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Abstract: The stable operation of a microgrid is crucial to the integration of renewable energy sources.
However, with the expansion of scale in electronic devices applied in the microgrid, the interaction
between voltage source converters poses a great threat to system stability. In this paper, the model
of a three-source microgrid with a multi master–slave control method in islanded mode is built
first of all. Two sources out of three use droop control as the main control source, and another is a
subordinate one with constant power control which is also known as real and reactive power (PQ)
control. Then, the small signal decoupling control model and its stability discriminant equation
are established combined with “virtual impedance”. To delve deeper into the interaction between
converters, mutual influence of paralleled converters of two main control micro sources and their
effect on system stability is explored from the perspective of control parameters. Finally, simulation
and analysis are launched and the study serves as a reference for parameter setting of converters in
a microgrid.

Keywords: islanded mode; multi-source microgrid; stability; small-signal model; multiple
master–slave control

1. Introduction

Increasing exhaustion of fossil fuel and concerns about environmental pollution have led to
extensive exploration of alternative energy sources. Of special interest are renewable energy sources
(RES) such as solar and wind energy generation. This has resulted in the emergence of distributed
generators (DGs) and the concept of microgrid (MG) has been introduced for proper utilization of
DGs [1,2]. As different DGs have different characteristics and natural uncertainty, their presence can
have negative effects on MG. Deviations of voltage and frequency are larger when MG operates in
islanded mode in comparison with grid-connected mode [3,4]. Therefore, research on the stability of
MG in islanded mode is of vital importance.

Usually, voltage source converters (VSCs) [5] are used to interconnect different DGs, whose
output is mostly in the form of direct or non-common frequency alternating current. Although the
increasing number of power electronic converters improves the control speed, it brings fuzzy influence
on stability owing to the mutual influence between them [6]. To address the abovementioned issue,
various methods have been proposed in the literature. In [7,8], the sensitivity of load voltage and
voltage compensation term are introduced to control the bus voltage as well as improve the response
speed and accuracy. However, limitations in applicable scope of load and voltage reduce its practicality.
In [9,10], energy storage devices are used not only to suppress the transient power fluctuations, but
also to greatly improve MGs’ stability thanks to a super-capacitor. However, this method affects
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the entire system and declines its inertia. In [11,12], a model that contains converters, controllers
and alternating current (AC) grids is built, and high order state space expressions are formulated to
determine its stability. However, the mutual influence between converters is neglected and a large
number of equations make stability analysis more complex. To improve the accuracy of analysis,
the model of MG has been improved for higher accuracy [13–16], including a linear model of MG
combined with a boost converters model [13]; a global model ignoring the change in rotating angles
and coupling terms between DGs [14]; a dynamic model of multi-module comprising multi-class
of DGs and loads [15]; and a new type of small-signal model containing secondary control that
analyzed the stability of the system with eigenvalue [16]. However, the models established in the
above literature didn’t take into account the impact of electronic devices in grids. In view of this
problem, some research delves deeper into the impact of control parameters on system stability [17].
It employs the root locus method to explore the reasonable ranges of control parameters by a small
signal model. When multi-sources are paralleled, droop control can achieve coordination control
without communication and the master–slave control method considers the power tracking of PV and
wind power and the system stability [18,19]. However, the influence in different control parameters on
the system is not considered, for their parameters are partly or almost the same.

In view of the problem in [18], this paper builds a model of multi-source MG, emphasizing
the exploration of the mutual influence between converters on stability. To satisfy the decoupling
condition, “virtual impedance” is introduced and a three-source decoupling small-signal model is built
in addition to the characteristic polynomial also being deducted. On this basis, the mutual influence
between converters on stability is analyzed on the level of control parameters by means of simulation
studies. This method and the result can provide a reference for parameters’ configuration of converters
in MG with a large number of electronic devices plugged in.

2. The Structure of Multi-Source Microgrid and Analysis of Its Problems

The diversity of DGs is a common feature of MGs [15]. Therefore, adopting appropriate control
methods is an accurate and fast way to achieve the stable operation of islanded MG.

2.1. Multi Master–Slave Control Structure of MG

The traditional master–slave control method consists of one master controller and several slave
controllers, which forms the energy supply system (ESS), in order to take into account the power
tracking the renewable energy and the system stability [19]. With the increase in the permeability and
scale of MG, however, a single master controller can no longer maintain the regulation of voltage and
frequency. Hence, several master control sources should be set up with a droop control method. This
solution is adopted in DGs (e.g., diesel engine, micro gas turbine, fuel cell, etc.), which regulate bus
voltage and frequency. Relatively, photovoltaic and wind turbines with PQ control methods run as
slave sources. The use of droop control alone implements the peer-to-peer control method, and it
realizes the peer-to-peer control method, which can achieve local control and coordination control
without communication.

Figure 1 shows a simplified structure of three-source MG in islanded mode. In Figure 1,
Vodn + jVoqn and Rn + jXn are the output voltage of DGn and the equivalent impedance between
bus and its converter; idn + jiqn is the output current of DGn (n = 1, 2, 3); UGd + jUGq is the bus voltage
of MG. DG1 and DG2 serve as master controllers adopting a droop control method, embodying the
flexibility and redundancy of a peer-to-peer control method in power vacancy allocation; DG3 serves
as a slave controller adopting the PQ control method, ensuring its constant output in islanded mode;
Load is comprised of resistance and reactance. This system adopts a master–slave control method
when three DGs work and it adopts a peer-to-peer control method when DG3 quits running.



Energies 2018, 11, 2223 3 of 18
Energies 2018, 11, x FOR PEER REVIEW  3 of 19 

 

DG1

Load

R1+jX1 R2+jX2 R3+jX3

R4+jX4

UGd+jUGq

Vod1+jVoq1 Vod2+jVoq2 Vod3+jVoq3

id1+jiq1 id2+jiq2 id3+jiq3

id4+jiq4

DG2 DG3

ESS

 
Figure 1. System model of microgrid (MG) with multiple master–slave control method. 
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deviated from its stable running point, and then the instability occurs. 
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model. 

Figure 1. System model of microgrid (MG) with multiple master–slave control method.

2.2. The Problem under Study

Fully symmetrical structure is mostly used in research on multi-source MG, whose parameters are
the same in the same control method, ignoring the independence of control parameters of different DGs.
The goal of this paper is to evaluate the following aspects: (1) whether there are interactions between
control parameters to maintain stability when several converters operate in parallel; (2) whether
there are interactions between control parameters of paralleled master controllers when a system’s
control strategy changes from single master–slave control to multiple master–slave control method;
and (3) how these interactions influence the stability of MG.

This paper verified the influence of droop coefficient difference on a multi master–slave control
method based on the system model as shown in Figure 1. Set up the active droop coefficients of DG1,
DG2 as 5 × 10−5, 10 × 10−5; and the reactive droop coefficients of them as 0.003; other parameter
settings are shown in Appendix A; the waveform of bus voltage under different working conditions is
shown in Figure 2. Figure 2a indicates the public bus bar voltage waveform when it works with DG1
and DG3, which contains only one master micro source; similarly, Figure 2b indicates the bus voltage
waveform when it works with DG2 and DG3. The bus voltage can be kept stable in the two cases.
Under the same coefficient setting, when DG1, DG2 and DG3 run together, the bus voltage waveform
is oscillating and the microgrid is unstable as shown in Figure 2c. The cause of this phenomenon
may be that the Cooperative operation of DG1 and DG2 makes the two controllers interact with each
other, so that the operation of the microgrid is deviated from its stable running point, and then the
instability occurs.

Based on this conjecture, this paper delves deep into the interaction between control parameters
under multiple master controllers’ conditions, combining the case with the theoretical model.
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Figure 2. Waveforms of bus voltage under different working conditions in case of (a) DG1 and DG3 
running; (b) DG2 and DG3 running; (c) DG1, DG2 and DG3 running together. 
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3.1. PQ Control Method 

To improve the response speed and accuracy of power distribution, the PQ control method is 
adopted [20–22]. Double-loop control structure is employed: the inner loop uses current control to 
ensure response speed, thereby improving the operation characteristics of the system; the outer loop 
adopts power control [23]. 

The structure of inner current loop is shown in Figure 3 [24]. 
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Figure 3. Structure of inner current loop. 

Figure 2. Waveforms of bus voltage under different working conditions in case of (a) DG1 and DG3
running; (b) DG2 and DG3 running; (c) DG1, DG2 and DG3 running together.

3. Theoretical Analysis of Control Methods

3.1. PQ Control Method

To improve the response speed and accuracy of power distribution, the PQ control method is
adopted [20–22]. Double-loop control structure is employed: the inner loop uses current control to
ensure response speed, thereby improving the operation characteristics of the system; the outer loop
adopts power control [23].

The structure of inner current loop is shown in Figure 3 [24].
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In Figure 3, Vcd and Vcq are the d,q axis voltage component of converters and Vod and Voq are the
d,q axis voltage components of the filter; Lf is the inductance of filter; Kip and Kii are the proportional
and integral parameters of the proportional-integral (PI) controller.

To satisfy the decoupling condition of the d,q axis, “virtual impedance” is introduced in
low-voltage AC MG [25,26]. After decoupling, structure of the q axis is chosen to analyze because d,q
share the same structure. Considering the pulse-width modulation (PWM) and the sampling process,
the control diagram is shown in Figure 4.
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As shown above, Ts is the time constant of sampling and its value is pretty small. 1/(Tss + 1) and
1/(0.5Tss + 1) are the delay modules of sampling and PWM, and they can approximately merge into
1/(1.5Tss + 1) [27]. Set up the switching frequency of the system as: fs = 20 kHz, Ts = 1/fs = 0.05 ms.
The gain of the modulator is Kpwm = Udc/2 = 400.

Then, the open-loop transfer function is as shown

Giq0(s) =
KipKpwm

(1.5Tss + 1)L f s
. (1a)

Similarly, the open-loop transfer function of the d-axis is

Gid0(s) =
KipKpwm

(1.5Tss + 1)L f s
. (1b)

In order to impose that the cut-off frequency of control is 0.1 times the switching frequency,
the following relations must be satisfied:{

ωx = 2π fs
10

20lg
∣∣Giq0(jωx)

∣∣ = 0
, (2)

where ωx is the designed cut-off frequency.
If the switching frequency of the PWM modulator is 20 kHz, set up the inductor-capacitor (LC)

passive filter’s inductance Lf as 1.5 mH. Kip ≈ 0.065 can be obtained. The design principles of the
converter output LC passive filter is {

10 fn ≤ fc ≤ fs/5
2π fcL f = 1/(2π fcC f )

, (3)

where fc is the designed resonant frequency of filter, and fn is the fundamental frequency. Setting up Lf
is 1.5 mH and Cf is 20 µF.

Based on the above analysis, the control structure of the PQ control method is shown in
Figure 5 [28].
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Figure 5. Block diagram for PQ (real and reactive power) control.

As shown, Kpp and Kpi are the proportional and integral parameters of the PI controller for active
power, respectively; KOp and KOi are appropriate parameters for reactive power. Due to the symmetry
of the two parts, it makes KPp = KQp and KPi = KQi. In addition, P*, Q* are the reference values of active
and reference power, respectively. After decoupling, the open-loop transfer function is shown

GQ(s) =
1.5Upcc(KQps+KQi)

C f Xs2 Gid(s)

GP(s) =
1.5Upcc(KPps+KPi)

C f Xs2 Giq(s)
. (4)

3.2. Inductive Droop Control

The DGs with droop control can independently adjust the balance of frequency and voltage
and control the operation of MG as the main control micro source. Its control structure still adopts
voltage-current double loop structure, where the principle of its current control loop is similar to
Section 2.1. Likewise, the q-axis structure of voltage control loop after decoupling is shown in Figure 6.
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The open-loop transfer function in this structure is [29]

Gvq0(s) =
Giq(s)(Kvps + Kvi)

C f (Tss + 1)s2 . (5)

It is necessary to install an LC passive filter at the converter outlet to filter high order harmonics,
which can be designed as Equation (3).

This paper adopts: fn = 50 Hz, fs = 20 kHz, fc = 1000 Hz. Considering the voltage drop on filter
inductance, Lf = 1.5 mH, and Cf = 16.89 µF can be obtained. At this point, the PI parameters of outer
loop must be satisfied:

20lg
∣∣Gvq0(jωx)

∣∣ = 0. (6)

Taking the stability and rapidity into account, Kvp = 0.1 and Kvi = 407.65 can be obtained; then,
Kvi = 400.
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The converter is connected to the point of common coupling (PCC). The voltage of this point is a
planned constant and selected as the reference voltage, that is: Upcc < 0 = Upcc + j0, the output voltage
of converter filter is: V0 < θ = V0d + jV0q. Supposing that the impedance of low-voltage MG is Rl + jXl,
where Xl = ωLl, ω is the AC signal frequency, Ll is the equivalent inductance of transmission line; then,
the voltage and current relation of the d and q axes are{

V0d −Upcc = (Rl + Lls)I0d − Xl I0q
V0q − 0 = (Rl + Lls)I0q + Xl I0d

. (7)

The expression of small signal quantity of the current as shown is{
∆I0q = ∆I0q1 + ∆I0q2 = −Ha × ∆V0d + Hb × ∆V0q
∆I0d = ∆I0d1 + ∆I0d2 = Hb × ∆V0d + Ha × ∆V0q

, (8)

where Ha and Hb can be expressed as

Ha =
Xl

X2
l + (Rl + Lls)

2 ; Hb =
(Rl + Lls)

X2
l + (Rl + Lls)

2 . (9)

Actually, I0d and I0q are DC variables, and their differential results are negligible for Lls and much
smaller than Xl.

P + jQ = Upcc(I0d − jI0q) is the power equation in the dq0 coordinate system, and the power small
signal model can be obtained: {

∆Q = −1.5Upcc(∆I0q1 + ∆I0q2)

∆P = 1.5Upcc(∆I0d1 + ∆I0d2)
. (10)

For double loop structure, the virtual impedance is equivalent to introducing a logical inductive
feedback link in essence, which corrects the reference voltage of dual-loop control and controls the
output power further.

Supposing that θ is quite small, then V0q
* = E*sinθ ≈ E*θ, V*

0d ≈ E*, where E* is the reference
voltage from reactive droop loop. Furthermore, it can be considered that ∆V*

0q ≈ E∆θ because changes
of E* are much smaller than that of θ, where E is the reference voltage before reactive droop loop.
The control structure is shown in Figure 7 [26].
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After reasonable setting of virtual impedance, it is equivalent that the previous line impedance
connects in series with a reactance Xv, which satisfies the following relationship Xv + Xv >> Rl,
and then Rl in Ha and Hb can be neglected, that is Hb = 0, indicating the realization of decoupling in
droop control.
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4. Small Signal Modeling of Three-Source MG

Theoretical analysis of a three-source MG with all DGs working at the same time is performed on
the basis of model built in Section 1.1. To help analyze the stability of system, the electrical quantities
are expressed in steady state small signal equations [30,31], according to the relationship of voltage
and current in dq0 coordinate system:{

∆Vodn − ∆UGd = (Rn +
Xn
ω s)∆idn − Xn∆iqn

∆Voqn − ∆UGq = (Rn +
Xn
ω s)∆iqn + Xn∆idn

. (11)

Generally, the differential terms in Equation (11) has less influence and can be ignored. Therefore,
the system model satisfies Equation (12):

∆Vod1 − ∆UGd = R1∆id1 − X1∆iq1

∆Voq1 − ∆UGq = R1∆iq1 + X1∆id1
∆Vod2 − ∆UGd = R2∆id2 − X2∆iq2

∆Voq2 − ∆UGq = R2∆iq2 + X2∆id2
∆Vod3 − ∆UGd = R3∆id3 − X3∆iq3

∆Voq3 − ∆UGq = R1∆iq3 + X1∆id3
0− ∆UGd = R4∆id4 − X4∆iq4

0− ∆UGq = R2∆iq4 + X4∆id4
∆id1 + ∆id2 + ∆id3 + ∆id4 = 0
∆iq1 + ∆iq2 + ∆iq3 + ∆iq4 = 0

. (12)

Assuming that ∆Vod1, ∆Voq1, ∆Vod2, ∆Voq2, ∆Vod3, ∆Voq3, R1, X1, R2, X2, R3, X3, R4, X4 are known,
∆id1, ∆iq1, ∆id2, ∆iq2, ∆id3, ∆iq3, ∆id4, ∆iq4 can be expressed with the above quantities by solving
Equation (12), ∆UGd, ∆jUGq by Equation (13):{

∆UGd = J1∆Vod1 + J2∆Vod2 + J3∆Vod3 + J4∆Voq1 + J5∆Voq2 + J6∆Voq3

∆UGq = J7∆Vod1 + J8∆Vod2 + J9∆Vod3 + J10∆Voq1 + J11∆Voq2 + J12∆Voq3
. (13)

It is clear that X1 >> R1, X2 >> R2 [25,26] when DG1 and DG2 adopt the droop control method,
and then the influence of line resistance can be ignored, that is: R1 = R2 = 0. Suppose that the load is
mostly active and then: X4 = 0. Therefore, the coefficients in Equation (13) can be expressed as

J1 = J10 = [R2
3R2

4(X1X2 + X2
2) + R2

4X2X3(X1X2 + X1X3 + X2X3)]/Dd
J2 = J11 = [R2

3R2
4(X1X2 + X2

1) + R2
4X1X3(X1X2 + X1X3 + X2X3)]/Dd

J3 = J12 = [R3R4X2
1 X2

2 + R2
4X1X2(X1X2 + X1X3 + X2X3)]/Dd

J4 = −J7 = [R4X1X2
2(R2

3 + R3R4 + X2
3)]/Dd

J5 = −J8 = [R4X2
1 X2(R2

3 + R3R4 + X2
3)]/Dd

J6 = −J9 = [−R3R2
4X1X2(X1 + X2) + R4X2

1 X2
2 X3]/Dd

Dd = R2
3R2

4(X1 + X2)
2 + (R1 + R2)

2X2
1 X2

2 + X2
1 X2

2 X2
3 + 2R2

4X1X2X3(X1 + X2 + X3) + R2
4X2

3(X2
1 + X2

3)

. (14)

After ignoring the differential terms, model of droop control is shown by Equations (13) and (14)
is obtained from model of PQ control:

[∆E∗1 −
3n1Upcc

2X1
(∆Vod1 − ∆UGd)]Gvd1(s) = ∆Vod1

[∆ω∗01 −
3m1Upcc

2X1
(∆Voq1 − ∆UGq)]Gvq1(s) = ∆Voq1

[∆E∗2 −
3n2Upcc

2X2
(∆Vod2 − ∆UGd)]Gvd2(s) = ∆Vod2

[∆ω∗02 −
3m2Upcc

2X2
(∆Voq2 − ∆UGq)]Gvq2(s) = ∆Voq2

, (15)
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GQ(s)
{

∆Q∗3 + 1.5Upcc[−X3M + R3N]
}
= ∆Vod3

GP(s)
{

∆P∗3 − 1.5Upcc[R3M + X3N]
}
= ∆Vod3

M = (∆Vod3−∆UGd)

X2
3+R2

3

N =
(∆Voq3−∆UGq)

X2
3+R2

3

. (16)

To simplify the equations, setting up H1 = 1.5n1Upcc/X1, H2 = 1.5m1Upcc/X1, H3 = 1.5n2Upcc/X2,
H4 = 1.5m2Upcc/X2, H5 = 1.5UpccX3/(X2

3 + R2
3), H6 = 1.5UpccR3/(X2

3 + R2
3), by solving simultaneously

Equations (15) and (16), Equation (17) is obtained.
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[∆ω∗02 − H4(∆Voq2 − ∆UGq)]Gvq2(s) = ∆Voq2

GQ(s)[∆Q∗3 − H5(∆Vod3 − ∆UGd)+

H6(∆Voq3 − ∆UGq)] = ∆Vod3
GP(s)[∆P∗3 − H6(∆Vod3 − ∆UGd)+

H5(∆Voq3 − ∆UGq)] = ∆Vod3

, (17)

where ∆E∗1 and ∆ω0i
* are the reference voltage and reference frequency of DGi (I = 1, 2), which adopts

droop control.
By solving Equations (13) and (17), Equation (18) can be obtained:[

∆UGd ∆UGq

]T
= H2×6

G

[
∆E∗1 ∆ω∗01 ∆E∗2 ∆ω∗02 ∆Q∗3 ∆P∗3

]T
. (18)

On the premise of guaranteeing the stability of the inner loop, Gid(s) = Giq(s) = 1 is reasonable [21,32];
therefore, Gvd(s) = Gvq(s) = 1. In addition, HG is a matrix of 2 × 6, whose simplified one is shown in
Equation (19): [

∆UGd
∆UGq

]
=

 C1(s)
D(s)

C2(s)
D(s)

C3(s)
D(s)

C4(s)
D(s)

C5(s)
D(s)

C6(s)
D(s)

F1(s)
D(s)

F2(s)
D(s)

F3(s)
D(s)

F4(s)
D(s)

F5(s)
D(s)

F6(s)
D(s)


×
[

∆E∗1 ∆ω∗01 ∆E∗2 ∆ω∗02 ∆Q∗3 ∆P∗3
]T

.

(19)

As shown above, Equation (19) is the small-signal control model of the islanded MG, elements
of whose coefficient matrix share the same denominator named D(s). By analyzing the characteristic
equation D(s) = 0, the stability of the system can be determined.

5. Simulation and Stability Analysis

5.1. Parameter Setting and Calculation

Based on Figure 1, DG1 and DG2 should satisfy: P1 = 30,000− (f − 50)/m1, P2 = 30,000− (f − 50)/m2,
Q1 = 5000 − (E1 − 311)/n1, Q2 = 5000 − (E2 − 311)/n2.

Using the parameters in Appendix A, H1–H6 can be obtained: H1 = 466.5n1, H2 = 466.5m1,
H3 = 466.5n2, H4 = 466.5m2, H5 = 208.6 and H6 = 417.2.

5.2. Influence of Active Droop Coefficient m1 and m2 on Stability

To explore the impact of single variable m1 on system stability, a priority assignment is first
implemented: n1 = n2 = 0.001 V/var, KPp = KQp = 0.0005, KPi = KQi = 0.5.
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(1) When m2 = 5 × 10−5 Hz/W, the characteristic equation D(s) = 0 is

(m1 + 0.00242)s5 + (234m1 + 0.542)s4 + (125m1 + 0.392)s3

+(9860m1 + 42.3)s2 + (3790m1 + 15.7)s + (58, 000m1 + 122) = 0
. (20)

The root locus equation as Equation (20) whose gain is m1 can be acquired by processing
Equation (21):

m1W1(s) + 1 = 0, (21)

where W1(s) and the similar expressions hereafter in this paper can be found in Appendix B.
The root locus of D(s) when m1 varies from 0 to +∞ is shown in Figure 8.
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There are five branches, S1 starts from (−233.8x, 0) to (−225.3, 0) and always stays in left half-plane
and far away from the imaginary axis, so it is not shown in the picture; S2 and S3 locate in left half-plane
and have no impact on stability; S4 and S5 move towards the positive direction with the change of m1,
leading to the decline in stability, they finally cross the imaginary axis (m1 = 3.2 × 10−5) and enter the
right half-plane indicating that the system is no longer stable. Therefore, the proper range of m1 to
ensure system stability is [0, 3.2 × 10−5) in this condition.

Theoretically, the smaller m1 is, the weaker the impact of change in DG1’s output power on
system’s frequency is, especially when m1 = 0, DG1 works in constant frequency control mode and
has the strongest stability. At this point, DG1 has theoretically infinite power supply, which owns the
absolute frequency stability and peak regulating ability. However, this assumption is not consistent
with the energy attributes of MG. That is, MG’s output power is limited and relies on other MGs’
cooperation, so m1 cannot be too small. On the other hand, a large value of m1 also results in the fast
oscillation of system frequency under small power fluctuation, which is harmful to system stability
and this situation is shown in Figure 8 when m1 > 3.2 × 10−5.

When m1 = 2.5 × 10−5 Hz/W and m2 = 5 × 10−5 Hz/W, the bus voltage waveform is shown in
Figure 9. Because 2.5 × 10−5 ∈ [0, 3.2 × 10−5) and the bus voltage is stable, it means that the m1 in this
range ensures microgrid stable operation, which can verify the correctness of above analysis.
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(2) When m2 = 10 × 10−5 Hz/W, the root locus equation whose gain is m1 is

m1W2(s) + 1 = 0. (22)

The root locus of D(s) when m1 varies from 0 to +∞ is shown in Figure 10.
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(3) When m2 = 2.5 × 10−5 Hz/W, the root locus equation whose gain is m1 is
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m1W3(s) + 1 = 0. (23)

The root locus of D(s) when m1 varies from 0 to +∞ is shown in Figure 12.
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Figure 13. The bus voltage waveform when m1 = 5 × 10−5 Hz/W and m2 = 2.5 × 10−5 Hz/W. Figure 13. The bus voltage waveform when m1 = 5 × 10−5 Hz/W and m2 = 2.5 × 10−5 Hz/W.

In summary, the comparison of range for m1 when m2 is different is shown in Table 1. In Table 1, m1

is less than 2.9 × 10−5 when m2 is 10 × 10−5. It is the reason why bus voltage is unstable in Section 1.2.
The allowable range of m1 narrows with the increase of m2. From the perspective of system stability,
the active droop coefficients of two DGs are supposed to be coordinated and restricted in a lower range
so that the unit power loss won’t cause large change in frequency and system frequency collapse.

Table 1. The influence of active droop coefficients between DG1 and DG2.

m2 (Hz/W) Range of m1 (Hz/W)

2.5 × 10−5 [0, 7.21 × 10−5)
5 × 10−5 [0, 3.2 × 10−5)

10 × 10−5 [0, 2.9 × 10−5)

5.3. Influence of Reactive Droop Coefficient n1 and n2 on Stability

To explore the impact of single variable n1 on system stability, a priority assignment is first
implemented: m1 = m2 = 2.5 × 10−5 Hz/W, KPp = KQp = 0.0005, KPi = KQi = 0.5.
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(1) When n2 = 0.002 V/var, the root locus of the equation D(s) = 0 whose gain is n1 is

n1W4(s) + 1 = 0. (24)

The root locus when n1 varies from 0 to +∞ is shown in Figure 14.
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Figure 14. The root locus of D(s) following n1 changes when n2 = 0.002 V/var.

There are six branches, S1 first moves towards left and then turns right and always stays in the
left half-plane, indicating that the system stability first enhances and then degrades; S2 and S3 are
located in the left half-plane and have no impact on stability; S4 and S5 move towards the positive
direction with the change of n1, leading to the decline in stability, they finally cross the imaginary axis
(n1 = 0.00147) and enter the right half-plane indicating that the system is no longer stable. Therefore,
the proper range of n1 to ensure system stability is [0, 0.00147) in this condition.

Theoretically, the smaller n1 is, the weaker the impact of change in DG1’s output reactive power
on system’s voltage is. Especially when n1 = 0, DG1 works in constant voltage control mode and has
the strongest stability. At this point, DG1 has theoretically infinite reactive power supply, which owns
the absolute voltage stability and reactive power compensation ability. However, this assumption is
not consistent with the energy attributes of MG. That is, MG’s output reactive power is limited and
relies on other MGs’ cooperation, so n1 cannot be too small. On the other hand, a large value of n1 also
results in voltage collapse under small reactive power fluctuation, and this instable situation is shown
in picture when n1 > 0.00147.

When n1 = 0.001 V/var and n2 = 0.002 V/var, the bus voltage waveform is shown in Figure 15.
Because 0.001 ∈ [0, 0.00147) and the bus voltage is stable, it means that the n1 in this range ensures
microgrid stable operation, which can verify the correctness of the above analysis.
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(2) When n2 = 0.001 V/var, the root locus equation is

n1W5(s) + 1 = 0. (25)

The root locus of D(s) when n1 varies from 0 to +∞ is shown in Figure 16.
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Figure 17. The bus voltage waveform when n1 = 0.001 V/var and n2 = 0.001 V/var.

(3) When n2 = 0.004 V/var, the root locus equation is

n1W6(s) + 1 = 0. (26)

The root locus of D(s) when n1 varies from 0 to +∞ is shown in Figure 18.
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Because this locus is similar to Figure 14, it won’t be described again. The proper range of n1 is
[0, 0.00133), and system stability declines with the increase of n1.

When n1 = 0.001 V/var and n2 = 0.004 V/var, the bus voltage waveform is shown in Figure 19.
The waveform is similar to Figure 15, without more detailed analysis.
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In summary, the comparison of range of n1 when n2 is different is shown in Table 2. The allowable
range of n1 narrows with the increase of n2. From the perspective of system stability, the reactive
droop coefficients of two DGs are supposed to be coordinated because it is restricted in such a low
value range that the unit reactive power loss won’t cause large change in voltage—thus avoiding the
vicious cycle: “change in voltage-reactive power loss-enlargement change in voltage—larger reactive
power loss”.

Table 2. The influence of reactive droop coefficients between DG1 and DG2.

n2 (V/var) Range of n1 (V/var)

0.001 [0, 0.00169)
0.002 [0, 0.00147)
0.004 [0, 0.00133)

6. Conclusions

In this paper, research on influence of the wide application of electronic devices on system stability
is done by a three-source MG with a multiple master-slave control method.
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Different from the traditional master–slave control model, this paper established a model where
several master controllers coordinate and control the system in islanded mode. Then, the “virtual
impedance” was introduced to satisfy the decoupling condition and the small-signal decoupling control
model, which contains two main control sources and subordinate one, was also developed on the
basis of theory. Finally, the interaction between various DGs with droop control from the perspective
of control parameters was explored with the aid of the root locus method. The results show that the
value range of the droop coefficient for the two main DGs has mutual influence and the coordinated
allocation of parameters also affects the stability of microgrid operation. This research could serve as a
reference for parameter setting and contributed to study on stability of multi-source MG.
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Appendix A

Table A1. System basic parameter value.

Meaning of Parameter Symbol of Parameter Value of Parameter

Voltage Level/V E* 311
Reference value of active power/kW P3

* 10
Reference value of reactive power/kVar Q3

* −10
System switching frequency/kHz fs 20

System sampling period/ms Ts 0.05
Filter inductors/mH Lf1 = Lf2 = Lf3 1.5
Filter capacitors/µF Cf 1 = Cf 2 = Cf 3 20

Line resistance of DG1 and DG2/Ω R1, R2 0
Line resistance of DG3/Ω R3 0.2

Load resistance/Ω R4 3
Line inductance of DG1 and DG2/Ω X1 = X2 1.0

Line inductance of DG3/Ω X3 0.1
Load inductance/Ω X4 0

Proportional coefficient of voltage loop Kvp 0.1
Integral coefficient of voltage loop Kvi 400

Proportional coefficient of current loop Kip 0.065

Appendix B

The expressions of coefficients W1(s)–W6(s) in Equations (21)–(26) are shown in (A1)–(A6).

W1(s) =
412.78s5 + 96, 596s4 + 51, 663s3 + 4, 069, 653s2 + 1, 562, 487s + 23, 925, 000

s5 + 223.78s4 + 161.64s3 + 17, 462s2 + 6492s + 50, 574
, (A1)

W2(s) =
413.2s5 + 96, 818s4 + 51, 322s3 + 3, 997, 107s2 + 1, 536, 776s + 24, 028, 925

s5 + 224.3s4 + 161.2s3 + 17, 340s2 + 6450s + 50, 785
, (A2)

W3(s) =
412.7s5 + 96, 558s4 + 51, 863s3 + 4, 110, 238s2 + 1, 576, 956s + 23, 890, 375

s5 + 223.67s4 + 162s3 + 17, 538s2 + 6519s + 50, 501
, (A3)
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W4(s) =
128, 449s5 + 32, 460, 140s4 + 17, 352, 828s3 + 2, 532, 328, 040s2 + 490, 885, 015s + 7, 337, 660, 287

s6 + 257.04s5 + 173.83s4 + 29, 655.7s3 + 8295s2 + 952, 419s
, (A4)

W5(s) =
128, 449s5 + 16, 237, 480s4 + 16, 087, 143s3 + 1, 266, 640, 229s2 + 483, 547, 355s + 3, 668, 830, 143

s6 + 128.6s5 + 159s4 + 14, 834s3 + 7342s2 + 476, 209s
, (A5)

W6(s) =
128, 449s5 + 64, 905, 460s4 + 19, 884, 196s3 + 5, 063, 703, 661s2 + 505, 560, 336s + 14, 675, 320, 574

s6 + 513.9s5 + 203.5s4 + 59, 299s3 + 10, 200s2 + 1, 904, 839s
. (A6)
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