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Abstract:



In this paper, a hybrid optimization algorithm is proposed to solve multiobjective optimal power flow problems (MO-OPF) in a power system. The hybrid algorithm, named DA-PSO, combines the frameworks of the dragonfly algorithm (DA) and particle swarm optimization (PSO) to find the optimized solutions for the power system. The hybrid algorithm adopts the exploration and exploitation phases of the DA and PSO algorithms, respectively, and was implemented to solve the MO-OPF problem. The objective functions of the OPF were minimization of fuel cost, emissions, and transmission losses. The standard IEEE 30-bus and 57-bus systems were employed to investigate the performance of the proposed algorithm. The simulation results were compared with those in the literature to show the superiority of the proposed algorithm over several other algorithms; however, the time computation of DA-PSO is slower than DA and PSO due to the sequential computation of DA and PSO.






Keywords:


dragonfly algorithm; metaheuristic; optimal power flow; particle swarm optimization












1. Introduction


For the past few decades, the optimal power flow (OPF) problem has played an essential role in studying the economy terms of power systems [1,2]. The OPF problem is a nonlinear, nonconvex, large-scale, and static programming problem [3] that optimizes selected objective functions while satisfying a set of equality and inequality constraints. The power balance equations are the equality constraints, and the limits of state and control variables are the inequality constraints of the OPF problem. The state variables consist of slack bus active power generation, load bus voltages, reactive power generation, and apparent power flow. The control variables involve active power generation except at slack bus, generator bus voltages, tap ratios of transformers, and reactive powers of shunt compensation capacitors. In recent years, because of the rise in fuel cost, which increases generation cost, fuel cost has become the objective function to be optimized in the OPF problem. Moreover, due to the release of emissions from thermal power plants into the atmosphere, emissions are yet another concern for power system operation and planning [4]. At the same time, because the demand for electricity has outpaced the expansion of transmission capacity, the inadequate reactive power sources of power systems have increased losses in transmission lines. Thus, emissions and transmission losses must also be considered as part of the objective functions of the OPF problem.



To solve the OPF problem, several traditional optimization techniques, such as nonlinear programming [5], quadratic programming [6], and the interior point method [7], have been successfully applied. However, these algorithms’ nonlinear characteristics make them impractical to use in practical systems. The nonlinear characteristics may cause the obtained solutions to be trapped in local optima, and these algorithms require an enormous amount of computational effort and time. Therefore, many optimization methods need to be improved to overcome these shortcomings [8,9]. Recently, several population-based optimization algorithms, including the OPF problem, have been employed to solve a complex constrained optimization problem in the field of power systems. Some of the other proposed techniques include the genetic algorithm (GA) [10], tabu search (TS) [11], differential evolution (DE) [12], evolutionary programming (EP) [13], probabilistic optimal power-flow (P-OPF) [14], preventive security-constrained power flow optimization [15], ant colony optimization (ACO) [16], grey wolf optimizer (GWO) [17], artificial bee colony (ABC) [18], particle swarm optimization (PSO) [19], and the dragonfly algorithm (DA) [20]. Even with the successful optimization of single-objective population-based optimization techniques, minimizing only one objective function is not sufficient in the power system because there are many problems, such as fuel cost, emissions, and transmission losses, which also need to be minimized. Consequently, many objective functions should be considered because this is a multi objective optimization problem. Since there are three independent objective functions in this study (i.e., fuel cost, emissions, and transmission losses), the number of incompatible optimal solutions between the objective functions is infinite, and these optimal solutions are called Pareto optimal solutions [21].



Several optimization algorithms have been proposed and applied to solve the multiobjective OPF (MO-OPF) problem by many researchers. One of these methods was carried out by converting the multiobjective problem into a single-objective problem and then solving the problem by using a single-objective optimizer. However, this method has some drawbacks, such as the limitation of the available choices, the need for weights for each objective, and the requirement of multiple optimizer runs. To overcome these weaknesses, many researchers have proposed multiobjective evolutionary algorithms, such as the improved strength Pareto evolutionary algorithm (ISPEA2) [22], hybrid modified particle swarm optimization-shuffle frog leaping algorithms (HMPSO-SFLA) [23], modified teaching–learning-based optimization (MTLBO) [24], GWO [17], DE [17], multiobjective modified imperialist competitive algorithm (MOMICA) [25], differential search algorithm (DSA) [26], modified shuffle frog leaping algorithm (MSFLA) [27], modified Gaussian bare-bones multiobjective imperialist competitive algorithm (MGBICA) [28], multiobjective harmony search (MOHS) [29], adaptive real coded biogeography-based optimization (ARCBBO) [30], multiobjective differential evolution algorithm (MO-DEA) [31], hybrid modified imperialist competitive algorithm and teaching–learning algorithm (MICA-TLA) [32], etc., to successfully solve the OPF problem. In the past few decades, various well-proposed multiobjective evolutionary algorithms have been successfully applied and improved in many applications; however, most of them have not been extensively investigated in the OPF problem. Moreover, improving the search performance of the multiobjective evolutionary algorithm for solving the OPF problem is also important. In this paper, a hybrid DA-PSO algorithm is proposed to deal with the MO-OPF problem. The concept of the hybrid algorithm is the combination of the exploration and exploitation phases of the DA and PSO algorithms, respectively. The performance of the proposed algorithm was evaluated on the standard IEEE 30-bus and IEEE 57-bus power systems. Three different objective functions—fuel cost, emissions, and transmission losses—were individually and simultaneously considered as parts of the objective function in the OPF problem. The obtained results were compared with other evolutionary algorithms and the traditional DA and PSO.



The rest of the article is classified into five sections as follows. Section 2 introduces the formulation and constraints of the multiobjective optimization. In Section 3, the traditional DA and PSO are explained, and Section 4 depicts the concept of the proposed algorithm. Section 5 presents the optimization results and the comparisons between the solutions from the proposed algorithm and the solution from other algorithms based on IEEE 30-bus and IEEE 57-bus systems. Finally, in Section 6, the conclusions of the simulation results of the proposed algorithm are described.




2. Problem Formulation and Constraints for Multi Objective Optimization for OPF


Multi-objective optimization is a model that optimizes more than one objective function to find optimal control variables while simultaneously satisfying equality and inequality constraints. The compromised solutions, nondominated solutions, which have more than one optimal solution between each objective, are the optimal solutions referred to as the Pareto front. The multiobjective problem is mathematically formulated as follows:
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subject to
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where f is a vector of objective functions to be optimized, Nobj is the number of objective functions, g(x,u) are the equality constraints, and h(x,u) are the inequality constraints.



x is a vector of state variables including slack bus active power, load bus voltages, generator reactive powers, and apparent power flows, expressed as follows:
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where Pgslack is the active power generation at slack bus, VLi is the load voltage at bus i, NL is number of load buses, Qgi is the reactive power generation at bus i, Ngen is the number of total generators, Sli is the apparent power flow at branch i, and Nl is the number of transmission lines.



u is a vector of control variables consisting of active power generations except at slack bus, generator bus voltages, transformer tap ratios, and reactive powers of shunt compensation capacitors, expressed as:


[image: ]



(5)




where Pgi is the active power generation at bus i, PVbus is the set of generator buses except at slack bus, Vgi is the generator bus voltage at bus i, Ti is the transformer tap ratio at bus i, Ntran is the number of transformer taps, Qci is the shunt compensation capacitor at bus i, and Ncap is the number of compensation capacitors.



2.1. Objective Functions


In this study, the objective functions of the OPF, consisting of fuel cost, emissions, and transmission line losses, are considered as shown below.



2.1.1. Fuel Cost


The total fuel cost of the generators is considered to be minimized and is given as follows:
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where fC is the total fuel cost of generators function ($/h), and ai, bi and ci are the fuel cost coefficients of the ith generator units.




2.1.2. Emissions


The emissions function can be represented as the sum of all considered emission types, such as sulphur oxides (SOx), nitrogen oxides (NOx), thermal emission, etc. However, in the present study, two important emission types, NOx and SOx, are taken into account, as expressed below:
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where fE is the total emission generations function (ton/h), and γi, βi, αi, ζi and λi are emission coefficients of the ith generator units.




2.1.3. Transmission Line Losses


The system active power loss in the transmission line is formulated as follows:


[image: ]



(8)




where fL is the total transmission loss function (MW), gk is the conductance of the kth line, Vi is the voltage at bus i, Vj is the voltage at bus j, and θij is the voltage phase angle difference between buses i and j.





2.2. Constraints


2.2.1. Equality Constraints


The OPF equality constraints are the active and reactive power balance constraints, as follows:
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where Pdi is the active power demand at bus i, Nbus is the number of buses, Gij is the transfer conductance between buses i and j, Bij is the transfer susceptance between buses i and j, and Qdi is the reactive power demand at bus i.




2.2.2. Inequality Constraints
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where Pgimin and Pgimax are the minimum and maximum active power generations at bus i, respectively, Qgimin and Qgimax are the minimum and maximum reactive power generations at bus i, respectively, Vgimin, Vgimax are the minimum and maximum generator voltage at bus i, respectively, Slimax is the maximum apparent power flow at branch i, VLimin, VLimax are the minimum and maximum load voltage at bus i, respectively, Qcimin and Qcimax are the minimum and maximum shunt compensation capacitor at bus i, respectively, Timin, Timax are the minimum and maximum transformer tap-ratio at bus i, respectively.




2.2.3. Constraints Handling


The inequality of dependent variables, including slack bus active power generation, load bus voltage magnitudes, reactive power generations, and apparent power flows, are integrated into the penalized objective function to maintain these variables within their limits and to refuse infeasible solutions. The penalty function can be expressed as follows [27]:
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where J(x,u) is the penalized objective function, Kp, KQ, KV and Ks are the penalty factors, and xlim is the limit value of the dependent variables, determined as follows:


[image: ]



(19)










3. Related Optimization Techniques


3.1. DA


DA is a metaheuristic algorithm which was inspired by the static and dynamic swarming behaviors of dragonflies in nature [33]. Dragonflies swarm for two goals: Hunting (static swarm) and migration (dynamic swarm). In the dynamic swarm, many dragonflies swarm when roaming over long distances and different areas, which is the purpose of the exploration phase. In the static swarm, dragonflies move in larger swarms and along one direction with local movements and sudden changes in the flying path, which is suitable in the exploitation phase.



The behavior of dragonflies can be represented through five principles, which are separation, alignment, cohesion, attraction to a food source, and distraction of an enemy. These five behaviors are described and calculated as follows:



Separation, which is the avoidance of the static crashing of individuals into other individuals in the neighborhood, is calculated by Equation (20).
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where Si is the separation of the ith individual, N is the number of neighboring individuals, X is the position of the current individual, and Xj is the position of jth neighboring individual.



Alignment, which refers to the velocity matching of individuals to the velocity of others in the neighborhood, is computed by Equation (21).
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where Ai is the alignment of the ith individual, and Vj is the velocity of jth neighboring individual.



Cohesion, which is the propensity of individuals towards the center of mass of the neighborhood, is formulated by Equation (22).


[image: ]



(22)




where Ci is the cohesion of the ith individual



Attraction towards a food source computed by Equation (23), should be the main objective of any swarm to survive.
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where Fi is the food source of the ith individual, and X+ is the position of the food source.



Distraction of an enemy, which is computed by Equation (24), is another survival objective of the swarm.
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where Ei is the position of enemy of the ith individual, and X− is the position of the enemy source.



To simulate the movement of artificial dragonflies and update their positions, step vector (ΔX) and position vector (X) are considered. The step vector represents the direction of the movement of the artificial dragonflies and is formulated as follows:
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where ΔXt + 1 is the step vector at iteration t + 1, ΔXt is the step vector at iteration t, s, a, c, f and e are the separation weight, alignment weight, cohesion weight, food factor and enemy factor, respectively, and ωt is the inertia weight factor at iteration t and is calculated by Equation (26).
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where ωmax and ωmin are set to 0.9 and 0.4, respectively, Iter is the iteration, and Itermax is the maximum iteration.



The position of the artificial dragonflies can be updated by the following equation:
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where Xt+ 1 is the position at iteration t + 1, and Xt is the position at iteration t.



When the search space does not have a neighboring solution, the artificial dragonflies need to move around the search space by applying random walk (Levy flight) to improve their stochastic behavior. So, in this case, the position of the dragonflies can be calculated by Equation (28).


[image: ]



(28)




where d is the dimension of the position vectors, and the Levy is the Levy flight which is computed by Equation (29).
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where r1 and r2 are two uniform random values in a range of [0, 1], and σ is calculated by Equation (30).
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where β is the constant (which is equal to 1.5 in this work), and [image: ].




3.2. PSO


PSO is a population-based stochastic global optimization technique which was first introduced by Eberhart and Kennedy [34]. The idea of PSO came from the flocking behavior of birds or the schooling of fishes in their food hunting. In the PSO system, the population moves around a multidimensional search space where each particle represents a possible solution. Each particle contains the information of control variables and is associated with a fitness value that indicates its performance in the fitness space. Each particle i consists of its position Xi = (xi,1, xi,2, …, xi,Nvar), where Nvar represents the number of control variables, velocity Vi = (vi,1, vi,2, …, vi,Nvar) and personal best experience Xpbesti = (xpbesti,1, xpbesti,2, …, xpbesti,Nvar), and a swarm has a global best experience Xgbest = (xgbest1, xgbest2, …, xgbestNvar). During each iteration, each particle moves in the direction of its own personal best position provided so far as well as in the direction of the global best position obtained so far by particles in the swarm. The particles are operated according to the equations expressed as follows:
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where Vit+ 1 is the velocity of particle i at iteration t + 1, Vit is the velocity of particle i at iteration t, C1 and C2 are two positive acceleration constants, rand1 and rand2 are two uniform random values in a range of [0, 1], Xtpbesti is the personal best position of particle i at iteration t, Xit is the position of particle i at iteration t, Xtgbest is the global best position among all particles at iteration t, and Xit+ 1 is the position of particle i at iteration t + 1.





4. Proposed Hybrid DA-PSO Optimization Algorithm for MO-OPF Problem


Many optimization algorithms have been proposed to overcome the optimization problem of being trapped in the local optima while the algorithms try to find the best solution. PSO has been proven in several works from the literature to find the optimal solution in various problems [35,36,37,38]. Because of its equations in finding the optimal solution by using the best experience of the particles, PSO could quickly converge on the optimal solution, i.e., it is good at exploitation. However, PSO is sometimes still trapped in the local optima because it converges on the optimal solution too quickly. In other words, PSO is poor at exploration, which is an important task of the optimization process. In DA, it applies the Levy flight to improve the randomness and stochastic behavior when there is no neighboring dragonfly. This could significantly improve the exploration process of the algorithm. However, the best experience, which is the personal best, of dragonflies is not applied during the operation. This causes the DA to converge on the optimal solution very slowly and can sometimes cause it to be trapped in the local optima. To overcome these problems, a new algorithm is proposed which combines the prominent points of the DA and PSO algorithms, which are the exploration of DA and the exploitation of PSO. At first, the dragonflies in DA are initialized to explore the search space to find the area of the global solution. Then, the best position of DA is obtained. The obtained best position from DA is then substituted as the global best position in the PSO equation (Equation (31)). After that, the PSO algorithm, which is the exploitation phase, operates by using the global best position from DA, allowing it to provide the expected optimal solution. The velocity and position equations of PSO can be modified as follows:
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where [image: ] is the best position obtained from DA at iteration t + 1.



The application of the proposed DA-PSO algorithm for solving the MO-OPF problem can be described as follows:

	Step 1.

	
Clarify the system data comprising the fuel cost coefficients of the generators, emission coefficients of the generators, initial values of generator active powers, initial values of generator bus voltages, initial values of transformer tap ratios, initial values of shunt compensation capacitors, upper limit of Sli, lower and upper limits of Pgi, Qgi, Vgi, VLi, Qci, and Ti, the parameters of DA and PSO, the number of dragonflies and particles, the number of iterations, and the archive size.




	Step 2.

	
Generate the initial population of dragonflies and particles.




	Step 3.

	
Convert the constrained multi objective problem to an unconstrained one by using Equation (18).




	Step 4.

	
Perform the power flow and calculate the objective functions for the initial population of dragonflies.




	Step 5.

	
Find the nondominated solutions and save them to the initial archive.




	Step 6.

	
Set the fitness value of the initial population as the food source.




	Step 7.

	
Calculate the parameters of DA (s, a, c, f, and e).




	Step 8.

	
Update the food source and enemy of DA.




	Step 9.

	
Calculate the S, A, C, F, and E by Equations (20)–(24).




	Step 10.

	
Check if a dragonfly has at least one neighboring dragonfly, then update step vector (ΔX) and the position of dragonfly (XDA) by Equations (25) and (27), respectively, and if each dragonfly has no neighboring dragonfly, then update XDA by Equation (28) and set ΔX to be zero.




	Step 11.

	
If any component of each population breaks its limit, then ΔX or XDA of that population is moved into its minimum/maximum limit.




	Step 12.

	
Set the best position obtained from DA as the global best of PSO (Xgbest).




	Step 13.

	
Update the velocity of the particle (V) and the position of the particle (XPSO) by Equations (33) and (34), respectively.




	Step 14.

	
If any component of each population breaks its limit, then V or XPSO of that population is moved into its minimum/maximum limit.




	Step 15.

	
Calculate the objective functions of the new produced population.




	Step 16.

	
Employ the Pareto front method to save the nondominated solutions to the archive and update the archive.




	Step 17.

	
If the maximum number of iterations is reached, the algorithm is stopped; otherwise, go to step 7.









The flowchart of the DA-PSO algorithm for the MO-OPF problem is shown in Figure 1.


Figure 1. Flowchart of the dragonfly algorithm and particle swarm optimization (DA-PSO) algorithm for solving the multiobjective optimal power flow (MO-OPF) problem.
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5. Simulation Results


To investigate the performance of the proposed algorithm, the IEEE 30-bus and IEEE 57-bus test systems were employed. The proposed algorithm operated for 30 independent runs for each test system. To validate the superiority of the proposed algorithm for solving the economic dispatch optimization problem, the results provided by the proposed algorithm were compared with those of other metaheuristic algorithms from the literature. In order to investigate both the single-objective optimization and multiobjective optimization, the simulation was divided into two cases. Single-objective optimization was evaluated in the first case. In the second case, multiobjective optimization to solve the MO-OPF by using the proposed DA-PSO algorithm was evaluated.



5.1. IEEE 30-Bus Test System


The proposed DA-PSO algorithm was applied to the IEEE 30-bus system to evaluate its performance. The IEEE 30-bus test system was composed of 6 generators at buses 1, 2, 5, 8, 11, and 13, 4 transformers between buses 6 and 9, buses 6 and 10, buses 4 and 12, and buses 27 and 28, and 41 transmission lines. The total system demand was 283.4 MW and 126.6 MVAR. The bus and branch data is given in [39]. The population number and the size of the Pareto archive were set to be 100 and 100, respectively.



5.1.1. Single-Objective OPF


To evaluate the performance of the proposed algorithm for solving the single-objective optimization, three different objective functions consisting of fuel cost, emissions, and transmission loss minimizations were individually considered as part of the objective function. The obtained results by the traditional DA, PSO, and the proposed DA-PSO algorithm for three individual objective functions are shown in Table 1. In Table 2, the best fuel cost of generators provided by the DA-PSO algorithm are compared with other algorithms in the literature, including TS [11], EP [13], ACO [16], SFLA [27], MSFLA [27], improved evolutionary programming (IEP) [40], modified differential evolution optimal power flow (MDE-OPF) [41], stochastic genetic algorithm (SGA) [42], evolutionary-programming-based optimal power flow (EP-OPF) [43], honey bee mating optimization (HBMO) [44], PSO, and DA. The comparison of the best emission values of the DA-PSO algorithm with various algorithms in the literature, including ACO [16], HMPSO-SFLA [23], TLBO [24], MTLBO [24], DSA [26], MSFLA [27], SFLA [27], GA [27], GBICA [28], improved particle swarm optimization (IPSO) [45], PSO, and DA, is shown in Table 3. In Table 4, the best transmission losses provided by DA-PSO algorithm are compared with other algorithms in the literature, including GWO [17], DE [17], MOHS [29], enhanced genetic algorithm with decoupled quadratic load flow (EGA-DQLF) [46], efficient evolutionary algorithm (EEA) [47], enhanced genetic algorithm (EGA) [47], PSO, and DA. It can be seen that the proposed DA-PSO provided better results compared with those of other algorithms for all three objective functions, which can be confirmed by the results in Table 1, Table 2, Table 3 and Table 4. However, the computation time of the proposed DA-PSO is much slower than other algorithms in the literature because the proposed algorithm consumed the sequential computation time of DA and PSO as presented in Table 2, Table 3 and Table 4.


Table 1. Comparison of the simulation results from particle swarm optimization (PSO), dragonfly algorithm (DA), and DA-PSO for IEEE 30-bus system.





	
Variables

	
Best Fuel Cost

	
Best Emission

	
Best PLoss




	
PSO

	
DA

	
DA-PSO

	
PSO

	
DA

	
DA-PSO

	
PSO

	
DA

	
DA-PSO






	
Pg1 (MW)

	
176.2376

	
176.5128

	
176.1861

	
64.1678

	
64.3407

	
64.0997

	
51.6974

	
51.5987

	
51.5893




	
Pg2 (MW)

	
48.8432

	
48.6955

	
48.8318

	
67.6692

	
67.5383

	
67.6295

	
80.0000

	
80.0000

	
80.0000




	
Pg3 (MW)

	
21.5184

	
21.4431

	
21.5119

	
50.0000

	
50.0000

	
50.0000

	
50.0000

	
50.0000

	
50.0000




	
Pg4 (MW)

	
22.1257

	
22.0995

	
22.0737

	
35.0000

	
35.0000

	
35.0000

	
35.0000

	
35.0000

	
35.0000




	
Pg5 (MW)

	
12.2000

	
12.0673

	
12.2005

	
30.0000

	
30.0000

	
30.0000

	
30.0000

	
40.0000

	
30.0000




	
Pg6 (MW)

	
12.0000

	
12.0091

	
12.0000

	
40.0000

	
40.0000

	
40.0000

	
40.0000

	
40.0000

	
40.0000




	
Vg1 (p.u.)

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500




	
Vg2 (p.u.)

	
1.0381

	
1.0379

	
1.0379

	
1.0459

	
1.0472

	
1.0459

	
1.0477

	
1.0476

	
1.0476




	
Vg3 (p.u.)

	
1.0110

	
1.0117

	
1.0109

	
1.0274

	
1.0309

	
1.0277

	
1.0292

	
1.0283

	
1.0292




	
Vg4 (p.u.)

	
1.0194

	
1.0197

	
1.0187

	
1.0353

	
1.0377

	
1.0350

	
1.0366

	
1.0342

	
1.0363




	
Vg5 (p.u.)

	
1.1000

	
1.1000

	
1.1000

	
1.1000

	
1.1000

	
1.1000

	
1.1000

	
1.0387

	
1.1000




	
Vg6 (p.u.)

	
1.0999

	
1.0842

	
1.0828

	
1.0852

	
1.0140

	
1.0713

	
1.0850

	
1.0606

	
1.0712




	
T6-9 (p.u.)

	
0.9973

	
1.0318

	
1.0166

	
1.0136

	
1.0017

	
1.0490

	
1.0153

	
1.1000

	
1.0482




	
T6-10 (p.u.)

	
0.9000

	
0.9004

	
0.9210

	
0.9000

	
1.1000

	
0.9000

	
0.9000

	
0.9000

	
0.9000




	
T4-12 (p.u.)

	
1.0157

	
0.9995

	
0.9980

	
1.0097

	
1.0003

	
0.9954

	
1.0105

	
0.9740

	
0.9962




	
T27-28 (p.u.)

	
0.9403

	
0.9501

	
0.9478

	
0.9518

	
1.0136

	
0.9609

	
0.9529

	
0.9647

	
0.9618




	
Qc10 (MVar)

	
28.6430

	
7.0219

	
10.0521

	
0.0000

	
0.0030

	
5.7174

	
7.0753

	
30.0000

	
5.2416




	
Qc24 (MVar)

	
0.0000

	
11.0974

	
10.6433

	
30.0000

	
16.6605

	
10.6333

	
17.0085

	
9.9534

	
10.6499




	
Fuel Cost ($/h)

	
802.5449

	
802.1299

	
802.1241

	
945.0484

	
944.9387

	
944.7159

	
968.1335

	
967.8979

	
967.8756




	
Emission (ton/h)

	
0.363619

	
0.364411

	
0.363494

	
0.204886

	
0.204861

	
0.204853

	
0.207294

	
0.207280

	
0.207279




	
PLoss (MW)

	
9.5249

	
9.4272

	
9.4041

	
3.4370

	
3.4790

	
3.3292

	
3.2974

	
3.1987

	
3.1893









Table 2. Comparison of the results from DA-PSO and other algorithms when considering only fuel cost as part of the objective function for IEEE 30-bus system.





	Algorithms
	Pg1 (MW)
	Pg2 (MW)
	Pg3 (MW)
	Pg4 (MW)
	Pg5 (MW)
	Pg6 (MW)
	Emission (ton/h)
	Loss (MW)
	Cost ($/h)
	Time (s)





	TS [11]
	176.0400
	48.7600
	21.5600
	22.0500
	12.4400
	12.0000
	0.363004
	9.4500
	802.2900
	-



	EP [13]
	173.8480
	49.9980
	21.3860
	22.6300
	12.9280
	12.0000
	0.357217
	9.3900
	802.6200
	51.40



	ACO [16]
	181.9450
	47.0010
	21.4596
	21.4460
	13.2070
	12.0134
	0.382000
	9.8520
	802.5780
	-



	SFLA [27]
	179.0337
	49.2580
	20.3183
	21.3269
	11.5420
	11.6655
	0.372000
	9.7444
	802.5092
	-



	MSFLA [27]
	179.1929
	48.9804
	20.4517
	20.9264
	11.5897
	11.9579
	0.372300
	9.6991
	802.2870
	-



	IEP [40]
	176.2358
	49.0093
	21.5023
	21.8115
	12.3387
	12.0129
	0.363610
	10.8700
	802.4650
	99.01



	MDE-OPF [41]
	175.9740
	48.8840
	21.5100
	22.2400
	12.2510
	12.0000
	0.362900
	9.4590
	802.3760
	23.25



	SGA [42]
	179.3670
	44.2400
	24.6100
	19.9000
	10.7100
	14.0900
	0.371129
	9.5177
	803.6990
	-



	EP-OPF [43]
	175.0297
	48.9522
	21.4200
	22.7020
	12.9040
	12.1035
	0.360125
	9.7114
	803.5710
	-



	HBMO [44]
	178.4646
	46.2740
	21.4596
	21.4460
	13.2070
	12.0134
	0.369212
	9.4662
	802.2110
	28.56



	PSO
	176.2376
	48.8432
	21.5184
	22.1257
	12.2000
	12.0000
	0.363619
	9.5249
	802.5449
	92.18



	DA
	176.5128
	48.6955
	21.4431
	22.0995
	12.0673
	12.0091
	0.364411
	9.4272
	802.1299
	103.06



	DA-PSO
	176.1861
	48.8318
	21.5119
	22.0737
	12.2005
	12.0000
	0.363494
	9.4041
	802.1241
	287.13








Table 3. Comparison of the results from DA-PSO and other algorithms when considering only emissions as part of the objective function for IEEE 30-bus system.





	Algorithms
	Pg1 (MW)
	Pg2 (MW)
	Pg3 (MW)
	Pg4 (MW)
	Pg5 (MW)
	Pg6 (MW)
	Cost ($/h)
	Loss (MW)
	Emission (ton/h)
	Time (s)





	ACO [16]
	64.3720
	72.1604
	49.5438
	32.9099
	28.6113
	39.7390
	945.5870
	3.9368
	0.221000
	-



	HMPSO-SFLA [23]
	64.8148
	68.0692
	50.0000
	34.9999
	30.0000
	40.0000
	948.3052
	4.4839
	0.205200
	-



	TLBO [24]
	63.5221
	68.7345
	49.9931
	34.9894
	29.9824
	39.9801
	947.4392
	3.8016
	0.205030
	-



	MTLBO [24]
	64.2924
	67.6250
	50.0000
	35.0000
	30.0000
	40.0000
	945.1965
	3.5174
	0.204930
	-



	DSA [26]
	64.0725
	67.5711
	50.0000
	35.0000
	30.0000
	40.0000
	944.4086
	3.2437
	0.205826
	-



	MSFLA [27]
	65.7798
	68.2688
	50.0000
	34.9999
	29.9982
	39.9970
	951.5106
	5.6437
	0.205600
	-



	SFLA [27]
	64.4840
	71.3807
	49.8573
	35.0000
	30.0000
	39.9729
	960.1911
	7.2949
	0.206300
	-



	GA [27]
	78.2885
	68.1602
	46.7848
	33.4909
	30.0000
	36.3713
	936.6152
	9.6957
	0.211700
	-



	GBICA [28]
	64.3125
	67.4938
	50.0000
	35.0000
	29.9924
	40.0000
	944.6516
	3.3987
	0.204900
	-



	IPSO [45]
	67.0400
	68.1400
	50.0000
	35.0000
	30.0000
	40.0000
	954.2480
	5.3620
	0.205800
	-



	PSO
	64.1678
	67.6692
	50.0000
	35.0000
	30.0000
	40.0000
	945.0484
	3.4370
	0.204886
	91.84



	DA
	64.0667
	67.6897
	50.0000
	35.0000
	30.0000
	40.0000
	944.8819
	3.3564
	0.204861
	103.20



	DA-PSO
	64.0997
	67.6295
	50.0000
	35.0000
	30.0000
	40.0000
	944.7159
	3.3292
	0.204853
	290.01








Table 4. Comparison of the results from DA-PSO and other algorithms when considering only losses as part of the objective function for IEEE 30-bus system.





	Algorithms
	Pg1 (MW)
	Pg2 (MW)
	Pg3 (MW)
	Pg4 (MW)
	Pg5 (MW)
	Pg6 (MW)
	Cost ($/h)
	Emission (ton/h)
	Loss (MW)
	Time (s)





	GWO [17]
	51.8100
	80.0000
	50.0000
	35.0000
	30.0000
	40.0000
	968.3800
	0.207310
	3.4100
	15.90



	DE [17]
	51.8200
	79.9900
	49.9900
	35.0000
	29.9800
	40.0000
	968.2300
	0.207311
	3.3800
	16.50



	MOHS [29]
	66.2759
	79.6413
	46.8835
	34.8880
	29.1213
	30.0558
	928.5099
	0.212890
	3.5165
	-



	EGA-DQLF [46]
	51.6008
	80.0000
	50.0000
	35.0000
	30.0000
	40.0000
	967.8600
	0.207281
	3.2008
	-



	EEA [47]
	59.3216
	74.8132
	49.8547
	34.9084
	28.1099
	39.7538
	952.3785
	0.206735
	3.2823
	5.72



	EGA [47]
	51.6740
	79.9700
	50.0000
	35.0000
	30.0000
	40.0000
	967.9300
	0.207275
	3.2440
	29.71



	PSO
	51.6974
	80.0000
	50.0000
	35.0000
	30.0000
	40.0000
	968.1335
	0.207294
	3.2974
	93.36



	DA
	51.5941
	80.0000
	50.0000
	35.0000
	40.0000
	40.0000
	967.8869
	0.207280
	3.1941
	102.81



	DA-PSO
	51.5893
	80.0000
	50.0000
	35.0000
	30.0000
	40.0000
	967.8756
	0.207279
	3.1893
	292.33










5.1.2. MO-OPF


In this subsection, the proposed algorithm is investigated as a multiobjective optimization problem, while every two and three objective functions are optimized simultaneously. The best two-dimensional Pareto fronts obtained from the DA, PSO, and DA-PSO algorithms for the IEEE 30-bus system are shown in Figure 2, Figure 3 and Figure 4. However, DA could not provide the convergent Pareto front when simultaneously considering the emissions and losses as parts of the objective function. This shows that DA is suitable for some objective functions, but that it is not suitable for every objective function for finding optimal solutions. In Figure 5, the Pareto front provided by the DA-PSO algorithm for the three-dimensional Pareto front is shown. For all figures in this system, most of the nondominated solutions obtained by the DA-PSO algorithm are better than those from the DA and PSO algorithms. For instance, at the same level of the fuel cost, the emissions provided by DA-PSO are less than those of DA and PSO. This shows that the new proposed hybrid DA-PSO algorithm, which adopts the exploration phase of the DA and the exploitation phase of the PSO, could improve the performance of the original DA and PSO algorithms.


Figure 2. Two-dimensional Pareto fronts when considering fuel cost and emissions as part of the objective function for the IEEE 30-bus system.



[image: Energies 11 02270 g002]





Figure 3. Two-dimensional Pareto fronts when considering fuel cost and transmission losses as part of the objective function for the IEEE 30-bus system.
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Figure 4. Two-dimensional Pareto fronts when considering emissions and transmission losses as part of the objective function for the IEEE 30-bus system.
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Figure 5. Three-dimensional Pareto fronts when considering fuel cost, emissions, and transmission losses as part of the objective function for the IEEE 30-bus system shown in the different views: (a) front view; (b) side view; (c) back view; (d) side view.
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5.2. IEEE 57-Bus Test System


The proposed hybrid DA-PSO was also tested on the IEEE 57-bus system to investigate its performance. The system active and reactive power demands were 1250.8 MW and 336.4 MVAR, respectively. It consisted of 7 generators located at buses 1, 2, 3, 6, 8, 9, and 12, 15 transformers, and 80 transmission lines. The detail data were taken from [48]. The population number was 100 and the size of the Pareto archive was 100.



5.2.1. Single-Objective OPF


To verify its performance for solving the single-objective OPF in a larger system, the proposed algorithm was also applied to the IEEE 57-bus test system. Three different objective functions, i.e., fuel cost, emissions, and transmission losses, were individually considered as part of the objective function. The results provided by DA, PSO, and the proposed DA-PSO algorithm for the three individual objectives are shown in Table 5. The best results from DA-PSO are compared with those of: MTLBO [23], DSA [25], GBICA [27], MGBICA [27], ARCBBO [29], MO-DEA [30], MICA-TLA [31], TLBO [48], Levy mutation teaching–learning-based optimization (LTLBO) [49], new particle swarm optimization (NPSO) [50], fuzzy genetic algorithm (Fuzzy-GA) [51], differential evolution pattern search (DE-PS) [52], ABC [53], particle swarm optimization algorithm with linearly decreasing inertia weight (LDI-PSO) [53], evolving ant direction differential evolution (EADDE) [54], gravitational search algorithm (GSA) [55], adaptive particle swarm optimization strategy (APSO) [56], PSO, and DA for the fuel cost objective function; GBICA [27], MGBICA [27], PSO, and DA for the emission objective function; and PSO and DA for the transmission loss objective function—all of which is summarized in Table 5, Table 6, Table 7 and Table 8. From these tables, it is obvious that the proposed algorithm could provide more optimized results than the compared algorithms for all three objective functions.


Table 5. Comparison of the simulation results from PSO, DA, and DA-PSO for IEEE 57-bus system.





	
Variables

	
Best Fuel Cost

	
Best Emission

	
Best PLoss




	
PSO

	
DA

	
DA-PSO

	
PSO

	
DA

	
DA-PSO

	
PSO

	
DA

	
DA-PSO






	
Pg1 (MW)

	
142.7472

	
154.8513

	
141.4617

	
236.4846

	
246.6610

	
236.4531

	
193.1342

	
269.9574

	
202.6688




	
Pg2 (MW)

	
88.8427

	
76.6227

	
87.7806

	
100.0000

	
44.6053

	
100.0000

	
8.8581

	
0.2047

	
0.0000




	
Pg3 (MW)

	
44.9025

	
49.4440

	
44.6638

	
139.9999

	
140.0000

	
140.0000

	
139.9731

	
60.2481

	
140.0000




	
Pg4 (MW)

	
70.8490

	
100.0000

	
73.6254

	
100.0000

	
78.0610

	
100.0000

	
100.0000

	
55.3529

	
100.0000




	
Pg5 (MW)

	
458.6003

	
438.7375

	
458.9904

	
292.5686

	
329.7090

	
292.1457

	
309.5411

	
377.9311

	
308.2507




	
Pg6 (MW)

	
100.0000

	
100.0000

	
97.4933

	
100.0000

	
82.5653

	
100.0000

	
100.0000

	
90.2309

	
100.0000




	
Pg7 (MW)

	
360.3487

	
347.6947

	
361.7228

	
298.6306

	
344.7194

	
298.4568

	
410.0000

	
410.0000

	
410.0000




	
Vg1 (p.u.)

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500

	
1.0500




	
Vg2 (p.u.)

	
1.0494

	
1.0453

	
1.0488

	
1.0513

	
1.0486

	
1.0506

	
1.0458

	
1.0351

	
1.0450




	
Vg3 (p.u.)

	
1.0479

	
1.0475

	
1.0455

	
1.0532

	
1.0550

	
1.0505

	
1.0528

	
1.0342

	
1.0520




	
Vg4 (p.u.)

	
1.0628

	
1.0755

	
1.0581

	
1.0518

	
1.0303

	
1.0493

	
1.0537

	
1.0454

	
1.0525




	
Vg5 (p.u.)

	
1.0792

	
1.0802

	
1.0745

	
1.0551

	
1.0142

	
1.0506

	
1.0603

	
1.0563

	
1.0566




	
Vg6 (p.u.)

	
1.0455

	
1.0568

	
1.0442

	
1.0266

	
1.0133

	
1.0267

	
1.0349

	
1.0240

	
1.0348




	
Vg7 (p.u.)

	
1.0410

	
1.0629

	
1.0394

	
1.0251

	
1.0556

	
1.0262

	
1.0392

	
1.0119

	
1.0384




	
T4–8 (p.u.)

	
0.9429

	
1.1000

	
1.0221

	
0.9629

	
1.1000

	
0.9691

	
0.9625

	
0.9763

	
0.9730




	
T4–18 (p.u.)

	
0.9916

	
1.0140

	
0.9953

	
0.9764

	
1.0682

	
0.9870

	
0.9865

	
1.0277

	
1.0275




	
T21–20 (p.u.)

	
1.0151

	
1.1000

	
1.0196

	
1.0233

	
1.0113

	
1.0228

	
1.0226

	
1.0286

	
1.0442




	
T24–25 (p.u.)

	
0.9000

	
0.9857

	
1.0212

	
0.9082

	
1.1000

	
1.1000

	
0.9111

	
1.0430

	
1.0140




	
T24–25 (p.u.)

	
0.9378

	
0.9812

	
0.9896

	
0.9000

	
0.9645

	
0.9609

	
0.9118

	
0.9948

	
1.0145




	
T24–26 (p.u.)

	
1.0219

	
1.1000

	
1.0175

	
1.0115

	
0.9981

	
1.0086

	
1.0130

	
1.0312

	
1.0111




	
T7–29 (p.u.)

	
0.9901

	
1.0253

	
0.9983

	
0.9791

	
0.9658

	
0.9904

	
0.9826

	
0.9816

	
0.9945




	
T34–32 (p.u.)

	
0.9277

	
1.0731

	
0.9582

	
0.9285

	
1.0069

	
0.9682

	
0.9217

	
0.9815

	
0.9577




	
T11–41 (p.u.)

	
0.9000

	
0.9879

	
0.9063

	
0.9000

	
0.9062

	
0.9000

	
0.9000

	
1.1000

	
0.9036




	
T15–45 (p.u.)

	
0.9667

	
0.9770

	
0.9714

	
0.9750

	
1.0178

	
0.9786

	
0.9779

	
0.9761

	
0.9807




	
T14–46 (p.u.)

	
0.9578

	
0.9807

	
0.9616

	
0.9636

	
0.9743

	
0.9569

	
0.9594

	
0.9373

	
0.9616




	
T10–51 (p.u.)

	
0.9748

	
0.9899

	
0.9766

	
0.9642

	
0.9824

	
0.9674

	
0.9710

	
0.9395

	
0.9707




	
T13–49 (p.u.)

	
0.9300

	
1.0153

	
0.9301

	
0.9257

	
0.9854

	
0.9274

	
0.9292

	
0.9850

	
0.9375




	
T11–43 (p.u.)

	
0.9785

	
0.9738

	
0.9756

	
0.9612

	
0.9707

	
0.9647

	
0.9704

	
0.9373

	
0.9767




	
T40–56 (p.u.)

	
0.9962

	
1.1000

	
1.0105

	
0.9715

	
0.9460

	
0.9710

	
0.9969

	
1.0457

	
0.9972




	
T39–57 (p.u.)

	
0.9692

	
1.1000

	
0.9621

	
0.9728

	
1.0799

	
0.9742

	
0.9629

	
0.9373

	
0.9645




	
T9–55 (p.u.)

	
0.9856

	
1.0732

	
0.9988

	
0.9676

	
0.9937

	
0.9810

	
0.9756

	
0.9747

	
0.9842




	
Qc18 (MVar)

	
18.7450

	
6.6751

	
13.2804

	
0.0000

	
15.6977

	
2.4493

	
10.9247

	
12.9734

	
4.5146




	
Qc25 (MVar)

	
13.8614

	
8.7220

	
12.6307

	
7.3042

	
22.1164

	
16.8169

	
28.7430

	
12.9949

	
14.5906




	
Qc53 (MVar)

	
12.0686

	
22.2015

	
13.9725

	
0.0249

	
9.3410

	
12.5551

	
19.7432

	
10.7143

	
12.9250




	
Fuel Cost ($/h)

	
41,698.37

	
41,828.45

	
41,674.62

	
45,671.22

	
45,449.13

	
45,648.67

	
44,951.80

	
43,464.17

	
45,039.05




	
Emission (ton/h)

	
1.9027

	
1.6883

	
1.9087

	
1.0814

	
1.3097

	
1.0799

	
1.3821

	
1.7562

	
1.4014




	
PLoss (MW)

	
15.4903

	
16.5502

	
14.9380

	
16.8837

	
15.5210

	
16.2556

	
10.7076

	
13.6430

	
10.1212









Table 6. Comparison of the results from DA-PSO and other algorithms when considering only fuel cost as part of the objective function for the IEEE 57-bus system.





	Algorithms
	Cost ($/h)





	MTLBO [23]
	41,638.3822



	DSA [25]
	41,686.8200



	GBICA [27]
	41,740.2884



	MGBICA [27]
	41,715.7101



	ARCBBO [29]
	41,686.0000



	MO-DEA [30]
	41,683.0000



	MICA-TLA [31]
	41,675.0545



	TLBO [48]
	41,695.6629



	LTLBO [49]
	41,679.5451



	NPSO [50]
	41,699.5163



	Fuzzy-GA [51]
	41,716.2808



	DE-PS [52]
	41,685.2950



	ABC [53]
	41,693.9589



	LDI-PSO [53]
	41,815.5035



	EADDE [54]
	41,713.6200



	GSA [55]
	41,695.8717



	APSO [56]
	41,713.8868



	PSO
	41,698.3672



	DA
	41,828.4473



	DA-PSO
	41,674.6209








Table 7. Comparison of the results from DA-PSO and other algorithms when considering the only emissions as part of the objective function for the IEEE 57-bus system.





	Algorithms
	Emission (ton/h)





	GBICA [27]
	1.1881



	MGBICA [27]
	1.1724



	PSO
	1.0814



	DA
	1.3097



	DA-PSO
	1.0799








Table 8. Comparison of the results from DA-PSO and its traditional algorithms when considering only transmission losses as part of the objective function for the IEEE 57-bus system.





	Algorithms
	Loss (MW)





	PSO
	10.7076



	DA
	13.6430



	DA-PSO
	10.1212










5.2.2. MO-OPF


This case proposes a multiobjective optimization problem by using the proposed DA-PSO algorithm to evaluate its performance for the IEEE 57-bus test system. The two-dimensional Pareto fronts provided by the PSO and DA-PSO algorithms for this system are shown in Figure 6, Figure 7 and Figure 8, while DA could not provide the convergent Pareto fronts for any multiobjective functions in this system. In Figure 9, the three-dimensional Pareto front obtained from DA-PSO is shown. From all figures for this system, the fronts obtained from DA-PSO algorithm are superior to those from PSO, while the fronts obtained from DA could not converge because the best experience of dragonflies in DA is not applied during the operation and the obtained solutions are trapped in the local optima. From the results, it can be seen that the proposed hybrid DA-PSO performs better than the original DA and PSO algorithms once again.


Figure 6. Two-dimensional Pareto fronts when considering fuel cost and emissions as part of the objective function for the IEEE 57-bus system.
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Figure 7. Two-dimensional Pareto fronts when considering fuel cost and transmission losses as part of the objective function for the IEEE 57-bus system.



[image: Energies 11 02270 g007]





Figure 8. Two-dimensional Pareto fronts when considering emissions and transmission losses as part of the objective function for the IEEE 57-bus system.
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Figure 9. Three-dimensional Pareto fronts when considering fuel cost, emissions, and transmission losses as part of the objective function for the IEEE 57-bus system.
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6. Conclusions


In this paper, a hybrid DA-PSO algorithm is proposed to solve the MO-OPF problem in a power system. As the DA is an algorithm that applies Levy flight to improve its randomness and stochastic behavior, this could significantly develop the exploration phase of the algorithm in an optimization. The PSO could quickly converge on the optimal solution because of its equations for finding optimal solutions by using the best experience of the particles. This makes PSO perform well at the exploitation phase in an optimization. The new hybrid DA-PSO algorithm combines the prominent points of these two algorithms, which are the exploration phase of DA and the exploitation phase of the PSO, to improve its performance for finding the optimal solution of the OPF problem. The proposed algorithm was used to minimize fuel cost, emissions, and transmission losses, which are considered to be parts of the objective function. The standard IEEE 30-bus and 57-bus systems were employed to investigate the performance of the proposed algorithm to find the optimal settings of the control variables. In order to investigate the single-objective and multiobjective optimizations, the simulation was divided into two cases. First, the proposed algorithm was used to solve a single-objective function. The results from the proposed algorithm show its superiority over other optimization algorithms in the literature. For the other case, the DA-PSO was successfully employed to solve the MO-OPF problem because the Pareto fronts generated by DA-PSO are better than those obtained by the original DA and PSO algorithms. All simulation results support the applicability, potential, and effectiveness of the proposed algorithm. However, the computation time of the DA-PSO is much slower than other algorithms in the literature because of the sequential computation of DA and PSO.
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Abbreviations




	ABC
	artificial bee colony



	ACO
	ant colony optimization



	APSO
	adaptive particle swarm optimization strategy



	ARCBBO
	adaptive real coded biogeography-based optimization



	DA
	dragonfly algorithm



	DE
	differential evolution



	DE-PS
	differential evolution pattern search



	DSA
	differential search algorithm



	EADDE
	evolving ant direction differential evolution



	EEA
	efficient evolutionary algorithm



	EGA
	enhanced genetic algorithm



	EGA-DQLF
	enhanced genetic algorithm with decoupled quadratic load flow



	EP
	evolutionary programming



	EP-OPF
	evolutionary-programming-based optimal power flow



	Fuzzy-GA
	fuzzy genetic algorithm



	GA
	genetic algorithm



	GSA
	gravitational search algorithm



	GWO
	grey wolf optimizer



	HBMO
	honey bee mating optimization



	HMPSO-SFLA
	hybrid modified particle swarm optimization-shuffle frog leaping algorithms



	IEP
	improved evolutionary programming



	IPSO
	improved particle swarm optimization



	ISPEA2
	improved strength Pareto evolutionary algorithm



	LDI-PSO
	particle swarm optimization algorithm with linearly decreasing inertia weight



	LTLBO
	Levy mutation teaching–learning-based optimization



	MDE-OPF
	modified differential evolution optimal power flow



	MGBICA
	modified Gaussian bare-bones multiobjective imperialist competitive algorithm



	MICA-TLA
	hybrid modified imperialist competitive algorithm and teaching–learning algorithm



	MO-DEA
	multiobjective differential evolution algorithm



	MOHS
	multiobjective harmony search



	MOMICA
	multiobjective modified imperialist competitive algorithm



	MO-OPF
	multiobjective optimal power flow



	MSFLA
	modified shuffle frog leaping algorithm



	MTLBO
	modified teaching–learning-based optimization



	NPSO
	new particle swarm optimization



	OPF
	optimal power flow



	P-OPF
	probabilistic optimal power flow



	PSO
	particle swarm optimization



	SGA
	stochastic genetic algorithm



	TS
	tabu search
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