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Abstract: This paper presents an efficient approach for solving the optimal reactive power dispatch
problem. It is a non-linear constrained optimization problem where two distinct objective functions
are considered. The proposed approach is based on the hybridization of the particle swarm
optimization method and the tabu-search technique. This hybrid approach is used to find control
variable settings (i.e., generation bus voltages, transformer taps and shunt capacitor sizes) which
minimize transmission active power losses and load bus voltage deviations. To validate the proposed
hybrid method, the IEEE 30-bus system is considered for 12 and 19 control variables. The obtained
results are compared with those obtained by particle swarm optimization and a tabu-search without
hybridization and with other evolutionary algorithms reported in the literature.

Keywords: optimal reactive power dispatch; loss minimization; voltage deviation; hybrid method;
tabu search; particle swarm optimization

1. Introduction

Power systems are complex networks (Figure 1) used for generating and transmitting electric
power, which is expected to consume minimal resources while providing maximum security and
reliability. Optimal reactive power dispatch (ORPD) is a specific optimal power flow (OPF) problem
that has a significant influence on the secure and economic operation of power systems [1,2].
The objectives of ORPD in power systems are to minimize active power losses and to improve
the voltage profile by minimizing the load bus voltage deviations while satisfying a given set of
operating and physical constraints. The ORPD then provides optimal control variable settings such
as (generator bus voltages, output of static reactive power compensators, transformer tap-settings,
shunt capacitors, etc.) [3,4]. Due to its significant influence on the secure and economic operation of
power systems, ORPD has attracted increasing interest from electric power suppliers. Many approaches
for solving the ORPD problem have been described in the literature: initially, several classical
optimization methods such as the gradient-based approach [5,6], linear programming [7], non-linear
programming [8,9], quadratic programming [10], and interior point [11], were used to solve this
problem. However, these methods have some disadvantages in solving complex ORPD problems,
namely, premature convergence properties, algorithmic complexity and the local minima trap [12].
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In order to overcome these drawbacks, researchers have applied evolutionary and meta-heuristic
algorithms such as the genetic algorithm (GA) [13], differential evolution (DE) [14–16], evolutionary
programming (EP) [17], stud krill herd algorithm (SKHA) [18], whale optimization algorithm
(WOA) [19], backtracking search algorithm (BSA) [20], Jaya Algorithm [21], moth-flame optimization
(MFO) [22], symbiotic organism search (SOS) [23] and particle swarm optimization (PSO) [24,25].
PSO, in particular, has received increased attention from researchers because of its novelty and
searching capability. It was developed through simulation of a simplified social system and has been
found to be robust in solving continuous non-linear optimization problems [1]. Generally, PSO has
a more global searching ability at the beginning of the run and a local search near the end of the run [1].
The PSO technique can generate high-quality solutions and has a more stable convergence characteristic
than other stochastic methods. However, when solving complex multimodal problems, PSO can be
trapped in local optima [26]. To overcome this drawback, PSO performance can be enhanced with few
adjustments. Hybridization is one of these modifications or techniques which, nowadays, is a popular
idea being applied to evolutionary algorithms in order to increase their efficiency and robustness [27].

Recently, hybrid PSO has provided promising results for problems such as the power loss
minimization problem [28]. The novelty of this paper is that an efficient hybrid PSO with the tabu
search (PSO-TS) method is implemented to solve the ORPD problem with two distinct objective
functions, namely, active power loss minimization and the sum of the load bus voltage deviations.
The proposed optimization approach was tested on an IEEE 30-bus system considering two case
studies. To demonstrate the effectiveness of the proposed PSO-TS algorithm, the obtained results were
compared with TS, PSO and with several methods published in the literature, namely:

• Biogeography Based Optimization (BBO) technique: This method has been developed based on
the theory of biogeography which is nature’s way of distributing species. It is mainly based on
migration and mutation [29].

• Differential Evolution (DE) algorithm: Similar to the genetic algorithm, the DE algorithm is
a population-based algorithm that uses crossover, mutation and selection operators [14].

• General passive congregation PSO (GPAC), local passive congregation PSO (LPAC) and
coordinated aggregation (CA) are a development of the PSO algorithm using recent advances in
swarm intelligence. GPAC and LPAC algorithms are based on the global and local-neighborhood
variant PSOs, respectively, and the CA technique is based on the coordinated aggregation observed
in swarms [28].

• CLPSO method introduces learning strategy in PSO. In this method, for each particle, besides its
own best particle (pbest), other particles’ pbests are used as exemplars. Each particle learns from
all potential particles’ pbests in the swarm [9].

• Interior point (IP) method is a conventional technique based on the primal-dual algorithm [11].

This paper is organized as follows: In Section 2, a brief description and mathematical formulation
of optimal reactive power dispatch (ORPD) problem are provided. The hybrid PSO-tabu search
approach is described in Section 3 along with a short description of the PSO algorithm and tabu
search method. Simulation results and comparison with other methods are given in Section 4. Finally,
a conclusion with future works is outlined in Section 5.
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Figure 1. Schematic diagram of an electric power system.

2. ORPD Problem Formulation

ORPD is a highly constrained non-linear optimization problem in which a specific objective
function is to be minimized while satisfying a number of nonlinear equality and inequality constraints.
The objectives of the reactive power dispatch problem considered here are to minimize separately the
whole system active power losses (Ploss) and the sum of the load bus voltage deviations (SVD) with
the intention of improving the voltage profile of the power system. These objectives are achieved by
proper adjustment of the control variables like generator voltage magnitudes, shunt capacitor sizes
and transformer tap settings. The ORPD problem can be then stated as follows [14]:

For the power loss minimization:
minJ1(x, u) subject to

g(x, u) = 0
h(x, u) ≤ 0

(1)

For the voltage deviation minimization:
minJ2(x, u) subject to

g(x, u) = 0
h(x, u) ≤ 0

(2)

where:

• J1(x,u) and J2(x,u) are the transmission active power losses and SVD objective
functions, respectively.

• g and h are the set of equality and inequality constraints, respectively.
• x is the state or dependent variables vector.
• u is the control or independent variables vector.

In this study, all control variables have been considered as continuous variables. The following
sections outline this problem by detailing the objective functions.
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2.1. Objective Functions

2.1.1. Power Losses Minimization

The first objective to be minimized is the system transmission active power losses. This objective
function is expressed as follows [1]

J1(x, u) =
NL

∑
k=1

gk(V2
i + V2

j − 2ViVjcosθij) (3)

where:

• NL is the number of transmission lines.
• Vi and Vj are the voltage magnitude at buses i and j, respectively.

• gk is the conductance of branch k between buses i and j.
• θij is the voltage angle difference between bus i and bus j.

The elements of the state variables vector “x” are load buses voltage (VL), generators reactive
power output (QG) and lines apparent power flow (SL). The control variables vector “u” includes the
generation buses voltage (VG), the transformer tap settings (T) and the shunt VAR compensators (QC).

Accordingly, the x vector can be written as follows:

xT = [VL1 . . . VLNPQ
, QG1 . . . QGNG

, SL1 . . . SLNL
] (4)

where NG is the number of generators; NPQ is the number of PQ buses (load buses);
u can be expressed as:

uT = [VG1 . . . VGNG
, T1 . . . TNT , QC1 . . . QCNC

] (5)

where:

• NT is the number of tap regulating transformers.
• NC is the number of shunt VAR compensations.

2.1.2. Minimization of Voltage Deviation

The bus voltage is one of the most important security and service quality indices. Improving the
voltage profile can be achieved by minimizing the load buses voltage deviation, which is modeled as
follows [29]:

J2(x, u) =
NPQ

∑
1

∣∣∣VLi −Vre f

∣∣∣ (6)

where:

• VLi is the voltage magnitude at load bus i.
• Vref is the voltage reference value which is equal to 1 p.u.

2.2. Problem Constraints

The considered objective functions for the ORPD problem are subject to several equality and
inequality constraints [1] which will be detailed below.
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2.2.1. Equality Constrains

These constraints reflect the physical laws governing the electrical system known as power flow
equations. They are the expression of the balance between load demand (power loss included) and
generated power. The power flow equations are given by:

PGi − PDi −Vi

NB

∑
j=1

Vj(Gij cos θij + Bij sin θij) = 0 (7)

QGi −QDi −Vi

NB

∑
j=1

Vj(Gij sin θij − Bij cos θij) = 0 (8)

where:

• PGi, QGi are the respective active and reactive power of the ith generator.
• PDi, QDi are the respective active and reactive power demand at bus i.
• NB is the total number of buses; Bij, Gij are real and imaginary parts of (i,j)th element of the bus

admittance matrix.

2.2.2. Inequality Constraints.

Inequality Constraints on Security Limits

Some limits are imposed for security purposes:

• Active power generated at slack bus

Pmin
G,slack ≤ PG,slack ≤ Pmax

G,slack (9)

• Load bus voltage
Vmin

Li
≤ VLi ≤ Vmax

Li
i ∈ NPQ (10)

• Generated reactive power
Qmin

Gi ≤ QGi ≤ Qmax
Gi i ∈ NG (11)

• Thermal limits: the apparent power flowing in line “L” must not exceed the maximum allowable
apparent power flow value (Smax

L )

SL ≤ Smax
L L ∈ NL (12)

Inequality Constraints on Control Variable Limits

The different control variables are bounded as follows:

• Generator voltage limits
Vmin

Gi
≤ VGi ≤ Vmax

Gi
i ∈ NPV (13)

• Transformer tap limits
Tmin,

i ≤ Ti ≤ Tmax
i i ∈ NT (14)

• Shunt capacitor limits
Qmin

Ci
≤ QCi ≤ Qmax

Ci
i ∈ NC (15)

where:

• PG,slack is the real power generation at slack bus.
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• VGi is the voltage magnitude at generator bus i.
• Ti is the tap ratio of transformer i.
• Qci is the reactive power compensation source at bus i.
• NPQ is the number of PQ bus.
• (.)max and (.)minare the upper and lower the limits of the considered variables, respectively.

The objective functions, equality and inequality constraints are non-linear functions and they
depend upon control variables. Therefore, ORPD is a constrained non-linear optimization problem
with multiple local minima [30]. The equality constraints given by Equations (7) and (8) are met by
solving the load-flow problem. The inequality constraints given by Equations (13)–(15) should be
maintained during the solution evolution, while the inequality Equations (9)–(12) should be handled
by additional techniques.

3. Proposed Hybrid Algorithm

Hybridization is a way of combining two techniques in a judicious manner, so that the resulting
algorithm contains positive features of both algorithms [27]. The success of the meta-heuristics
optimization algorithms depends to a large extent on the careful balance between two conflicting
goals: exploration (diversification) and exploitation (intensification) [27]. In order to achieve these two
goals, the algorithms use either local search techniques, global search approaches, or an integration of
both, commonly known as hybrid methods [27]. For the ORPD problem, different hybridizations with
PSO have been used to improve the algorithm’s performance by avoiding premature convergence.
For instance, PSO has been hybridized with the linear interior point method [31], fuzzy logic [32,33],
Pareto optimal set [34], direct search method [35], differential evolution [36], a multi-agent systems [1],
imperialist competitive algorithm [37], genetic algorithm [38] and eagle strategy [39]. Tabu search
was used to solve OPF [40] and optimal reactive power planning [41] problems, but to the best
of our knowledge, the hybridization of TS with PSO has never been used even though it was
effective in solving other optimization-constrained problems [42]. Both algorithms (PSO, TS) and their
hybridization (PSO-TS) for solving the ORPD problem are discussed in the following sections.

3.1. Particle Swarm Optimization

The concept of PSO was first suggested by Kennedy and Eberhart in 1995 [43]. PSO is a population-
based evolutionary computation technique. The main idea is to evolve the population (particles) of
initial solutions in a search space in order to find the best solution. This evolution is an analogy of the
behavior of some species as they look for food, like a flock of birds or a school of fish [44]. These particles
move through the search domain with a specified velocity in search of optimal solution. Each particle
maintains a memory which helps it to keep track of its previous best position. The positions of the
particles are distinguished as personal best and global best.

The swarm of particles evolves in the search space by modifying their velocities according to the
following equations [27]:

vk+1
i = wivk

i + c1rand×
(

pbesti − xk
i

)
+ c2rand×

(
gbest− xk

i

)
(16)

where:

• vk
i is the current velocity of particle i at iteration k.

• wi is the inertia weight.
• rand is a random number between 0 and 1.
• c1 and c2 are the acceleration coefficients.
• pbesti is the best position of the current particle achieved so far.
• gbest is the global best position achieved by all informants.
• xk

i is the current position of particle i at iteration k.
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The new position of each particle is given by the following equation:

xk+1
i = xk

i + vk+1
i (17)

The inertia weighting factor for the velocity of particle i is defined by the inertial weight
approach [28].

wi = wmax −
wmax − wmin

itermax
× k (18)

where:

• itermax is the maximum number of iterations.
• k is the current number of iteration.
• wmax and wmin are the upper and lower limits of the inertia weighting factor, respectively.

The efficiency of PSO has been proved for a wide range of optimization problems. However,
constrained non-linear optimization problems have not been widely studied with this method. Hu and
Eberhart were the first to try to adapt PSO to constrained non-linear problems [45]. The difficulty in
adapting meta-heuristics mainly involves the question of how to preserve the feasibility of solutions
during different iterations.

A variety of approaches can be used to deal with feasibility in constrained non-linear optimization
problems, which largely fall into two classes:

• Penalty function approaches, and
• Approaches preserving feasibility throughout evolutionary computation,

Each method has its advantages and disadvantages. A penalty function approach is used in this
paper due to its simplicity of implementation and its proven efficiency for many constrained non-linear
optimization problems [46]. Conversely, feasibility preserving methods are highly time-consuming.
To use a penalty function method, a penalty factor associated with each violated constraint is added to
the objective function in order to penalize infeasible solutions [47]. Therefore, the optimum is found
when all the constraints are respected and the objective function is minimized. The ORPD objective
function is then modified as follows [48]:

FT = F + KP(PG,slack − Plim
G,slack)

2
+ KV

NPQ

∑
i=1

(VLi −V lim
Li

)
2

+ KQ
NG
∑

i=1
(QGi −Qlim

Gi )
2
+ KS

NL
∑

i=1
(SLi − Slim

Li
)

2
(19)

where F is equal to J1 given by Equation (3) in the case of the power losses minimization or equal to J2

given by Equation (6) in the case of the voltage deviations minimization; KP, KV, KQ and KS are the
penalty factors of the slack bus generator, bus voltage limit violation, generator reactive power limit
violation, and line flow violation, respectively.

Plim
G,slack, V lim

Li
, Qlim

Gi and Slim
Li

are defined as follows:

Plim
G,slack =

{
Pmin

G,slack i f PG,slack < Pmin
G,slack

Pmax
G,slack i f PG,slack > Pmax

G,slack
(20)

V lim
Li

=

{
Vmin

Li
i f VLi < Vmin

Li

Vmax
Li

i f VLi > Vmax
Li

(21)

Qlim
Gi =

{
Qmin

Gi i f QGi < Qlim
Gi

Qmax
Gi i f QGi > Qmax

Gi
(22)

Slim
Li

=

{
Smax

Li
i f SLi > Smax

Li

0 i f SLi ≤ Smax
Li

(23)
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3.2. Tabu Search Method

In 1986, Fred Glover proposed a new approach, called “tabu search” (TS). TS is a meta-heuristic
that guides a local heuristic search procedure to explore the solution space beyond local optimality.
This technique uses an operation called “move” to define the neighborhood of any given solution.
One of the main components of TS is its use of adaptive memory, which creates a more flexible search
behavior [49,50]. The simplest of these processes consists of recording in a tabu list the features of
the visited regions in the space search, which provides a means to avoid revisiting already inspected
solutions and thus avoid becoming trapped in local optima. Generally, the advantages of the TS
optimization technique can be summarized as follows [40]:

• TS is characterized by its ability to avoid entrapment in a local optimal solution and to prevent
the same solution being found by using the flexible memory of the search history.

• TS uses probabilistic transition rules to make decisions, rather than deterministic ones.
Hence, TS is a kind of stochastic optimization algorithm that can search a complicated and
uncertain area to find the global optimum. This makes TS more flexible and robust than
conventional methods.

• TS uses adaptive memory processes for guiding the seeking in the problem search space. Therefore,
it can easily deal with non-smooth, non-continuous and non-differentiable objective functions.

3.3. Hybrid PSO-Tabu Search Approach Applied to ORPD

Several arguments support the hybridization of PSO with TS. Firstly, PSO is a global population-
based algorithm while TS proposes fast local search mechanism. Secondly, the incorporation of TS into
PSO enables the algorithm to maintain population diversity. Finally, TS is integrated to prevent PSO
from falling into local optima. To this end, TS is proposed to serve as a local optimizer of the best local
solutions (pbest). The pbest solutions of PSO are the inputs of the TS diversification procedure. For each
solution “s”, a list of neighborhoods is defined. Candidate solutions from these neighborhoods are
examined and the best one becomes the new current solution that replaces “s”. The move leading to
the solution “s” is saved in the tabu list, called best_list. This process is repeated to produce successive
new solutions until a defined stopping criterion is satisfied.

The neighborhoods of a solution “s” are defined by hyper-rectangles introduced in [51]. A hyper-
rectangle of “s” with a radius “r” is the space containing solutions (s’) such that the distance between
s and (s’) is less than “r”. To generate m neighbors for the solution “s”, m hyper-rectangles centered
on “s” are created, and a point is randomly chosen from each of them. The best of the m chosen
points then replaces “s”. The search procedure of PSO-TS algorithm will terminate whenever the
predetermined maximum number of generations is reached, or whenever the global best solution does
not improve over a predetermined number of iterations. The diversification procedure is outlined in
Algorithm 1 while, the general and detailed flowcharts of the proposed PSO-tabu search are given in
Figures 2 and 3, respectively.
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Algorithm 1 Tabu search procedure (Diversification)
Inputs

pbest; // best historical solution of particles
pbestval; solutions values

m; //neighborhood size
r; //radius of hyper-rectangles

eps; //threshold for accepting new solution
best_list = ( pbest, r); // Initializing the tabu list best_list
Repeat

For each solution s(VGi ,Ti ,Qci) in pbest
//generation of m neighbors
i = 1
While i <= m

Generate the hyper-rectangle of radius r*i around s,
choose randomly a solution NS in the hyper- rectangle
If NS /∈ best_list then

add the move to best_list;
if eval(NS)-pbestval(s) ≤ eps then update pbestval and pbest

s = NS,
End if
i = i + 1;

End While
Until (stoping criteria)
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4. Application and Results

In this study, the proposed PSO-TS based reactive power optimization approach was applied to
an IEEE 30-bus power system (Figure 4). For the purpose of comparison, two reactive power injection
schemes have been considered:

• Case 1: IEEE 30 bus system with 12 control variables [52].
• Case 2: IEEE 30 bus system with 19 control variables [6].

For both cases, two objective functions are considered: active power loss (Equation (3)) and bus
voltage deviation (Equation (6)). In the study, all inequality constraints (Equations (9)–(15)) were
taken into consideration. This is significantly different from related studies where only part of the
inequality constraints is considered. The simulations were carried out using Matlab 7.3 on a Pentium®

3.4 GHz computer with 1 GB total memory. The PSO-TS parameter selection is a challenging task
not only for this algorithm but also for other meta-heuristic algorithms. The parameter settings used
in the proposed PSO-TS algorithm are determined through extensive experiments, including initial
inertia weight, acceleration factors, number of generations, swarm size, tabu list length, total number
of neighborhood and radius of neighborhood. Based on these results, the control parameter settings
shown in Table 1 have been used in the proposed PSO-TS algorithm and for all simulation studies in
both objective functions.

Table 1. Control parameter settings.

Parameters Value

Initial inertia weight w 0.9 and decreased to 0.4
Acceleration factor c1 2
Acceleration factor c2 2

Maximum number of generations (PSO) 200
Swarm size 20

Tabu list length 7
Number of neighborhood 3
Radius of neighborhood 0.1

Maximum number of generations (TS) 1000

4.1. Case 1: IEEE 30 Bus with 12 Control Variables

This system contains six generator units connected to buses 1, 2, 5, 8, 11 and 13; four regulating
transformers connected between the line numbers 6–9, 6–10, 4–12 and 27–28; and two shunt
compensators connected to bus numbers 10 and 24. The transmission feeder numbers is of 41.
The transmission line data and loads were taken from [52] and are shown in the Appendix A
(Tables A1 and A2). The generator voltages, transformer tap settings and VAR injection of the shunt
capacitors were considered as control variables. The voltage magnitudes of all the buses were between
0.95 and 1.1 p.u, the transformer tap settings were within the range of 0.9–1.1 p.u and the shunt
capacitor sizes were within the interval of 0 to 30 MVAR [28]. There are 12 control variables in this case,
namely, 6 generator voltages, 4 transformer taps and 2 capacitor banks. Two objective functions are
considered in order to demonstrate the effectiveness of the proposed algorithm. The proposed PSO-TS
algorithm is used to minimize separately the system active power losses and the voltage deviation of
all load buses.
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4.1.1. Power Loss Minimization

The objective in this case is to minimize the total active power losses. Before minimization,
the total power losses were 5.2783 MW. Table 2 summarize the results of the optimal settings and
the system power losses obtained by the proposed PSO-TS approach, each of the two our techniques
PSO and TS considered alone and different methods reported in [28,29], namely, CA, IP-OPF, LPAC,
GPAC and BBO. These results show that the dispatch optimal solutions determined by the PSO-TS
led to better results. Active power losses are lower than those found by TS, PSO and considered
reference. Using PSO-TS algorithm, power losses range from 5.2783 MW to 4.6304 MW, indicating
a reduction of 12.27%, while PSO and TS taken alone reduce power losses by only 1.03% and 5.61%,
respectively. For the other optimization algorithms, the best result is given by BBO algorithm [29]
which reduces the losses by 5.93%. It can be concluded that the proposed PSO-TS method is able
to determine the near-global optimal solution. At the same time, the proposed method succeeded
in keeping the dependent variables within their limits. Figure 5 shows the supremacy of PSO-TS
algorithm over the other methods. The convergence characteristics of power loss objective function
for this case are plotted in Figure 6. As the hardware and the software environments significantly
affect the computational time, it is not possible to compare the computational time requirements of the
different methods unless all the methods are run on the same hardware and programmed using the
same environment. As a rough guide, however, the average time taken by PSO-TS in this case is 19 s.

Table 2. Experimental results of TS, PSO and PSO-TS algorithms (Case 1).

Control Variables CA IP-OPF LPAC GPAC BBO TS PSO PSO-TS

V1 1.02282 1.10000 1.02342 1.02942 1.1000 1.0684 1.1000 1.0992
V2 1.09093 1.05414 0.99893 1.00645 1.0943 1.0933 1.0943 1.0948
V5 1.03008 1.10000 0.99469 1.01692 1.0804 1.0893 1.1000 1.0766
V8 0.95000 1.03348 1.01364 1.03952 1.0939 1.0853 1.1000 1.0977
V11 1.04289 1.10000 1.01647 1.03952 1.1000 1.0017 0.9505 1.0837
V13 1.03921 1.01497 1.01101 1.04870 1.1000 1.0780 1.1000 1.0754
T6–9 1.07894 0.99334 1.04247 1.04225 1.1000 0.9979 1.0547 0.9257
T6–10 0.94276 1.05938 0.99432 0.99417 0.9058 0.9008 1.1000 1.0291
T4–12 1.00064 1.00879 1.00061 1.00218 0.9521 1.0337 0.9000 0.9265
T27–28 1.00693 0.99712 1.00694 1.00751 0.9638 0.9441 0.9468 0.9422
QSh10 0.15232 0.15253 0.17737 0.17267 0.2891 0.1395 0.3000 0.2864
QSh24 0.06249 0.08926 0.06172 0.06539 0.1007 0.1838 0.0000 0.1363

Ploss (MW) 5.09209 5.10091 5.09212 5.09226 4.9650 5.2240 4.9819 4.6304
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4.1.2. Voltage Deviation Minimization

The objective in this case is the minimization of the voltage deviations in order to improve the
system voltage profile. The SVD and the optimal setting of control variables obtained by our PSO,
TS, PSO-TS and different considered methods (CA, IP-OPF LPAC, GPAC and BBO) are listed in Table 3.
The convergence characteristics of the objective BBOe function obtained by TS, PSO and PSO-TS are
illustrated in Figure 7. Before minimization, the SVD was 0.619 p.u. As shown in Table 3, the obtained
SVD using the proposed PSO-TS hybrid approach is 0.1113 p.u which means a reduction of 82.02%
while the ones given by the mentioned methods are, respectively, 80.21%, 79.97%, 79.42%, 80.71%,
69.73% and 79.40%. These results clearly indicate that PSO-TS outperforms other methods in term of
solution quality (see Figure 8).
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Table 3. Experimental results of TS, PSO and PSO-TS algorithms (Case 1).

Control Variables CA IP-OPF LPAC GPAC BBO TS PSO PSO-TS

V1 1.0890 1.10000 1.03879 1.00963 1.0033 1.0760 0.9875 1.0014
V2 0.9500 0.99100 1.01776 1.00984 1.0071 1.0494 0.9513 1.0592
V5 1.0860 0.96145 1.04863 1.01000 1.0189 1.0056 1.0641 1.0542
V8 1.1000 0.95986 1.04993 1.03516 1.0148 1.0238 1.0596 1.0133
V11 1.0021 1.10000 0.98373 1.03000 0.9908 1.0085 1.0972 0.9905
V13 1.0279 0.95000 1.00524 1.00274 1.0697 0.9641 1.1000 1.0291
T6–9 1.0287 0.99734 1.03054 1.02139 1.0039 0.9486 1.0344 0.9762
T6–10 0.9000 1.08595 0.91429 0.93327 0.9000 0.9840 1.1000 1.0163
T4–12 0.9929 1.00087 0.99469 0.99338 1.0490 0.9647 0.9000 0.9537
T27–28 1.0248 1.00482 1.02078 1.02729 0.9546 1.0287 0.9516 0.9481
QSh10 0.0000 0.11072 0.00000 0.04348 0.0924 0.0917 03000 0.2890
QSh24 0.0000 0.15928 0.03586 0.00000 0.1244 0.2278 0.0440 0.0697

SVD (p.u) 0.12252 0.17328 0.12401 0.12737 0.1194 0.1874 0.1275 0.1113
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4.2. Case 2: IEEE 30 Bus with 19 Control Variables

In this case, the IEEE 30-bus system includes six generation buses, 24 load buses and 41 branches;
4 of them have tap-changing transformer as in the first case. In addition, buses 10, 12, 15, 17, 20, 21,
23, 24 and 29 were selected for receiving shunt capacitors. This IEEE 30-bus test system included
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19 control variables. The constraint limits of the generator voltage magnitude and the tap settings
of the regulating transformers are the same as those used in the first case. The capacitor sizes are
considered as continuous variables and they must take their values from the interval of 0–5 MVAR.
The transmission line data and the loads were taken from [6]. The active and reactive total loads are
Pload = 2.834 p.u and Qload = 1.262 p.u.

4.2.1. Power Losses Minimization

To demonstrate the superiority of the proposed algorithm in the minimization of transmission
power losses (J1), Table 4 shows the PSO-TS simulation results compared with those reported in
the literature such as DE [14], BBO [48], and comprehensive learning PSO (CLPSO) [9]. The initial
conditions for all these methods were the same and were taken from [6]. The total active power loss was
initially 5.8322 MW, reduced to 4.5213 MW by the proposed method, i.e., a reduction in power losses
by 22.48%. As shown in Figure 9, the proposed PSO-TS algorithm outperforms the cited meta-heuristic
methods. Figure 10 shows the convergence characteristics of TS, PSO and PSO-TS approaches.
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Table 4. Experimental results of TS, PSO and PSO-TS algorithms (Case 2).

Control Variables Initial DE CLPSO BBO TS PSO PSO-TS

V1 1.0500 1.1000 1.1000 1.1000 1.0835 1.1000 1.1000
V2 1.0400 1.0931 1.1000 1.0944 1.0567 1.1000 1.0943
V5 1.0100 1.0736 1.0795 1.0749 1.0671 1.0832 1.0749
V8 1.0100 1.0756 1.1000 1.0768 1.0944 1.1000 1.0766
V11 1.0500 1.1000 1.1000 1.0999 0.9873 0.9500 1.1000
V13 1.0500 1.1000 1.1000 1.0999 1.0863 1.1000 1.1000
T6–9 1.0780 1.0465 0.9154 1.0435 1.0745 1.1000 0.9744
T6–10 1.0690 0.9097 0.9000 0.9011 0.9960 1.0953 1.0510
T4–12 1.0320 0.9867 0.9000 0.9824 0.9678 0.9000 0.9000
T27–28 1.0680 0.9689 0.9397 0.9691 1.0267 1.0137 0.9635
QSh10 0.0000 0.0500 0.0492 0.0499 0.0146 0.0500 0.0500
QSh12 0.0000 0.0500 0.0500 0.0498 0.0376 0.0500 0.0500
QSh15 0.0000 0.0500 0.0500 0.0499 0.0000 0.0000 0.0500
QSh17 0.0000 0.0500 0.0500 0.0499 0.0335 0.0500 0.0500
QSh20 0.0000 0.0440 0.0500 0.0499 0.0019 0.0500 0.0386
QSh21 0.0000 0.0500 0.0500 0.0499 0.0242 0.0500 0.0500
QSh23 0.0000 0.0280 0.0500 0.0387 0.0307 0.0500 0.0500
QSh24 0.0000 0.0500 0.0500 0.0498 0.0294 0.0500 0.0500
QSh29 0.0000 0.0259 0.0500 0.0290 0.0399 0.0260 0.0213

Ploss (MW) 5.8322 4.5550 4.5615 4.5511 4.9203 4.6862 4.5213

4.2.2. Voltage Deviation Minimization

The SVD minimization has also been tested using the PSO-TS proposed method on the IEEE
30 bus with 19 control variables. The optimal control variables settings and the SVD obtained by the
different methods are shown in Table 5. These results show that the optimal solutions determined by
PSO-TS lead to lower SVD than those found by TS, PSO and DE (Figure 11). The PSO-TS algorithm has
reduced the SVD from the initial state at 1.1521 p.u to 0.0866 p.u, representing a reduction of 92.48%
compared with TS, PSO and DE, which reduced SVD by 86.63%, 91.27%, and 92.09%, respectively.
This shows that the PSO-TS is well capable of determining the global or near-global optimum solution.
The proposed method succeeded also in keeping the dependent variables within their limits. Figure 12
gives the SVD evolution over iterations of TS, PSO and PSO-TS methods.

Table 5. Experimental results of TS, PSO and PSO-TS algorithms (Case 2).

Control Variables Initial State DE TS PSO PSO-TS

V1 1.0500 1.0100 0.9518 0.9898 0.9867
V2 1.0400 0.9918 1.0888 0.9529 0.9910
V5 1.0100 1.0179 1.0502 1.0493 1.0244
V8 1.0100 1.0183 1.0052 0.9988 1.0042
V11 1.0500 1.0114 1.0730 1.0749 1.0106
V13 1.0500 1.0282 1.0637 1.0404 1.0734
T6–9 1.0780 1.0265 1.0137 1.0548 1.0725
T6–10 1.0690 0.9038 1.0342 1.1000 0.9797
T4–12 1.0320 1.0114 0.9993 0.9115 0.9273
T27–28 1.0680 0.9635 0.9652 0.9458 0.9607
QSh10 0.0000 0.0494 0.0355 0.0500 0.0095
QSh12 0.0000 0.0108 0.0419 0.0500 0.0215
QSh15 0.0000 0.0499 0.0032 0.0486 0.0226
QSh17 0.0000 0.0023 0.0008 0.0500 0.0005
QSh20 0.0000 0.0499 0.0491 0.0500 0.0359
QSh21 0.0000 0.0490 0.0134 0.0500 0.0401
QSh23 0.0000 0.0498 0.0382 0.0500 0.0427
QSh24 0.0000 0.0496 0.0426 0.0500 0.0374
QSh29 0.0000 0.0223 0.0306 0.0000 0.0210

SVD (p.u) 1.1521 0.0911 0.1540 0.1006 0.0866
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5. Conclusions

In this paper, a hybrid PSO-tabu search algorithm was proposed and successfully applied
as a solution to the optimal reactive power dispatch problem. This problem was formulated as
a highly constrained non-linear optimization problem where all realistic constraints were taken into
consideration, including security inequalities, such as thermal constraints and real power generation
constraint at the slack bus. To demonstrate the superiority of the proposed PSO-TS approach,
simulation results were compared with TS, PSO and with various techniques available in the literature,
such as CA, IP-OPF, LPAC, GPAC, BBO, DE and CLPSO. These simulation results show that the
proposed PSO-TS algorithm gives superior solutions compared with these optimization techniques
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implemented using the same case studies. The presented results are very encouraging and indicate
that the implementation of PSO-TS could be effective for solving the optimal power dispatch problem.

Future research should focus on analyzing other hybridization techniques in order to integrate
discrete variables. Moreover, power network systems require optimizing more objectives at the same
time, thus multi-objective optimization will be considered a future target.
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Appendix A

Table A1. Transmission line date of IEEE 30-bus system.

Bus No. Bus No. R (p.u) X (p.u) B/2 (p.u) Bus No. Bus No. R (p.u) X (p.u) B/2 (p.u)

1 2 0.0192 0.0575 0.0264 15 18 0.1073 0.2185 0
1 3 0.0452 0.1852 0.0204 18 19 0.0639 0.1292 0
2 4 0.0570 0.1737 0.0184 19 20 0.0340 0.0680 0
3 4 0.0132 0.0379 0.0042 10 20 0.0936 0.2090 0
2 5 0.0472 0.1983 0.0209 10 17 0.0324 0.0845 0
2 6 0.0581 0.1763 0.0187 10 21 0.0348 0.0749 0
4 6 0.0119 0.0414 0.0045 10 22 0.0727 0.1499 0
5 7 0.0460 0.1160 0.0102 21 22 0.0116 0.0236 0
6 7 0.0267 0.0820 0.0085 15 23 0.1000 0.2020 0
6 8 0.0120 0.0420 0.0045 22 24 0.1150 0.1790 0
6 9 0 0.2080 0 23 24 0.1320 0.2700 0
6 10 0 0.5560 0 24 25 0.1885 0.3292 0
9 11 0 0.2080 0 25 26 0.2544 0.3800 0
9 10 0 0.1100 0 25 27 0.1093 0.2087 0
4 12 0 0.2560 0 28 27 0 0.3960 0

12 13 0 0.1400 0 27 29 0.2198 0.4153 0
12 14 0.1231 0.2559 0 27 30 0.3202 0.6027 0
12 15 0.0662 0.1304 0 29 30 0.2399 0.4533 0
12 16 0.0945 0.1987 0 8 28 0.0636 0.2000 0.0214
14 15 0.2210 0.1997 0 6 28 0.0169 0.0599 0.0650
16 17 0.0824 0.1923 0

Table A2. Load data of IEEE 30-bus system.

Bus No. Active Load (p.u) Reactive Load (p.u) Bus No. Active Load (p.u) Reactive Load (p.u)

1 0.0000 0.0000 16 0.0350 0.0180
2 0.2170 0.1270 17 0.0900 0.0580
3 0.0240 0.0120 18 0.0320 0.0090
4 0.0760 0.0160 19 0.0950 0.0340
5 0.9420 0.1900 20 0.0220 0.0070
6 0.0000 0.0000 21 0.1750 0.1120
7 0.2280 0.1090 22 0.0000 0.0000
8 0.3000 0.3000 23 0.0320 0.0160
9 0.0000 0.0000 24 0.0870 0.0670

10 0.0580 0.0200 25 0.0000 0.0000
11 0.0000 0.0000 26 0.0350 0.0230
12 0.1120 0.0750 27 0.0000 0.0000
13 0.0000 0.0000 28 0.0000 0.0000
14 0.0620 0.0160 29 0.0240 0.0090
15 0.0820 0.0250 30 0.1060 0.0190
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