Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement
Abstract
:1. Introduction
- to identify HFO substances that can be used as refrigerants in ejector systems;
- to conduct an assessment of the effectiveness of HFO fluids; and
- to determine the optimal working point and to fill the gap in the comparison of these refrigerants with other groups presented by the authors in previous articles.
2. General Description of Hydrofluoroolefins
3. The Ejector Model and Its Properties
- the refrigerant is treated as a semi-ideal gas—Cp and γ values vary with the fluid temperature;
- the flow inside the ejector is steady and one-dimensional;
- the kinetic energies at the secondary inlet and outlet of the ejector are negligible;
- the ejector's inner walls are adiabatic.
- the isentropic efficiency of the compressible flow in the primary nozzle ηp = 0.95;
- the isentropic efficiency of the entrained flow ηs = 0.85;
- the loss coefficient of the primary flow inside the suction chamber ϕp = 0.88;
- the frictional loss coefficient of the mixed flow ϕm.
4. Results and Discussion
4.1. Compression Ratio
4.2. Entrainment Ratio (ω) and Coefficient of Performance (COP)
4.3. Cooling Capacity
- For the first set (te = 0 °C, tc = 25 °C, Figure 8B) in the temperature range of the primary vapor from 60 °C to 80 °C, the use of HFO-1243zf instead of R134a would give about 32% more cooling capacity;
- For the second set (te = 6 °C, tc = 30 °C, Figure 8D) in the temperature range of the primary vapor from 60 °C to 80 °C, the use of HFO-1243zf instead of R134a would give about 41% more cooling capacity;
- For the third set (te = 9 °C, tc = 40 °C, Figure 8F) in the temperature range of the primary vapor from 60 °C to 80 °C, the use of HFO-1243zf instead of R134a would give about 140% more cooling capacity.
5. Conclusions
- A favorable feature of hydrofluoroolefin is that they obtain a high efficiency of the ejector system performance at low primary vapor temperatures. For the three analyzed variants of evaporation and condensation temperatures, the maximum COPs were 0.35, 0.365, and 0.22, respectively.
- The most benefit comes from the use of HFO-1243zf and HFO-1234ze(E). However, they do not allow operation in a wide range of generator temperatures, and it is therefore necessary to correctly select and control the operating parameters of the ejector.
- There was no single refrigerant that ensures efficient operation of the system in the examined range of te, tc, and tg temperatures.
- The HFO-1233zd(E) and HFO-1224yd(Z) working fluids allow the optimal COP of the ejector refrigeration system for high temperatures of the motive vapor (above 130 °C) to be obtained. Unfortunately, these fluids have chlorine in their molecule, and despite their short atmospheric lifetime and almost zero ODP, their use is controversial in the light of EU Regulation 1005/2009 [46].
- It was found that HFO-1216 and HFO-1234yf are not attractive for ejector refrigeration units in the tested range of evaporation and condensation temperatures.
- The use of HFO-1243zf would improve the cooling capacity for low driving vapor temperatures (from about 60 °C to 88 °C).
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Nomenclature | Definition |
A | area (m2) |
Cp | specific heat at constant pressure (kJ·kg−1·K−1) |
Cr | compression ratio (dimensionless) |
h | specific enthalpy (kJ·kg−1) |
m | mass (kg) |
mass flow (kg·s−1) | |
p, P | pressure (kPa) |
q | enthalpy of vaporization (kJ·kg−1) |
Q | heat (W) |
R | individual gas constant (J·kg−1·K−1) |
s | specific entropy (kJ·kg−1·K−1) |
t, T | temperature (°C or K) |
u | velocity (m·s−1) |
Greek symbols | Definition |
γ | ratio of specific heats (dimensionless) |
η | isentropic efficiency (dimensionless) |
ϕ | loss coefficient (dimensionless) |
ρ | density (kg·m−3) |
ω | entrainment ratio (dimensionless) |
Subscripts | Definition |
c | condensing |
e | evaporation |
g | generating or gas |
in | inlet |
m | mixing |
N | normal boiling point |
out | outlet |
p | primary flow |
s | secondary flow (entrained) |
t | throat |
to | total |
Abbreviations | Definition |
ATEL | Acute Toxicity Exposure Limit |
COP | Coefficient of Performance |
DME | Dimethyl ether |
GWP | Global Warming Potential |
HCFO | Hydrochlorofluoroolefin |
HFC | Hydrofluorocarbon |
HFO | Hydrofluoroolefin |
LFL | Lower Flammable Limit |
MAC | Mobile Air-conditioning |
ODP | Ozone Depletion Potential |
ORC | Organic Rankine Cycle |
References
- European Environment Agency. Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 Relating to Emissions from Air-Conditioning Systems in Motor Vehicles and Amending Council Direactive 70/156/EEC. Available online: https://www.eea.europa.eu/policy-documents/directive-2006-40-ec#tab-related-indicators (accessed on 9 June 2018).
- European Environment Agency. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006. Available online: https://www.eea.europa.eu/policy-documents/regulation-eu-no-517-2014 (accessed on 9 June 2018).
- Mota-Babiloni, A.; Belman-Flores, J.M.; Makhnatch, P.; Navarro-Esbrí, J.; Barroso-Maldonado, J.M. Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system. Energy 2018, 162, 99–110. [Google Scholar] [CrossRef]
- Llopis, R.; Sánchez, D.; Cabello, R.; Catalán-Gil, J.; Nebot-Andrés, L. Experimental analysis of R-450A and R-513A as replacements of R-134a and R-507A in a medium temperature commercial refrigeration system. Int. J. Refrig. 2017, 84, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Belman-Flores, J.M.; Rangel-Hernandez, V.H.; Uson, S.; Rubio-Maya, C. Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system. Energy 2017, 132, 116–125. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A. Comparative performance analysis of HFO1234ze/HFC134a binary mixtures working as a drop-in of HFC134a in a domestic refrigerator. Int. J. Refrig. 2017, 82, 71–82. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. The drop-in of HFC134a with HFO1234ze in a household refrigerator. Int. J. Therm. Sci. 2018, 127, 117–125. [Google Scholar] [CrossRef]
- Invernizzi, C.M.; Iora, P.; Preißinger, M.; Manzolini, G. HFOs as Substitute for R-134a as Working Fluids in ORC Power Plants: A Thermodynamic Assessment and Thermal Stability Analysis 2016. Available online: https://www.infona.pl/resource/bwmeta1.element.elsevier-0dafa870-0cc8-35e8-8500-fc456eab5fd3 (accessed on 9 June 2018).
- Yang, C.-Y.; Nalbandian, H.; Lin, F.-C. Flow boiling heat transfer and pressure drop of refrigerants HFO-1234yf and HFC-134a in small circular tube. Int. J. Heat Mass Transf. 2018, 121, 726–735. [Google Scholar] [CrossRef]
- Diani, A.; Mancin, S.; Rossetto, L. Flow boiling heat transfer of R1234yf inside a 3.4 mm ID microfin tube. Exp. Therm. Fluid Sci. 2015, 66, 127–136. [Google Scholar] [CrossRef]
- Pérez-García, V.; Belman-Flores, J.; Rodríguez-Muñoz, J.; Rangel-Hernández, V.; Gallegos-Muñoz, A. Second Law Analysis of a Mobile Air Conditioning System with Internal Heat Exchanger Using Low GWP Refrigerants. Entropy 2017, 19, 175. [Google Scholar] [CrossRef]
- Daviran, S.; Kasaeian, A.; Golzari, S.; Mahian, O.; Nasirivatan, S.; Wongwises, S. A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Appl. Therm. Eng. 2017, 110, 1091–1100. [Google Scholar] [CrossRef]
- Lai, N.A. Thermodynamic properties of HFO-1243zf and their application in study on a refrigeration cycle. Appl. Therm. Eng. 2014, 70, 1–6. [Google Scholar] [CrossRef]
- Śmierciew, K.; Gagan, J.; Butrymowicz, D.; Łukaszuk, M.; Kubiczek, H. Experimental investigation of the first prototype ejector refrigeration system with HFO-1234ze(E). Appl. Therm. Eng. 2017, 110, 115–125. [Google Scholar] [CrossRef]
- Fang, Y.; Croquer, S.; Poncet, S.; Aidoun, Z.; Bartosiewicz, Y. Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. Int. J. Refrig. 2017, 77, 87–98. [Google Scholar] [CrossRef]
- Milazzo, A.; Rocchetti, A. Modelling of ejector chillers with steam and other working fluids. Int. J. Refrig. 2015, 57, 277–287. [Google Scholar] [CrossRef]
- Thongtip, T.; Aphornratana, S. An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator. Appl. Therm. Eng. 2017, 110, 89–101. [Google Scholar] [CrossRef]
- Khennich, M.; Galanis, N.; Sorin, M. Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems. Appl. Energy 2016, 179, 1020–1031. [Google Scholar] [CrossRef]
- Li, F.; Chang, Z.; Tian, Q.; Wu, C.; Wang, X. Performance Predictions of Dry and Wet Vapors Ejectors Over Entire Operational Range. Energies 2017, 10, 1012. [Google Scholar] [CrossRef]
- Ameur, K.; Aidoun, Z.; Ouzzane, M. Experimental performances of a two-phase R134a ejector. Exp. Therm. Fluid Sci. 2018, 97, 12–20. [Google Scholar] [CrossRef]
- Li, F.; Li, R.; Li, X.; Tian, Q. Experimental investigation on a R134a ejector refrigeration system under overall modes. Appl. Therm. Eng. 2018, 137, 784–791. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Optimum design of a solar ejector refrigeration system for various operating scenarios. Energy Convers. Manag. 2017, 154, 11–24. [Google Scholar] [CrossRef]
- Yan, J.; Chen, G.; Liu, C.; Tang, L.; Chen, Q. Experimental investigations on a R134a ejector applied in a refrigeration system. Appl. Therm. Eng. 2017, 110, 1061–1065. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Zou, T.; Du, J.; Jia, F. Auto-tuning ejector for refrigeration system. Energy 2018, 161, 536–543. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, H.; Yu, J. Performance study of an enhanced ejector refrigeration cycle with flash tank economizer for low-grade heat utilization. Appl. Therm. Eng. 2018, 140, 43–50. [Google Scholar] [CrossRef]
- Feng, B.; Yang, Z.; Zhai, R. Experimental study on the influence of the flame retardants on the flammability of R1234yf. Energy 2018, 143, 212–218. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database: REFPROP Reference Fluid Thermodynamic and Transport Properties, version 9.4.4.44 2018. Available online: https://www.nist.gov/srd/refprop (accessed on 6 June 2018).
- EN 378-1:2016 Refrigerating Systems and Heat Pumps-Safety and Environmental Requirements-Part 1: Basic Requirements, Definitions, Classification and Selection Criteria. Annex E Safety Classification and Information about Refrigerants. Available online: https://infostore.saiglobal.com/en-au/standards/en-378-1-2016-1892971/ (accessed on 9 June 2018).
- Kasperski, J.; Gil, B. Performance estimation of ejector cycles using heavier hydrocarbon refrigerants. Appl. Therm. Eng. 2014, 71, 197–203. [Google Scholar] [CrossRef]
- AGC Chamicals. Amolea 1224yd Product Summary 2016. Available online: https://www.agc-chemicals.com/jp/en/products/detail/index.html?pCode=JP-EN-G016 (accessed on 28 April 2018).
- Fukuda, S.; Kondou, C.; Takata, N.; Koyama, S. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps. Int. J. Refrig. 2014, 40, 161–173. [Google Scholar] [CrossRef]
- Longo, G.A.; Zilio, C.; Righetti, G.; Brown, J.S. Experimental assessment of the low GWP refrigerant HFO-1234ze(Z) for high temperature heat pumps. Exp. Therm. Fluid Sci. 2014, 57, 293–300. [Google Scholar] [CrossRef]
- Arat, H.; Oguz, A. Exergoeconomic analysis of district heating system boosted by the geothermal heat pump. Energy 2017, 119, 1159–1170. [Google Scholar] [CrossRef]
- Moles, F.; Navarro-Esbrí, J.; Peris, B.; Mota-Babiloni, A.; Barragan-Cervera, A.; Kontomaris, K. Low GWP alternatives to HFC-245fa in Organic Rankine Cycles for low temperature heat recovery: HCFO-1233zd-E and HFO-1336mzz-Z. Appl. Therm. Eng. 2014, 71, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Guillaume, L.; Legros, A.; Desideri, A.; Lemort, V. Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd. Appl. Energy 2017, 186, 408–422. [Google Scholar] [CrossRef] [Green Version]
- Welzl, M.; Heberle, F.; Brüggemann, D. Simultaneous experimental investigation of nucleate boiling heat transfer and power output in ORC using R245fa and R1233zd(E). Energy Proc. 2017, 129, 435–442. [Google Scholar] [CrossRef]
- Moles, F.; Navarro-Esbrí, J.; Peris, B.; Mota-Babiloni, A.; Barragan-Cervera, A.; Kontomaris, K. Thermo-economic evaluation of low global warming potential alternatives to HFC-245fa in Organic Rankine Cycles. Energy Proc. 2017, 142, 1199–1205. [Google Scholar] [CrossRef]
- Luo, D.; Mahmoud, A.; Cogswell, F. Evaluation of Low-GWP fluids for power generation with Organic Rankine Cycle. Energy 2015, 85, 481–488. [Google Scholar] [CrossRef]
- Miyoshi, N.; Suemitsu, R.; Togano, Y.; Kanki, Y.; Hasegawa, Y. Centrifugal Chiller Using HFO-1233zd(E). Available online: http://conf.montreal-protocol.org/meeting/oewg/oewg-39/presession/Japan_submissions/JRAIA-Symposium2016_0804_centrifugal_chiller_E.pdf (accessed on 9 June 2018).
- Lee, S.J.; Shon, B.H.; Jung, C.W.; Kang, Y.T. A novel type solar assisted heat pump using a low GWP refrigerant (R- 1233zd(E)) with the flexible solar collector. Energy 2018, 149, 386–396. [Google Scholar] [CrossRef]
- Navarro-Esbri, J.; Moles, F.; Peris, B.; Mota-Babiloni, A.; Kontomaris, K. Experimental study of an Organic Rankine Cycle with HFO-1336mzz-Z as a low global warming potential working fluid for micro-scale low temperature applications. Energy 2017, 133, 79–89. [Google Scholar] [CrossRef]
- Huang, B.J.; Chang, J.M.; Wang, C.P.; Petrenko, V.A. A 1-D analysis of ejector performance. Int. J. Refrig. 1999, 22, 354–364. [Google Scholar] [CrossRef]
- Gil, B.; Kasperski, J. Efficiency analysis of alternative refrigerants for ejector cooling cycles. Energy Convers. Manag. 2015, 94, 12–18. [Google Scholar] [CrossRef]
- Gil, B.; Kasperski, J. Performance estimation of ejector cycles using ethers and fluorinated ethers as refrigerants. Appl. Therm. Eng. 2018, 133, 269–275. [Google Scholar] [CrossRef]
- Gagan, J.; Smierciew, K.; Butrymowicz, D. Performance of ejection refrigeration system operating with R-1234ze(E) driven by ultra-low grade heat source. Int. J. Refrig. 2018, 88, 458–471. [Google Scholar] [CrossRef]
- Regulation (EC) No 1005/2009 of the European Parliment and of the Council of 16 September 2009 on Substances that Deplete the Ozone Layer. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:286:0001:0030:EN:PDF (accessed on 9 June 2018).
Working fluid | R134a | R1216 | R1224yd(Z) | R1233zd | R1234yf | R1234ze(E) | R1234ze(Z) | R1243zf | R1336mzz(Z) |
---|---|---|---|---|---|---|---|---|---|
Chemical name | 1,1,1,2-tetrafluoroethane | hexafluoropropene | (Z)-1-chloro-2,3,3,3-tetrafluoropropene | trans-1-chloro-3,3,3-trifluoroprop-1-ene | 2,3,3,3-tetrafluoroprop-1-ene | trans-1,3,3,3-tetrafluoroprop-1-ene | cis-1,3,3,3-tetrafluoropropene | 3,3,3-trifluoropropene | (Z)-1,1,1,4,4,4-hexafluoro-2-butene |
Chemical formula | CF3CH2F | C3F6 | CF3CF=CHCl (cis) | CF3CH=CHCl | CF3CF=CH2 | CHF=CHCF3 (trans) | CHF=CHCF3 (cis) | CH2=CHCF3 | CF3CH=CHCF3 (Z) |
CAS# | 811-97-2 | 116-15-4 | 111512-60-8 | 102687-65-0 | 754-12-1 | 29118-24-9 | 29118-25-0 | 677-21-4 | 692-49-9 |
Molecular weight (g·mol-1) | 102.03 | 150.02 | 148.49 | 130.50 | 114.04 | 114.04 | 114.04 | 96.05 | 164.06 |
Safety class1 | A1 | NC | A14 | A1 | A2L | A2L | A2L | A2L5 | A15 |
LFL (kg·m-3) | NF | 0.441 | NF4 | NF | 0.289 | 0.303 | 0.211 | 0.144 | NF |
ATEL1 | 0.21 | NC | NC | 0.086 | 0.47 | 0.28 | NC | NC | NC |
GWP1002 | 1430 | NC | NC | 4.5 | 4 | 7 | NC | NC | NC |
GWP1003 | 1300 | NC | 14 | 1 | < 1 | < 1 | < 1 | < 1 | 2 |
ODP1, | 0 | NC | 0.000124 | 0.00024 (~0) | 0 | 0 | 0 | 0 | 0 |
Lifetime in the atmosphere3(days) | ~4900 | NC | 21.04 | 26.0 | 10.5 | 16.4 | 10.0 | 7.0 | 22.0 |
Normal boiling point (°C) | –26.07 | -30.34 | 14.62 | 18.26 | -29.48 | -18.97 | 9.73 | –25.42 | 33.45 |
Critical temperature (°C) | 101.06 | 85.75 | 155.54 | 166.45 | 94.70 | 109.36 | 150.12 | 103.78 | 171.35 |
Critical pressure (kPa) | 4059.3 | 3149.5 | 3337.0 | 3623.7 | 3382.2 | 3634.9 | 3530.6 | 3517.9 | 2903.0 |
Latent heat of vaporization (kJ·kg-1) | |||||||||
- at 0 °C | 198.60 | 125.96 | 175.42 | 203.60 | 163.29 | 184.18 | 220.40 | 200.73 | 179.46 |
- at 15 °C | 186.59 | 117.24 | 168.69 | 196.27 | 153.03 | 174.19 | 212.14 | 189.50 | 172.96 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, B.; Kasperski, J. Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement. Energies 2018, 11, 2136. https://doi.org/10.3390/en11082136
Gil B, Kasperski J. Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement. Energies. 2018; 11(8):2136. https://doi.org/10.3390/en11082136
Chicago/Turabian StyleGil, Bartosz, and Jacek Kasperski. 2018. "Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement" Energies 11, no. 8: 2136. https://doi.org/10.3390/en11082136
APA StyleGil, B., & Kasperski, J. (2018). Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement. Energies, 11(8), 2136. https://doi.org/10.3390/en11082136