Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries
Abstract
:1. Introduction
1.1. State-of-Charge and State-of-Health Estimation
1.2. Maximum Available Power Estimation
2. Methodology
2.1. State Definitions
2.2. Li-S Battery Model and Its Parametrization
2.3. Standard Extended Kalman Filter Implementation
2.4. Online Parameter Identification
2.5. Structure of the Maximum Available Power Estimation
2.6. Estimation Evaluation
2.7. Test Procedure and Model Structure
3. Implementation
3.1. Modelling and Structure of the Filters
3.2. Numerical Values
4. Results
4.1. Fresh Cell—SOC and SOH Estimation
4.2. Aged Cell—SOC and SOH Estimation
4.3. Maximum Available Power Estimation Validation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANFIS | Adaptive Neuro-Fuzzy Inference System |
BMS | Battery Management System |
EKF | Extended Kalman filter |
Li-ion | Lithium-Ion |
Li-S | Lithium-Sulfur |
NEDC | New European Driving Cycle |
NiMH | Nickel-Metal hydride |
OCV | Open-Circuit Voltage |
OEMs | Original Equipment Manufacturers |
RSME | Root Square Mean Error |
SOC | State of Charge |
SOH | State of Health |
UDDS | Urban Dynamometer Driving Schedule |
Battery States and Model’s Parameters and Variables: | |
SOC | |
a present amount of charge in the battery, which is possible to extract | |
the initial capacity; the maximum extractable charge from the fully charged battery at the beginning of life | |
the actual capacity; the maximum extractable charge from the fully charged battery at the actual battery age | |
the capacity fade | |
the internal resistance change | |
the initial internal resistance at the beginning of life | |
the actual internal resistance at the beginning of life | |
the maximum available discharging power | |
the maximum available charging power | |
the maximum available power (a generalized term) | |
the open-circuit voltage | |
the resistor in the element | |
the capacitor in the element | |
the voltage over the element | |
the load current | |
the battery terminal voltage | |
the term for the transition point between the high and the low voltage plateaus | |
m | a scaling factor for the maximal gradient of the sinusoidal function |
c | the transition point, both functions are equally represented there |
the dynamic bandwidth | |
the total steady-state resistance | |
the dynamic fraction of the response | |
Extended Kalman Filter: | |
A | state matrix |
B | input matrix |
C | output matrix |
D | feedthrough matrix |
x | model’s states |
y | model’s outputs |
u | model’s inputs |
k | the discrete time index |
h | the nonlinear measurement function |
P | the error covariance matrix |
Q | the process noise covariance matrix |
R | the noise measurement covariance matrix |
K | the Kalman gain matrix |
v | the measurement noise vector |
w | the process noise vector |
the ’observability grammian’ | |
the absolute maximum error | |
the absolute mean error |
References
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Hunt, I.A.; Patel, Y.; Szczygielski, M.; Kabacik, L.; Offer, G.J. Lithium sulfur battery nail penetration test under load. J. Energy Storage 2015, 2, 25–29. [Google Scholar] [CrossRef]
- Risse, S.; Cañas, N.A.; Wagner, N.; Härk, E.; Ballauff, M.; Friedrich, K.A. Correlation of capacity fading processes and electrochemical impedance spectra in lithium/sulfur cells. J. Power Source 2016, 323, 107–114. [Google Scholar] [CrossRef]
- Knap, V.; Stroe, D.I.; Swierczynski, M.; Teodorescu, R.; Schaltz, E. Investigation of the Self-Discharge Behavior of Lithium-Sulfur Batteries. J. Electrochem. Soc. 2016, 163, A911–A916. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.T.; Peng, H.J.; Huang, J.Q.; Zhao, C.Z.; Cheng, X.B.; Zhang, Q. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. ChemSusChem 2015, 8, 2892–2901. [Google Scholar] [CrossRef] [PubMed]
- Wild, M.; O’Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G.J. Lithium Sulfur Batteries, A Mechanistic Review. Energy Environ. Sci. 2015, 8, 3477–3494. [Google Scholar] [CrossRef]
- Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Source 2014, 258, 321–339. [Google Scholar] [CrossRef]
- Meng, J.; Ricco, M.; Luo, G.; Swierczynski, M.; Stroe, D.I.; Stroe, A.I.; Teodorescu, R. An Overview and Comparison of Online Implementable SOC Estimation Methods for Lithium-Ion Battery. IEEE Trans. Ind. Appl. 2018, 54, 1583–1591. [Google Scholar] [CrossRef]
- Shahriari, M.; Farrokhi, M. Online State-of-Health Estimation of VRLA Batteries Using State of Charge. IEEE Trans. Ind. Electron. 2013, 60, 191–202. [Google Scholar] [CrossRef]
- Bhangu, B.S.; Bentley, P.; Stone, D.A.; Bingham, C.M. Nonlinear observers for predicting state-of-charge and state of health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans. Veh. Technol. 2005, 54, 783–794. [Google Scholar] [CrossRef]
- Coleman, M.; Lee, C.K.; Zhu, C.; Hurley, W.G. State-of-Charge Determination From EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2007, 54, 2550–2557. [Google Scholar] [CrossRef]
- Galeotti, M.; Giammanco, C.; Cinà, L.; Cordiner, S.; Carlo, A.D. Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. Energy Convers. Manag. 2015, 92, 1–9. [Google Scholar] [CrossRef]
- Singh, P.; Fennie, C., Jr.; Reisner, D. Fuzzy logic modelling of state-of-charge and available capacity of nickel/metal hydride batteries. J. Power Source 2004, 136, 322–333. [Google Scholar] [CrossRef]
- Fotouhi, A.; Propp, K.; Auger, D.J. Electric vehicle battery model identification and state of charge estimation in real world driving cycles. In Proceedings of the 2015 7th Computer Science and Electronic Engineering Conference (CEEC), Colchester, UK, 24–25 September 2015. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based {HEV} battery packs: Part 3. State and parameter estimation. J. Power Source 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Charkhgard, M.; Farrokhi, M. State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF. IEEE Trans. Ind. Electron. 2010, 57, 4178–4187. [Google Scholar] [CrossRef]
- Mikhaylik, Y.V.; Akridge, J.R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc. 2004, 151, A1969. [Google Scholar] [CrossRef]
- Fotouhi, A.; Auger, D.; Propp, K.; Longo, S. Electric Vehicle Battery Parameter Identification and SOC Observability Analysis: NiMH and Li-S Case Studies. In Proceedings of the 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, 19–21 April 2016. [Google Scholar] [CrossRef]
- Propp, K.; Auger, D.J.; Fotouhi, A.; Longo, S.; Knap, V. Kalman-variant estimators for state of charge in lithium-sulfur batteries. J. Power Source 2017, 343, 254–267. [Google Scholar] [CrossRef]
- Propp, K.; Marinescu, M.; Auger, D.J.; O’Neill, L.; Fotouhi, A.; Somasundaram, K.; Offer, G.J.; Minton, G.; Longo, S.; Wild, M.; et al. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries. J. Power Source 2016, 328, 289–299. [Google Scholar] [CrossRef]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S. Accuracy Versus Simplicity in Online Battery Model Identification. IEEE Trans. Syst. Man Cybern. Syst. 2016, PP, 1–12. [Google Scholar] [CrossRef]
- Propp, K.; Auger, D.J.; Fotouhi, A.; Marinescu, M.; Knap, V.; Longo, S. Improved State of Charge Estimation for Lithium-Sulfur Batteries. Available online: https://doi.org/10.17862/cranfield.rd.c.3723934 (accessed on 14 August 2018).
- Bohlen, O.; Gerschler, J.B.; Sauer, D.U.; Keller, M. Robust Algorithms for a Reliable Battery Diagnosis—Managing Batteries in Hybrid Electric Vehicles. In Proceedings of the 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exposition, Yokohama, Japan, 23–28 October 2006. [Google Scholar]
- Waag, W.; Fleischer, C.; Sauer, D.U. Adaptive on-line prediction of the available power of lithium-ion batteries. J. Power Source 2013, 242, 548–559. [Google Scholar] [CrossRef]
- Fleischer, C.; Waag, W.; Bai, Z.; Sauer, D.U. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system. J. Power Source 2013, 243, 728–749. [Google Scholar] [CrossRef]
- Farmann, A.; Waag, W.; Marongiu, A.; Sauer, D.U. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J. Power Source 2015, 281, 114–130. [Google Scholar] [CrossRef]
- Balagopal, B.; Chow, M.Y. The state of the art approaches to estimate the state of health (SOH) and state of function (SOF) of lithium Ion batteries. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015. [Google Scholar] [CrossRef]
- Peukert, W. Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren. Elektrotech. Z. 1897, 20, 20–21. [Google Scholar]
- Hausmann, A.; Depcik, C. Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency. J. Power Source 2013, 235, 148–158. [Google Scholar] [CrossRef]
- Galeotti, M.; Cina, L.; Giammanco, C.; Cordiner, S.; Carlo, A.D. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. Energy 2015, 89, 678–686. [Google Scholar] [CrossRef]
- Schmidt, A.P.; Bitzer, M.; Imre, Á.W.; Guzzella, L. Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries. J. Power Source 2010, 195, 7634–7638. [Google Scholar] [CrossRef]
- Richter, G. Method and Device for Determining the State of Function of an Energy Storage Battery. US Patent 6,885,951, 26 April 2005. [Google Scholar]
- Understanding Nonlinear Kalman Filters, Part II: An Implementation Guide. Available online: http://www2.statler.wvu.edu/ irl/page13.html (accessed on 9 August 2018).
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter. In Proceedings of the SIGGRAPH, Chapel Hill, NC, USA, 24 July 2006. [Google Scholar]
- Chiang, Y.H.; Sean, W.Y.; Ke, J.C. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles. J. Power Source 2011, 196, 3921–3932. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Guo, H. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles. Appl. Energy 2012, 89, 413–420. [Google Scholar] [CrossRef]
- Xiong, R.; He, H.; Sun, F.; Zhao, K. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 2013, 62, 108–117. [Google Scholar] [CrossRef]
- Knap, V.; Zhang, T.; Stroe, D.I.; Schaltz, E.; Teodorescu, R.; Propp, K. Significance of the Capacity Recovery Effect in Pouch Lithium-Sulfur Battery Cells. ECS Trans. 2016, 74, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Marinescu, M.; Walus, S.; Offer, G.J. Modelling transport-limited discharge capacity of lithium-sulfur cells. Electrochim. Acta 2016, 219, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Marinescu, M.; Walus, S.; Kovacik, P.; Offer, G.J. What Limits the Rate Capability of Li-S Batteries during Discharge: Charge Transfer or Mass Transfer? J. Electrochem. Soc. 2018, 165, A6001–A6004. [Google Scholar] [CrossRef]
Initial Conditions | Average Errors | Maximum Errors |
---|---|---|
[ ] | [0.0080 0.0125 0.0140] | [0.0306 0.0559 0.2606] |
[ ] | [0.0112 0.0370 0.0174] | [0.1264 0.3000 0.1301] |
[ ] | [0.3963 0.3796 0.2440] | [0.7688 1.3897 1.2931] |
Initial Conditions | Average Errors | Maximum Errors |
---|---|---|
[ ] | [0.0303 0.0633 0.0777] | [0.0550 0.3162 1.4156] |
[ ] | [0.0274 0.0406 0.0756] | [0.0461 0.1150 1.4155] |
NEDC12 | [0.0576 0.0974 0.0828] | [0.1123 0.1565 0.5136] |
NEDC29 | [0.0827 0.1575 0.1796] | [0.1552 0.2412 0.6127] |
UDDS12 | [0.0797 0.1900 0.1163] | [0.1592 0.3258 0.6686] |
UDDS29 | [0.0461 0.0696 0.1301] | [0.0890 0.1632 0.6686] |
T | Quantity | Average Errors | Maximum Errors |
---|---|---|---|
1 s | [ ] (V) | [0.0080 0.0460] | [0.1840 0.1556 ] |
[ ] (A) | [0.3022 0.0249] | [1.7750 0.7759] | |
[ ] (W) | [0.5049 0.1381] | [3.0365 1.9128] | |
10 s | [ ] (V) | [0.0110 0.0525] | [0.2148 0.1548] |
[ ] (A) | [0.6119 0.0284] | [3.6860 0.3566] | |
[ ] (W) | [0.9924 0.1586] | [6.1106 0.8736] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knap, V.; Auger, D.J.; Propp, K.; Fotouhi, A.; Stroe, D.-I. Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries. Energies 2018, 11, 2133. https://doi.org/10.3390/en11082133
Knap V, Auger DJ, Propp K, Fotouhi A, Stroe D-I. Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries. Energies. 2018; 11(8):2133. https://doi.org/10.3390/en11082133
Chicago/Turabian StyleKnap, Vaclav, Daniel J. Auger, Karsten Propp, Abbas Fotouhi, and Daniel-Ioan Stroe. 2018. "Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries" Energies 11, no. 8: 2133. https://doi.org/10.3390/en11082133
APA StyleKnap, V., Auger, D. J., Propp, K., Fotouhi, A., & Stroe, D. -I. (2018). Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries. Energies, 11(8), 2133. https://doi.org/10.3390/en11082133