110.00
	110.00
	109.9712
	110.0000
	110.0000



	38
	109.8628
	109.9521
	110.0000
	110.00
	110.00
	110.00
	109.9977
	110.0000
	110.0000



	39
	92.8751
	109.8733
	93.0962
	95.58
	94.24
	110.00
	109.9871
	110.0000
	110.0000



	40
	511.6883
	511.5671
	511.2996
	510.85
	511.36
	511.28
	511.2250
	511.2794
	511.2794



	   P  t o t a l    (MW)
	10,499.9452
	10,499.9989
	10,499.9871
	10,500
	10,500
	10,500
	10,499.97
	10,499.97
	10,499.97



	   F  m e a n    ($/h)
	122,558.4565
	122,221.3697
	122,209.3185
	NA
	NA
	121,853.57
	122,581.85
	121,926.77
	121,861.08



	   F  b e s t    ($/h)
	122,035.7946
	121,704.7391
	121,664.43
	122,049.66
	121,767.89
	121,501.14
	121,799.88
	121,516.97
	121,480.10







NA indicates the cost value is not found.
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Table 5. Best outputs for 6-units system (   P D    = 1263 MW).
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	Generator
	SA [51]
	GA [51]
	TS [51]
	PSO [51]
	MTS [51]
	PSO-LRS [48]
	NPSO [48]
	NPSO-LRS [48]
	JAYA
	CJAYA
	MP-CJAYA





	1
	478.1258
	462.0444
	459.0753
	447.5823
	448.1277
	447.4440
	447.4734
	446.96
	457.9858
	452.3884
	444.7000



	2
	163.0249
	189.4456
	185.0675
	172.8387
	172.8082
	173.3430
	173.1012
	173.3944
	176.8785
	162.1065
	171.1458



	3
	261.7146
	254.8535
	264.2094
	261.3300
	262.5932
	263.3646
	262.6804
	262.3436
	250.0717
	256.4885
	253.8111



	4
	125.7665
	127.4296
	138.1222
	138.6812
	136.9605
	139.1279
	139.4156
	139.5120
	129.3748
	142.1863
	134.8118



	5
	153.7056
	151.5388
	154.4716
	169.6781
	168.2031
	165.5076
	165.3002
	164.7089
	172.8886
	170.7924
	175.4557



	6
	93.7965
	90.7150
	74.9900
	85.8963
	87.3304
	87.1698
	87.9761
	89.0162
	88.4618
	91.5015
	95.6913



	   P  t o t a l     (MW)
	1276.1339
	1276.0270
	1275.94
	1276.0066
	1276.0232
	1275.95
	1275.96
	1275.94
	1275.6611
	1275.4637
	1275.6158



	   P  l o s s     (MW)
	13.1317
	13.0268
	12.9422
	13.0066
	13.0205
	12.9571
	12.9470
	12.9361
	12.6665
	12.4444
	12.6030



	   F  b e s t     ($/h)
	15,461.10
	15,457.96
	15,454.89
	15,450.14
	15,450.06
	15,450.00
	15,450.00
	15,450.00
	15,447.09
	15,446.71
	15,446.17
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Table 6. Results comparison of 6-units system (   P D    = 1263 MW).






Table 6. Results comparison of 6-units system (   P D    = 1263 MW).











	
	     F  b e s t    ( $ / h )   
	     F  w o r s t    ( $ / h )   
	     F  m e a n    ( $ / h )   





	SA [51]
	15,461.10
	15,545.50
	15,488.98



	GA [51]
	15,457.96
	15,524.69
	15,477.71



	TS [51]
	15,454.89
	15,498.05
	15,472.56



	PSO [51]
	15,450.14
	15,491.71
	15,465.83



	MTS [51]
	15,450.06
	15,453.64
	15,451.17



	PSO-LRS [48]
	15,450.00
	15,455.00
	15,454.00



	NPSO [48]
	15,450.00
	15,454.00
	15,452.00



	NPSO-LRS [48]
	15,450.00
	15,452.00
	15,450.50



	JAYA
	15,447.09
	15,622.16
	15,500.11



	CJAYA
	15,446.71
	15,484.34
	15,461.62



	MP-CJAYA
	15,446.17
	15,451.68
	15,449.23
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Table 7. Best outputs for 15-units system (   P D    = 2630 MW).
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	Unit
	SA [51]
	GA [51]
	TS [51]
	PSO [51]
	MTS [51]
	TSA [52]
	DSPSO-TSA [52]
	AIS [53]
	JAYA
	CJAYA
	MP-CJAYA





	1
	453.6646
	445.5619
	453.5374
	454.7167
	453.9922
	440.500
	453.627
	441.159
	455.0000
	455.0000
	455.0000



	2
	377.6091
	380.0000
	371.9761
	376.2002
	379.7434
	346.800
	379.895
	409.587
	379.9848
	380.0000
	380.0000



	3
	120.3744
	129.0605
	129.7823
	129.5547
	130.0000
	110.880
	129.482
	117.298
	130.0000
	130.0000
	130.0000



	4
	126.2668
	129.5250
	129.3411
	129.7083
	129.9232
	122.460
	129.923
	131.258
	129.9821
	130.0000
	130.0000



	5
	165.3048
	169.9659
	169.5950
	169.4407
	168.0877
	177.740
	168.956
	151.011
	169.6535
	170.0000
	170.0000



	6
	459.2455
	458.7544
	457.9928
	458.8153
	460.0000
	459.110
	459.907
	466.258
	460.0000
	460.0000
	460.0000



	7
	422.8619
	417.9041
	426.8879
	427.5733
	429.2253
	406.410
	429.971
	423.368
	429.0688
	430.0000
	430.0000



	8
	126.4025
	97.8230
	95.1680
	67.2834
	104.3097
	107.550
	103.673
	99.948
	81.7235
	106.1556
	71.8662



	9
	54.4742
	54.2933
	76.8439
	75.2673
	35.0358
	107.270
	34.909
	110.684
	51.3258
	25.0000
	58.9683



	10
	149.0879
	144.2214
	133.5044
	155.5899
	155.8829
	140.560
	154.593
	100.229
	146.6714
	160.0000
	160.0000



	11
	77.9594
	77.3002
	68.3087
	79.9522
	79.8994
	78.470
	79.559
	32.057
	79.1805
	80.0000
	80.0000



	12
	93.9489
	77.0371
	79.6815
	79.8947
	79.9037
	74.170
	79.388
	78.815
	80.0000
	80.0000
	80.0000



	13
	25.0022
	31.1537
	28.3082
	25.2744
	25.0220
	31.950
	25.487
	23.568
	25.0000
	25.0000
	25.0000



	14
	16.0636
	15.0233
	17.7661
	16.7318
	15.2586
	37.380
	15.952
	40.258
	27.7503
	15.0000
	15.0000



	15
	15.0196
	33.6125
	22.8446
	15.1967
	15.0796
	22.470
	15.640
	36.906
	15.0000
	15.0000
	15.0000



	   P  t o t a l     (MW)
	2663.29
	2661.23
	2661.53
	2661.19
	2661.36
	2663.70
	2660.96
	2662.04
	2660.3408
	2661.1556
	2660.8346



	   P  l o s s     (MW)
	33.2737
	31.2363
	31.4100
	31.1697
	31.3523
	33.8110
	30.9520
	32.4075
	30.3442
	31.1643
	30.8346



	   F  b e s t     ($/h)
	32,786.40
	32,779.81
	32,762.12
	32,724.17
	32,716.87
	32,918.00
	32,715.06
	32,854.00
	32,716.8706
	32,710.0768
	32,706.5158
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Table 8. Results comparison of 15-units system (   P D    = 2630 MW).
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	     F  b e s t    ( $ / h )   
	     F  w o r s t    ( $ / h )   
	     F  m e a n    ( $ / h )   





	SA [51]
	32,786.40
	33,028.95
	32,869.51



	GA [51]
	32,779.81
	33,041.64
	32,841.21



	TS [51]
	32,762.12
	32,942.71
	32,822.84



	PSO [51]
	32,724.17
	32,841.38
	32,807.45



	MTS [51]
	32,716.87
	32,796.15
	32,767.21



	TSA [52]
	32,917.87
	33,245.54
	33,066.76



	DSPSO-TSA [52]
	32,715.06
	32,730.39
	32,724.63



	AIS [53]
	32,854.00
	32,892.00
	32,873.25



	JAYA
	32,716.8706
	32,967.8314
	32,789.1472



	CJAYA
	32,710.0768
	32,828.6554
	32,740.0719



	MP-CJAYA
	32,706.5158
	32,708.8736
	32,706.7150
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