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Abstract: Thermoelectric generators (TEGs) are rapidly becoming the mainstream technology for
converting thermal energy into electrical energy. The rise in the continuous deployment of TEGs
is related to advancements in materials, figure of merit, and methods for module manufacturing.
However, rapid optimization techniques for TEGs have not kept pace with these advancements,
which presents a challenge regarding tailoring the device architecture for varying operating
conditions. Here, we address this challenge by providing artificial neural network (ANN) models
that can predict TEG performance on demand. Out of the several ANN models considered for
TEGs, the most efficient one consists of two hidden layers with six neurons in each layer. The model
predicted TEG power with an accuracy of ±0.1 W, and TEG efficiency with an accuracy of ±0.2%.
The trained ANN model required only 26.4 ms per data point for predicting TEG performance against
the 6.0 minutes needed for the traditional numerical simulations.
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1. Introduction

A thermoelectric generator (TEG) module consists of multiple thermocouples, which are
connected electrically in a series and thermally in parallel. When a thermal gradient is applied
across the two ends of a TEG module, electrons in the n-type legs and holes in the p-type legs move
from the hot side to the cold side, resulting in the flow of electrical current [1]. In other words, a TEG
is a solid-state heat engine that directly converts heat into electricity with no moving parts or harmful
discharge [2]. The principle for energy conversion is based on a thermoelectric effect that includes
three different thermal-to-electric phenomena: the Seebeck effect, the Peltier effect, and the Thomson
effect [3]. The Seebeck effect results in an induced voltage in response to the temperature difference
applied across the two ends of a thermocouple, where the induced voltage is directly proportional to
the temperature difference [4,5]. The Peltier effect is the reverse of the Seebeck effect, and it results in
cooling or heating at the two junctions of a thermocouple when an electric current passes through it [6].
The Peltier heat is directly proportional to the electric current, but its sign (cooling or heating) depends
upon the direction of the electric current. Both the Seebeck and Peltier effects require a thermocouple,
which consists of two dissimilar materials. However, the Thomson effect occurs in a single material
when it is non-uniformly heated and an electric current is passed through it. Continuous Seebeck and
Peltier effects due to the combined effect of a spatial temperature gradient and an electric current result
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in the Thomson heat, which is proportional to the electric current and absorbed or released based on
the direction of the current [4].

Continuous efforts have been made toward developing high performance n-type and p-type
thermoelectric (TE) materials [1,7–9]. The performance of TE materials is measured in terms of a
dimensionless metric called the figure of merit, which is denoted as ZT. It combines three key material
properties: thermal conductivity (κ), electrical resistivity (ρ), and the Seebeck coefficient (S), along with
the absolute temperature (T), and it is given as ZT = S2

κρ T [10,11]. The magnitude of ZT for most of the
commercial thermoelectric materials is close to unity; however, recent studies have reported higher
values for some of the state-of-the-art TE materials, such as a quantum-dot superlattice with ZT ~3.5 at
575 K [12], a superlattice structure with ZT ~2.4 at 300 K and ZT ~2.9 at 400 K [13], and lead antimony
silver telluride with ZT ~2.2 at 800 K [14]. The thermoelectric modules built using nanostructured
materials have been reported to exhibit thermal-to-electrical energy conversion efficiency up to 10% at
a temperature difference of 500 K [15].

The performance of TEG modules depends not only on the ZT of the TE material, but also on
the geometric dimensions of the thermocouples and operating conditions such as the temperature
difference and electrical load [16,17]. Several researchers in the past have attempted to optimize p–n leg
geometry comprising of length, a cross-sectional area, and the number of thermocouples [18–21]. A few
studies have attempted to provide optimal shape factor parameters such as the area ratio for p–n legs
(Ap/An), the aspect ratio (leg length/leg area), and the slenderness ratio ((Ap/Lp)/(An/Ln), where
Ap and An denote base area and Lp and Ln denote length of p- and n-type legs) [22,23]. However, these
parameter changes depend upon the TE material used for fabricating TEG legs, the materials used in
assembling the TEG modules, and operating conditions. Experimental studies are often expensive
and time-consuming when used to optimize all of the variables. Therefore, analytical and numerical
models have been developed using simplified one-dimensional models [24,25] as well as complex
three-dimensional models [5,26,27].

Thermoelectric generators are now being utilized for a variety of applications, such as power
sources for wireless sensor nodes in satellites, space probes, and unmanned remote facilities [28,29].
TEGs are being developed for use in automobiles for generating electricity from exhaust gases in
order to improve overall engine efficiency [30]. Several studies have testified TEGs as a viable option
for waste heat recovery in domestic, industrial, and other processes [2,31–33]. Recently, TEGs have
been introduced in the consumer market as a power device to charge small electronics such as
sensors and cell phones by utilizing heat from candles [34] and propane stoves [35]. Duran et al.
have discussed thermoelectric power plants and proposed the lean maintenance philosophy to
improve maintenance efficiency [36]. It has been suggested that the use of TEGs to power the
different elements of the smart grid could provide considerable advantages for system suppliers
and power companies by dramatically reducing the need to replace the batteries in wireless sensor
networks, and thereby saving substantial operating costs [37]. Going forward, as TEGs become
mainstream technology, the reliance on a predictive simulation model will continue to increase.
Thus, there is a necessity to provide fast and reliable models that can provide on-demand module
optimization. Materials behavior-based thermoelectric differential equations are quite difficult to be
utilized for on-demand module optimization, as they require a considerable amount of computational
power and time. The complexity further increases when the temperature-dependent nature of
thermoelectric material properties, such as their thermal conductivity, electrical resistivity, and Seebeck
coefficient, and the contribution due to contact resistances and environmental effects are included in
the study. The thermoelectric consecutive expressions require numerical techniques and commercial
finite element codes to find the numerical solutions. These codes may not be readily available.
These difficulties limit the utility of computational studies, especially in a manufacturing environment
where real-time decisions need to be made in order to control the design process [38]. In this scenario,
artificial neural network (ANN) models can provide an effective real-time solution that is compatible
with the manufacturing process environment [39].
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An artificial neural network is analogous to the complex computing environment of
interconnected neurons in a human brain. Similar to the human brain, a given ANN model is first
trained using an available database for a given process application. Once the ANN model has been
trained, it can simulate the outcome of that process in real-time, facilitating real-time decisions [40,41].
A few attempts have been made in the literature to develop traditional ANN models for predicting
TEG output [42–44]. Here, we provide a hybrid physico-neural network model that can predict TEG
performance with a high degree of accuracy. The model is implemented in two steps: first, we solve
the physical equations of thermoelectricity for power and efficiency for a given range of geometric
parameters and resistive loads using the finite element method. The resulting power and efficiency
data are used to train ANN models. Second, the ANN model is utilized to evaluate the effect of the leg
cross-sectional area, leg length, and resistive load on TEG performance. Out of several ANN models
considered, the most efficient ANN model was determined to be one with two hidden layers, each
having six neurons. This model was able to predict power with an accuracy of ±0.1 W, and efficiency
with an accuracy ±0.2%.

2. Models and Methods

2.1. Thermoelectric Model

The open circuit voltage (VOC) across the two terminals of a TEG thermocouple can be analytically
obtained using a one-dimensional model by integrating the Seebeck coefficients (α) over the given
temperature difference.

VOC =
∫ Th

Tc
αp(T)dT −

∫ Th

Tc
αn(T)dT (1)

where αp and αn denote the temperature-dependent Seebeck coefficient of the p-type and n-type legs,
and Th and Tc denote the hot side and cold side temperatures. In order to simplify the calculation, it is
convenient to calculate the average Seebeck coefficients, αp and αn, which are given as:

αp =

∫ Th
Tc

αp(T)dT

Th − Tc
(2)

αn =

∫ Th
Tc

αn(T)dT

Th − Tc
(3)

Therefore, the Seebeck coefficient, α, of a thermocouple can be simply expressed as:

α = αp − αn (4)

Considering a TEG module consisting of N thermocouples, the open circuit voltage across the
two terminals of the module can be calculated as [3]:

Vm = Nα(Th − Tc) (5)

The rate of thermal energy absorbed on the hot side, Qh, and released on the cold side, Qc, of the
TEG module operating in a steady-state condition is expressed as [45,46]:

Qh = N
[

IThα− 1
2

I2Ri + Ki(Th − Tc)

]
(6)

Qc = N
[

ITcα +
1
2

I2Ri + Ki(Th − Tc)

]
(7)
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where Ri denotes the internal electrical resistance and Ki denotes the internal thermal conductance of
the individual thermocouple. The output power of the TEG module can be calculated using:

Pout = Qh −Qc = I2R (8)

where the current, I, in the TEG module connected to an external resistive load, R, is given as:

I =
Vm

Rtotal
=

Nα(Th − Tc)

R + Ri
(9)

The thermal-to-electrical energy conversion efficiency of the TEG module can be obtained as:

η =
Pout

Qh
(10)

Using Equations (8)–(10), the maximum thermal-to-electrical energy conversion efficiency of an
ideal TEG with no contact resistances or thermal losses can be determined as [47]:

ηmax =
∆T
Th

 √
ZT + 1− 1√

ZT + 1 + 1−
(

∆T
Th

)
 (11)

where T = Th+Tc
2 and ∆T = Th − Tc.

The one-dimensional model provides reasonable results when the thermal gradient is small,
material properties can be taken as constant with temperature, and contact resistances are negligible.
However, in practice, the assumption of one-dimensionality fails as the thermal gradient is increased
and the environmental effects, such as the convective or radiative thermal losses, need to be taken
into consideration. A robust three-dimensional model is needed to solve the coupled thermoelectric
equations, which are given as [48,49]:

⇀
q = π

⇀
J − κ∇T (12)

⇀
J = σ(

⇀
E − α ∇T) (13)

where
⇀
q ,

⇀
J , and

⇀
E . stand for the heat flux vector, current density vector, and electric field intensity

vector, respectively, α and π are the Seebeck and Peltier coefficients, and σ and κ are the electrical and
thermal conductivity of the TE material.

2.2. Finite Element Analysis

The thermoelectric equations given by Equations (12) and (13) are coupled. In order to numerically
model a TEG, we require the governing equations in the discretized form with the appropriate
boundary conditions. In this study, we have used a commercial finite element analysis (FEA) code,
ANSYS v17.0 (Release 17.0, ANSYS, Inc., 275 Technology Drive, Canonsburg, PA, USA), which
deduces the thermoelectric constitutive equations in the form of a finite element matrix equation of
thermoelectricity as [50]:[ [

Ct] 0
0 [Cv]

]
{ .

T
}{ .

V
} +

[ [
Kt] 0[
Kvt] [Kv]

]{
{T}
{V}

}
=

{
{Q}+ {Qp}
{I}

}
(14)

where
[
Ct] and [Cv] are the finite element specific heat matrix and dielectric permittivity coefficient

matrix, respectively;
[
Kt], [Kv], and

[
Kvt] are the finite element thermal conductivity matrix, electrical

conductivity coefficient matrix, and Seebeck coefficient coupling matrix, respectively; {Q} denotes the
sum of the finite element heat generation load and convection surface heat flow vectors; {Qp} is the
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finite element Peltier heat load vector; and {T}, {V}, and {I} are vectors of the finite element nodal
temperature, nodal electric potential, and nodal current, respectively.

Due to the nonlinearity of the governing equations, the full Newton–Raphson scheme was
deployed to obtain the finite element solution. The hot side and the cold side of the TEG module
were assigned constant temperature thermal boundary conditions and the heat losses along the side
surfaces of the p–n legs were ignored. We have considered a constant electrical contact resistance of
1.0 × 10−9 Ω-m2 and a thermal contact conductance of 2.2 × 10−4 m2KW−1, which are well within
the range for the contact resistances reported in the literature [51–54]. We employed SOLID226 (a 3D
20-node hexahedron/brick) elements to discretize the FEA model. The mesh independency test was
also performed to ensure that the numerical results are independent of the grid sizes. Lastly, in order
to validate the finite element model, the numerical results were compared against the experimental
results provided in Hao et al. [55]. Figure 1a,b depicts the comparison between the experimental
and numerical results. The differences between the numerical results (with contact resistances) and
experimental results for the output power and efficiency were found to be 1.6% and 2.1%, respectively,
at 513 K.
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2.3. Artificial Neural Network (ANN) Model

As mentioned in Section 1, an ANN model is inspired by the biological neural networks in
human brains [56]. Broadly, it consists of an input layer, which contains one or more independent
variables, an output layer, which contains the dependent variables, and one or several hidden layers
in between, which contain numerous nodes or cells connected in complex patterns to permit for a
variety of interconnections among the input variables to obtain the desired output [38]. In this study,
there are three input variables: leg length, leg cross-sectional area, and resistive load. There are
two output variables: power and efficiency. In order to achieve input-to-output mapping, we
employed a multi-layer feedforward neural network architecture, where the information flows only in
a forward direction, from the input to the output nodes through the hidden nodes. Mathematically,
the input–output relation in a multi-layer feedforward neural network is expressed as [57]:

Yk = F(Bk + WTYk−1) (15)

where Yk denotes the output vector in the kth layer, and W and B represent connection and bias weight
matrices, respectively. F is an activation function, and we have considered it as a sigmoid function,
which is given as [38]:

F(α) =
1

1 + exp (−α)
(16)

Theoretically, one hidden layer with an adequate number of neurons is sufficient to produce
excellent results; however, in practice, more hidden layers are needed to achieve expected results.
There is no fixed rule to determine the adequate number of neurons in the hidden layer. Typically,
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increasing the number of neurons increases the power of the network, but it also increases the
computational expense. In addition, an excessively large number of neurons increases the likelihood
to produce overfitting [58]. In this study, we have followed the method of a simple-to-complex
approach in which we start with a minimum number of neurons, and keep on adding an additional
neuron until adding one does not improve the training accuracy. We have considered two hidden
layers, and the number of neurons in each hidden layer was varied between one and 10 in order
to determine the optimum value. The Levenberg–Marquardt algorithm was employed for network
training. The Levenberg–Marquardt algorithm, which is also called the damped least-squares method,
is a very popular training technique that is used in ANN because it is an interpolation between the
Gauss–Newton method and the gradient descent method. Mathematically, it is expressed as [59]:

xi+1 = xi −
[

JT J + µI
]−1

JTe (17)

where i is the number of iteration steps, J is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is a vector of network errors. The scalar µ

is varied between zero and a large number. A value of µ = 0 indicates Newton’s method, and when µ

is large, it becomes a gradient descent method with a small step size [59].
In order to achieve good generalization, we employed a method of early stopping [60]. Such a

method has been used in prior studies [61–63], and it has been found to be very effective. In this
technique, the available input dataset is divided into three subsets: training set, validation set, and
test set. As the training progresses, ideally, the error on the test set as well as the validation set
should decrease. In case the network begins to overfit, the validation error begins to rise. If the rise in
validation error continues for a fixed number of iterations, the training is stopped and the weights and
biases at the minimum validation error are returned [60]. The error function that is typically used to
monitor the performance of feedforward neural networks is the mean sum of squares of the network
errors, which is given as:

MSE =
1
N

N

∑
i=1

(ei)
2 (18)

where ei is the error term in the ith iteration and N is the total number of data points in a given subset.
Sometimes, it is convenient to express the ANN error as the root mean square error (RMSE), which is
given as:

RMSE =

√√√√ 1
N

N

∑
i=1

(ei)
2 (19)

In this study, there are three input parameters and we have considered five levels for each one of
them for performing the parametric study. Therefore, our dataset consisted of 53 = 125 data points.
We have divided input data randomly such that the first 60% of the samples are allotted to the training
set, the next 20% of the samples are assigned to the validation set, and the remaining sample data falls
into the test set.

3. Results

Figure 2a shows the computer-aided design model of the TEG module. It has an overall dimension
of 30 × 30 × 3.5 mm3. A number of p–n legs of varying sizes are assembled electrically in a series
and thermally in parallel using copper electrodes of 0.1-mm thickness. Ceramic substrates are added
on both sides to electrically isolate the TEG module. The hot-side temperature is fixed at 513 K, and
the cold-side temperature is fixed at 295 K. We have considered the state-of-the-art bismuth telluride
alloy, Bi0.5Sb1.5−xCuxTe3, x = 0.005 [55], as the working material in this study. Figure 2b,c depicts the
temperature-dependent thermal conductivity, electrical resistivity, Seebeck coefficient, and ZT of the
TE material.
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Figure 2. (a) Thermoelectric generator (TEG) module with key geometric dimensions and boundary
conditions. (b) Thermal and electrical properties of the thermoelectric (TE) material. (c) The Seebeck
coefficient and ZT of the TE material. Figure (b) and (c) are constructed using the temperature-dependent
TE material information available in Hao et al. [55]. (d) The architecture of the artificial neural
network model.

Table 1 shows the range of the input parameters—leg length, leg area, and resistive
load—considered in this study. We have not considered any interaction effect among the input
parameters, as each of these parameters has an independent effect on TEG performance. The internal
electrical and thermal resistances depend on leg area and length, independently. In addition, the external
resistive load is varied independent of the leg dimensions. As mentioned in Section 2.3, we used a total
of 53 = 125 data points with 75 random data points used for training, and the remaining 50 data points
divided equally for validation and testing. The output variables for each input combination—power
and efficiency—were obtained using the finite element method, as described in Section 2. Figure 2d
shows the architecture of the artificial neural network model used in this study.

Table 1. Range of input parameters considered for the artificial neural network (ANN) model for
Thermoelectric generator (TEG).

Input Parameters Range

(A) Leg length (mm) 1.0 1.25 1.5 1.75 2.0
(B) Leg cross-sectional area (mm2) 1.0 × 1.0 1.25 × 1.25 1.5 × 1.5 1.75 × 1.75 2.0 × 2.0
(C) External resistance (Ω) 2.0 4.0 6.0 8.0 10.0

Figure 3a,c compares the raw data for power and efficiency of the TEG module against results
obtained using ANN models with two, four, and six neurons per hidden layer. It is noted that as
the number of neurons is increased, the difference between the raw data and model data decreases.
This is evident from Figure 3b,d, which depicts the RMSE (calculated for all 125 data points) versus
the number of neurons for power and efficiency, respectively. Increasing the number of neurons from
one to 10, the RMSE first decreases drastically, and then it almost saturates after six neurons. With six
neurons in each of the hidden layers, the RMSE for power was found to be less than 0.1 W, and the
RMSE for efficiency was found to be less than 0.2%. Therefore, all of the results presented in the
remaining part of this study were obtained with six neurons per hidden layer.
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On a 64-bit computer (with 8.0 GB RAM and 2.79 GHz processor), training, testing, and validating
the selected ANN model took approximately 6.8 s. However, once the model was trained, predicting
the TEG performance for a “what if” set of input variables took only 26.4 ms. Performing a parametric
study using ANSYS v17.0 on the same computer, on the other hand, required about 6.0 min to simulate
one data point. As suggested by Subbarayan et al. [38] and Marwah et al. [61], ANN is an efficient
and powerful tool for predicting the TEG performance almost in real-time. This clearly signifies the
importance of the ANN model in a manufacturing setting, where real-time decisions need to be made.
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Figure 3. Comparison of raw data versus ANN predictions. (a) Raw data versus ANN data with two,
four, and six neurons for power. The difference between the two kinds of data decreases with the
increase in the number of neurons. (b) Root mean square error (RMSE) for power versus number of
neurons. The RMSE for power first decreases with an increase in the number of neurons, but it almost
saturates beyond six neurons. (c) Raw data versus ANN data with two, four, and six neurons for
efficiency. The difference between the two kinds of data decreases as the number of neurons increases.
(d) Root mean square error (RMSE) for efficiency versus number of neurons. RMSE for efficiency first
decreases as the number of neurons increases, but it almost saturates beyond six neurons.

3.1. Effect of Leg Cross-Sectional Area on TEG Performance

TEG legs are typically square in a cross-section; therefore, for simplicity, we have considered leg
width instead of the cross-sectional area in this section. Figure 4a–e depicts the effect of varying the leg
width on the output power at different leg lengths and resistive loads. The markers denote raw data,
and the dotted lines denote the predictions using the ANN model having two hidden layers with six
neurons. Figure 4f shows the RMSE, which is below 0.1 W for all of the data points for power. It can
also be noted that at a fixed leg length and resistive load, power first increases with an increase in leg
width, reaches a maximum value, and then decreases with a further increase in leg width. The optimal
leg width can be seen to be 1.5 mm (i.e., the optimal leg cross-sectional area is 1.5 mm × 1.5 mm), and
it is almost independent of leg length.

Figure 5a–e depicts the effect of varying the leg width on the TEG efficiency at different leg lengths
and resistive loads. Figure 5f shows the RMSE, which is below 0.2% for all of the data points for
efficiency. It can also be noted that at the fixed leg length and resistive load, efficiency first increases
with the increase in leg width, reaches a maximum value, and then decreases with any further increase
in leg width. Similar to power, the optimal leg width for efficiency can be seen to occur at 1.5 mm (i.e.,
cross-sectional area: 1.5 mm × 1.5 mm).
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different resistive loads. (e) Power versus leg width for a leg length of 2 mm at different resistive loads.
(f) RMSE for power.
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Figure 5. The effect of varying the leg width on the efficiency for different leg length and resistive load.
(a) Efficiency versus leg width for a leg length of 1 mm at different resistive loads. (b) Efficiency versus
leg width for a leg length of 1.25 mm at different resistive loads. (c) Efficiency versus leg width for a leg
length of 1.5 mm at different resistive loads. (d) Efficiency versus leg width for a leg length of 1.75 mm
at different resistive loads. (e) Efficiency versus leg width for a leg length of 2 mm at different resistive
loads. (f) RMSE for efficiency.
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3.2. Effect of Leg Length on TEG Performance

Figure 6 depicts the effect of varying the leg length on the output power for different leg areas
and resistive loads. It can be noted that, unlike for the cross-sectional area, the power versus leg length
curves are relatively flat, indicating that leg length does not have a prominent effect on the power.
For a small cross-sectional area (i.e., 1 mm× 1 mm), power slowly decreases as the leg length increases;
however, for a large cross-sectional area (i.e., 2 mm × 2 mm), power slowly increases with as the leg
length increases. The optimal leg length can be seen to change with any change in the cross-sectional
area. At the optimal leg area of 1.5 mm × 1.5 mm and a resistive load of 4 Ω, leg length has a minor
effect on power. The highest power exists at an optimal leg length of 1.5 mm, which is same as the
optimal length width, indicating that the optimal TEG leg is a cube.
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Figure 6. The effect of varying the leg length on the output power for different leg widths and resistive
loads. (a) Power versus leg length for a leg area of 1 mm × 1 mm at different resistive loads. (b) Power
versus leg length for a leg area of 1.25 mm × 1.25 mm at different resistive loads. (c) Power versus leg
length for a leg area of 1.5 mm × 1.5 mm at different resistive loads. (d) Power versus leg length for a
leg area of 1.75 mm × 1.75 mm at different resistive loads. (e) Power versus leg length for a leg area of
2 mm × 2 mm at different resistive loads. (f) RMSE for power.

Figure 7 depicts the effect of varying the leg length on the TEG efficiency for different leg areas
and resistive loads. It can also be noted that, unlike power, the effect of leg length on efficiency is more
pronounced. In most cases, at a fixed cross-sectional area and resistive load, efficiency can be seen to
increase with any increase in leg length. The highest efficiency occurs at a leg area of 1.5 mm × 1.5 mm
and a leg length of 2 mm. This implies that TEG power is highest when legs are cubical, while TEG
efficiency is maximum when legs are cuboidal.
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Figure 7. The effect of varying the leg length on efficiency for different leg areas and resistive loads.
(a) Efficiency versus leg length for a leg area of 1 mm × 1 mm at different resistive loads. (b) Efficiency
versus leg length for a leg area of 1.25 mm × 1.25 mm at different resistive loads. (c) Efficiency versus
leg length for a leg area of 1.5 mm × 1.5 mm at different resistive loads. (d) Efficiency versus leg length
for a leg area of 1.75 mm × 1.75 mm at different resistive loads. (e) Efficiency versus leg length for a leg
area of 2 mm × 2 mm at different resistive loads. (f) RMSE for Efficiency.

3.3. Effect of Resistive Load on TEG Performance

Figures 8 and 9 depict the effect of resistive load on power and efficiency, respectively, at fixed leg
cross-sectional areas and lengths. As shown in Figures 8f and 9f, the RMSE for both the cases is small,
indicating that the predictions of the ANN model and the raw data are in excellent agreement. Both the
power and efficiency curves show similar trends. Increasing the load resistance at small leg areas (below
1.25 mm × 1.25 mm) increases the power and efficiency. At a leg area above 1.75 mm × 1.75 mm, the
power and efficiency decrease with any increase in load resistance. The maximum power of 4.4 W
occurs when the resistive load is equal to 4 Ω at the optimal leg area of 1.5 mm × 1.5 mm and leg
length of 1.5 mm. The maximum efficiency of 6.4% can be found to occur when the resistive load is
equal to 6 Ω at the optimal leg area of 1.5 mm × 1.5 mm and leg length of 2 mm.
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Figure 8. The effect of varying the resistive load on the output power for different leg widths and
leg lengths. (a) Power versus resistive load for a leg area of 1 mm × 1 mm at different leg lengths.
(b) Power versus resistive load for a leg area of 1.25 mm × 1.25 mm at different leg lengths. (c) Power
versus resistive load for a leg area of 1.5 mm × 1.5 mm at different leg lengths. (d) Power versus
resistive load for a leg area of 1.75 mm × 1.75 mm at different leg lengths. (e) Power versus resistive
load for a leg area of 2 mm × 2 mm at different leg lengths. (f) RMSE for power.
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Figure 9. The effect of varying the resistive load on efficiency for different leg widths and leg lengths.
(a) Efficiency versus resistive load for a leg area of 1 mm × 1 mm at different leg lengths. (b) Efficiency
versus resistive load for a leg area of 1.25 mm × 1.25 mm at different leg lengths. (c) Efficiency versus
resistive load for a leg area of 1.5 mm × 1.5 mm at different leg lengths. (d) Efficiency versus resistive
load for a leg area of 1.75 mm × 1.75 mm at different leg lengths. (e) Efficiency versus resistive load for
a leg area of 2 mm × 2 mm at different leg lengths. (f) RMSE for efficiency.
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3.4. Comparing ANN Predictions with Prior Studies

The optimal geometric parameters and resistive load obtained in this study are in agreement with
the trends reported in prior studies. Theoretically, designing a TEG for maximum power relies on
an optimization of thermal resistance versus electrical resistance. Increasing the leg length and/or
decreasing the leg cross-sectional area increases the internal thermal resistance; however, it also
increases the internal electrical resistance. Few studies have suggested that the TEG power is maximum
when the module internal electrical resistance matches the load resistance [64] and the internal thermal
resistance due to the active thermoelectric layers is close to the external thermal resistance (due to the
inactive layers such as substrates and heat sinks) [20]. The thermal-to-electrical conversion efficiency,
on the other hand, has been reported to increase with any increase in the internal-to-external thermal
resistance ratio [20]. Clearly, the optimal geometric parameters and resistive load for the maximum
power and the maximum efficiency are not the same, which is in agreement with the results obtained in
this study. Rowe et al. [24,64] reported that at a fixed temperature difference, the TEG efficiency can be
improved by increasing the leg length; however, the TEG power is not maximum when very long legs
are employed. Therefore, the optimal leg length is usually a compromise between the required power
and the acceptable conversion efficiency [24]. Unlike leg length, the effect of the leg cross-sectional
area on TEG performance is not straightforward. For a given size of TEG module, changing the leg
area changes not only the internal thermal and electrical resistances, it also affects the number of legs.
In additional, varying the leg area causes a variation in contact resistances between TEG legs and
copper electrodes as well as the exposed surface area for the thermal losses. The optimal leg area has
been also found to be somewhere in between two extreme values [19,20].

4. Conclusions

The major findings of the paper are summarized below:

• An ANN model that has two hidden layers with six neurons in each layer can predict TEG
performance with a great degree of accuracy. Increasing the number of neurons above six does
not improve the model accuracy, as the root mean square error almost saturates after six neurons.

• The predicted power was found to be within ±0.1 W, and efficiency was found to be within
±0.2%.

• The trained ANN model required only 26.4 ms per data point for predicting TEG performance
against the 6.0 min needed by the traditional numerical simulations.

• There exists an optimal TEG leg cross-sectional area where power and efficiency are maximum.
• The effect of leg length on power is not as prominent as the cross-sectional area, although an

optimal leg length exists. Efficiency was found to increase with an increase in leg length.
• Under a given range of leg dimensions, TEG was found to have maximum power when legs are

cubical (1.5 × 1.5 × 1.5 mm3). On the other hand, the TEG efficiency was found to be maximum
when legs are cuboidal (1.5 × 1.5 × 2 mm3) at a resistive load of 6 Ω.
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Nomenclature

TE Thermoelectric
TEG Thermoelectric Generator
ZT Figure of merit
ANN Artificial neural network
FEA Finite element analysis
T Temperature
Ap Cross-sectional area of p-type leg
An Cross-sectional area of n-type leg
Lp Length of p-type leg
Ln Length of n-type leg
N Number of thermocouples
I Electric current
R Electrical load
∆T Temperature difference
σ Electrical conductivity
κ Thermal conductivity
ρ Electrical resistivity
S Seebeck coefficient
VOC Open circuit voltage
Vm Module output voltage
Th Hot side temperature
Tc Cold side temperature
αp Seebeck coefficients (p-type material)
αn Seebeck coefficients (n-type material)
α Seebeck coefficients (thermocouple)
π Peltier coefficient
Qh Rate of thermal energy absorbed
Qc Rate of thermal energy released
Ri Internal electrical resistance
Ki Internal thermal conductance
Pout Output power
⇀
q Heat flux vector
⇀
J Current density vector
⇀
E Electric field intensity[
Ct] Specific heat matrix
[Cv] Dielectric permittivity coefficient matrix[
Kt] Thermal conductivity matrix[
Kvt] Seebeck coefficient coupling matrix
[Kv] Electrical conductivity coefficient matrix
{T} Nodal temperature vector
{V} Nodal electric potential vector
{Q} Heat flow vectors
{Qp} Peltier heat load vector
{I} Nodal current vector
Yk Output vector in kth layer
F Activation function
Bk Connection weight matrices
WT Bias weight matrices
J Jacobian matrix
i Number of iteration steps
e Network errors
MSE Mean-square error
RMSE Root-mean-square error
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