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Abstract: A new experimental method for characterizing the porosity of loose media subjected to
overburden pressure is proposed based on the functional relationships between porosity, true density,
and bulk density. This method is used to test the total porosity of loose coal particles from the
Guobei coal mine in Huaibei mining area, China, in terms of the influence of pressure and particle
size on total porosity. The results indicate that the total porosity of loose coal under 20 MPa in situ
stress is about 10.22%. The total porosity and pressure obey an attenuated exponential function,
while the total porosity and particle size obey a power function. The total porosity of the loose coal
is greatly reduced and the sensitivity is high with increased pressure when stress levels are low
(shallow burial conditions). However, total porosity is less sensitive to pressure at higher stress
when burial conditions are deep. The effect of particle size on the total porosity reduction rate in
loose coal is not significant, regardless of low- or high-pressure conditions; i.e., the sensitivity is
low. The total porosity remains virtually unchanged as particle size changes when pressure exceeds
20 MPa. Overall, the sensitivity of total porosity to pressure is found to be significantly higher than
sensitivity to particle size.

Keywords: loose media; coal; porosity; true density; bulk density; overburden pressure; particle size

1. Introduction

Porosity is one of the most important physical parameters used to characterize geological materials,
including loose media which consists of a large number of particles basically belonging to the same
order of magnitude, with voids between the particles and low mechanical strength, such as broken
coal which has been subjected to tectonic stress failure, soil, and sand [1]. It is widely used in the field
of mining and geotechnical engineering, as porosity is a primary control on material strength and
behavior. The porosity of loose coal can be used to evaluate, among other things, the properties of coal
reservoirs, the selection of grouting materials, the design of grouting parameters and the evaluation of
grouting effects.

Mercury intrusion porosimetry (MIP), low-temperature nitrogen adsorption, and scanning
electron microscopy (SEM) are the conventional methods of porosity testing [2–4]. Recently, some
advanced techniques—such as nuclear magnetic resonance (NMR), computed tomography (CT), and
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3D or 4D X-ray microscopes (XRM)—have also been applied to porosity testing [5–8]. However,
these methods are mainly carried out at room temperature and ambient pressure, neglecting the key
factor of overburden pressure for in situ geological materials. Although XRM is possible to measure
pore structure parameters of subsurface rock systems at reservoir temperatures and pressures, it can
only image mm-scale samples and it is ideal for resolving µm-scale processes [9,10]. To study the
influence of pressure on porosity of cm-scale samples, some scholars have used automated porosity
and permeability instruments or similar gas expansion principles to hold drilled core samples, and then
apply different confining pressures and temperatures to study porosity variation [11,12], especially
under different confining pressures. These core samples have typically consisted of low-permeability
rocks and lump coal [13–22].

The above methods use drilled cores to test porosity of coal and other rock samples, but this is
not possible for loose media that is pulverized and broken, in which drilling cores and press forming
is not practicable. As such, it is difficult to study the influence of pressure and other factors on the
porosity of loose media using the above-mentioned automated instruments, and some scholars tried to
compress briquette and then testing porosity with porosity and permeability instruments [11,23–25].
There have also been very few experimental studies on the effects of particle size on the porosity of
loose media [26–29] based on fractal theory or seepage experimental instruments.

In this paper, the research object of loose coal which is formed by tectonic stress failure, also
called tectonically deformed coal [30], consists of a large number of broken particles, a type of
loose media. Results are presented from the use of a true density tester and the use of a UTM5504
microcomputer-controlled electronic universal testing machine (Shenzhen Suns Technology Co., Ltd.,
Shenzhen, China) to accurately measure bulk density under overburden pressure. From this work, a
suitable porosity testing method for loose media subjected to overburden pressure is proposed. It is
based on the functional relationship between porosity, true density, and bulk density. This work also
reveals the influence laws of different pressures and particle sizes on porosity.

2. Materials and Methods

2.1. Materials

Loose coal samples were collected from the haulage gateway of working face 8105-1 in coal seam
81 of the Guobei Coal Mine in the Huaibei mining area. The altitude of working face 8105-1 is between
−683.6 m and −890.0 m, and the corresponding ground surface altitude varies from 29.6 m to 31.5 m.
The structure of coal seam 81 is complex, as shown in Figure 1.
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Figure 1. Position, production system, and geological structure of 8105-1 working face. 

Figure 1. Position, production system, and geological structure of 8105-1 working face.
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The coal body is grayish black to black, powdery to lumpy, partially scaly, with black streaks and
a dull luster. It is a semi-bright coal. Detailed description and rock strata information were shown
in Figure 2.
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Figure 2. Borehole columnar section of coal seam.

To visually examine the pore spaces of the loose coal samples, the microstructure of the collected
coal particles was observed using a SIGMA 300 field emission scanning electron microscope (Carl Zeiss,
Oberkochen, Germany). The results were shown in Figure 3.
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Figure 3. (a) On-site sampling photographs and (b–d) surface micromorphology of 5–15 mm, 2–5 mm,
0–2 mm coal particles from the 81 coal seam.

The sampling photographs and SEM images show that the loose coal body is composed of
particles of different sizes, and the surfaces of the particles are further adhered to by tiny coal pieces.
There are voids between the particles and when the coal particles are magnified, the microfractures
and pores in the matrix are seen. The average labeled fracture width is about 247.5 nm, and the pore
diameters focus on 16–45 nm.

The raw coal collected on-site from the mine is in the form of pulverized and fragmented coal.
To understand the particle size distribution (PSD) of the raw coal and select the particle size gradient
to study, initial sample screening (the mass of studied specimen was 2000 g) was performed, as shown
in Table 1. Mesh diameter, grader retained percentage, and accumulated retained percentage in the
table were used to plot the screening curve, as shown in Figure 4.

Table 1. Initial sample screening experiment data.

Mesh
Diameter (mm)

Grader Retained
Mass mi (g)

Grader Retained
Percentage (mi/2000) (%)

Accumulated Retained
Percentage (%)

31.5 0 0 0
16 124.77 6.2385 6.2385
9.5 131.25 6.5625 12.801

4.75 235.18 11.759 24.56
2.36 328.3 16.415 40.975
1.18 262.71 13.1355 54.1105
0.6 335.51 16.7755 70.886
0.3 189.61 9.4805 80.3665

0.15 183.05 9.1525 89.519
0.088 173.26 8.663 98.182

<0.088 15.98 0.799 98.981
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Figure 4. Cumulative and interval distribution curves of loose coal sample particle sizes.

Results of the initial screening show that coal particles >15 mm with very low distribution were
not considered. Sieves with mesh diameters of 2, 5, and 15 mm were used for re-screening to obtain
three particle size ranges of 0–2, 2–5, and 5–15 mm, which are similar to the particle size of three types
of tectonically deformed coal, mylonitic coal (<1 mm), granulated coal (1–3 mm), and tectonically
crushed coal (3–10 mm) after being broken by pressure [31,32], as shown in Figure 5. The above
three size classes from the screening and raw coal (mixed particle sizes: 0–2 mm, 50%; 2–5 mm, 30%;
5–15 mm, 20%) were used in the porosity characterization and influencing factors tests.
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2.2. Methods

2.2.1. Porosity in the Particle Matrix

Porosity in the matrix of particles was characterized using the combined methods of mercury
intrusion porosimetry (MIP) and low temperature nitrogen adsorption.

The MIP experiments were carried out using an Autopore 9510 Mercury Porosimeter
(Micromeritics Instrument Corp., Norcross, GA, USA). This instrument can use mercury intrusion
pressures from atmospheric pressure to 60,000 psi (414 MPa) and measure pore sizes in the 0.003–6 µm
range with a ±0.10% transducer accuracy of full scale. The samples used was about 5–15 mm in size
and dried at 110 ◦C for 24 h before the experiment.
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The mercury porosimetry analysis technologies are based on the intrusion of mercury into aporous
structure under stringently controlled pressures. They can capture numerous sample pore properties
such as pore size distributions, total pore volume, or porosity. The porosity calculation formula is

np = V1/V2 (1)

where np is the particle matrix porosity; V1 is the pore volume (mercury volume intruded at the
maximum experimental pressure attained, 414 MPa) and V2 is the sample volume which can be
derived by Equation (2)

V2 = {w4 − [w3 − (w2 − w1) ]}/ρHg = (w4 − w3 + w2 − w1)/ρHg (2)

where ρHg is the density of mercury at a certain temperature; w1 is the mass of empty cell; w2 is the
mass of empty cell and sample; w3 is the mass of mercury, empty cell and sample and after filling with
mercury under a certain pressure; w4 is the mass of mercury and empty cell after empty cell filled
with mercury.

Due to compression of mercury, of the sample cell, and of the rest of the instrument components,
but also of the sample itself, the mercury intrusion method will have a certain error, especially at
higher mercury pressures [33,34]. Subtracting an empty cell run from an actual sample analysis is an
effective means to correct compression of mercury and system components error (blank correction).
For the problem of compressibility of coal under high pressure of mercury intrusion, low temperature
nitrogen adsorption was used to instead of MIP to calculate the pore volume which was originally
tested with mercury intrusion at high pressure.

The low temperature nitrogen adsorption experiments were carried out using a Micrometrics
ASAP 2460 (Micromeritics Instrument Corp., Norcross, GA, USA) gas adsorption instrument. Samples
were crushed to 250 µm and dried at 100 ◦C for 24 h to be used for low pressure isotherm analysis.
After outgassing at 150 ◦C for 8 h, the N2 gas isotherm adsorption measurements were carried out at
77 K (−196 ◦C). The pore volume and pore size distribution can be obtained from the low temperature
nitrogen adsorption experiments.

2.2.2. Total Porosity of Loose Coal

According to the China National Standard [35], the extended formula for calculating total porosity
while under overburden pressure is

nt = (1− ρb /ρ)× 100% (3)

where nt is the total porosity of coal or rock (%); ρb is the bulk density of coal or rock, i.e., the ratio of
mass to total volume of coal or rock (including the volume of skeleton and all pore spaces, g/cm3) and
ρ is the true density or mineral particle skeletal density of coal or rock (the ratio of mass to skeleton
volume, not including the pore spaces, g/cm3).

The test of true density (ρ) was done with the true density tester. The testing instrument was an
AccuPyc 1330 Pycnometer (Micromeritics Instrument Corp., Norcross, GA, USA). The instrument uses
the Archimedes principle of helium gas expansion. The molecular diameter of He is 0.26 nm, thus
it can penetrate the smallest pores and irregular hollows in the surface of a sample. As a result, it is
possible to obtain a skeleton volume very close to the true skeleton volume value, and the calculated
true density is therefore a true reflection of the true density value of any given sample.

To determine bulk density (ρb) of coal samples at different pressures, the UTM5504 universal
testing machine was used. The experimental equipment used and a schematic diagram of the method
were shown in Figure 6.
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To accurately simulate the in situ state of pressure, the experiment was run in four stages:

(1) Forward loading stage: A loading speed of 2 mm/min was used, and after the specified pressure
(Determined according to the in situ stresses—5, 10, 15, 20, and 25 MPa—was selected in this
test because the in situ stress of Guobei Coal Mine 8105-1 working face is 20 MPa) level was
reached, the force applied was kept constant for 30 min. The loading time was referenced by some
scholars’ briquette compressing schemes [24,25,36,37]. The forward decreased displacement of
indenter h1 was automatically recorded by the testing machine. At each initial experiment, the
coal sample should be filled with the mold, that is, the initial position of the bottom surface of the
indenter was flush with the top of the coal briquette mold, as shown in Figure 6d. The purpose
of the operation is to conveniently calculate the height of the coal sample after compressing.
After this stage, hcoal = h − h1. h is the height of the briquette mold excluding the base embedded
in the mold.

(2) Forward unloading rebound stage: The unloading speeds were set to 15 N/s corresponding
to experimental pressures of 5 MPa, 30 N/s→10 MPa, 45 N/s→15 MPa, 60 N/s→20 MPa,
and 75 N/s→25 MPa. The purpose is to keep the consistent unloading time at each pressure.
When the force returned to zero, the compressed coal sample rebounded and the forward rebound
amount of the coal sample h2 was recorded.

(3) Reverse loading stage: The briquette mold was reversed, and the pressure was applied
continuously. The loading speed was set to 2 mm/min and after the specified pressure level (5, 10,
15, 20, and 25 MPa) was reached the applied force was kept constant for 30 min. The reverse
loading parameters were exactly the same as the parameters in the forward loading stage.
The reverse decreased displacement of indenter h3 was recorded.

(4) Reverse unloading rebound stage: The unloading speeds were set to 15 N/s corresponding
to experimental pressures of 5 MPa, 30 N/s→10 MPa, 45 N/s→15 MPa, 60 N/s→20 MPa,
and 75 N/s→25 MPa. When the reverse force returned to zero, the compressed coal sample
rebounded and the reverse rebound amount h4 was recorded.

(5) The mold was again turned upside down and the next level of pressure was applied. The previous
four stages were repeated to complete the next pressure level tests.

The bulk density of coal under different pressures was then calculated as shown in Equation (4).

ρb =
m

π(d/2 )2[h− (h1 + h3 − h2)]
(4)

where ρb is the bulk density of coal under a certain overburden pressure (g/cm3); m is the mass in
grams of the coal sample in the briquette mold (the coal sample filled the mold at the beginning of
the test); and d is the inner diameter of the briquette mold (cm). The inner diameter used in this
experiment was 4.960 cm.

The various heights and displacements are as follows: h is the height of the briquette mold
(10.542 cm) excluding the base embedded in the mold; h1 is the forward decreased displacement (cm)
of the indenter under a certain overburden pressure; h2 is the forward rebound amount (cm) of the coal
sample when the overburden pressure returns to zero; and h3 is the reverse decreased displacement
(cm) of the indenter under a certain overburden pressure. The result of h − (h1 + h3 − h2) is the height
of the compressed coal samples under each pressure.

It should be noted that Equation (4) applies to the calculation of the bulk density of the
independently filling and compressing coal samples under each pressure level, but if the coal sample
compression of a certain pressure level continues to circulate on the basis of the previous pressure level,
when calculating the height of the compressed coal sample, it is necessary to subtract the influence
of the reverse rebound amount h4 of the previous pressure level. For example, in the experiment
scheme of this article, when the pressure is 5 MPa, the bulk density can be calculated directly using
Equation (4), but when 10 MPa, the reverse rebound amount h4 of 5 MPa needs to be subtracted when
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calculating the height of the compressed coal sample. Because the 10 MPa forward loading stage was
followed by 5 MPa reverse unloading rebound stage.

In the bulk density experiment, the mass of the coal sample was measured using a precision
balance (Yuyao Jiming Weighing Calibration Equipment Co., Ltd., Ningbo, China, JM-A20002,
MAX = 2000 g, d = 0.01 g) and the height and inner diameter of the mold were measured using
a Vernier caliper (Hangzhou Huafeng Big Arrow Tools Co., Ltd., Hangzhou, China, HF-8631215,
MAX = 150 mm, d = 0.01 mm). The decreased displacement and rebound amount of the indenter were
automatically recorded by the testing machine with a 0.04 µm displacement resolution. The maximum
test force of the machine is 50 KN (resolution 1/500,000).

3. Results

3.1. Characterization of Total Porosity of Loose Coal

Total porosity refers to the ratio of the sum of the volume of all pore spaces in a rock sample to
the volume of the sample. For loose coal, the total porosity consists of three parts: inter-particle voids,
pores, and micro-fractures in the particle matrix.

The porosity of the loose coal matrix was obtained by mercury intrusion porosimetry and low
temperature nitrogen adsorption. After testing the true density of the loose coal sample and the bulk
density subjected to overburden pressure, the total porosity of the loose coal samples was determined
from the functional interrelationships of total porosity, true density, and bulk density. Thus, the
objective of accurately characterizing the porosity of loose coal which is multi-scale pore spaces
(millimeter voids, micro-nano fractures and pores) was achieved.

3.1.1. True Density

The true densities of minerals in coal are much greater than the true densities of organic matter
within coal. For example, the true densities of quartz, clay and pyrite are 2.15, 2.40, and 5.00 g/cm3,
respectively. The average true density of minerals in coal is approximately 3.00 g/cm3, and the
higher the inorganic mineral content, the higher the true density of the coal [38]. The associated
mineral compositions of the coal samples were analyzed by the D8 ADVANCE X-ray diffractometer
(Bruker AG, Karlsruhe, Germany), as shown in Figure 7.
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Figure 7 shows that the coal sample collected in the experiment contained quartz, kaolinite, and
other minerals, and the mineral contents were shown in Table 2.
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Table 2. Results of quantitative analysis of 81 coal sample minerals.

Minerals Quartz Kaolinite Others

Weight percentage 12.04% 9.47% 3.79%

As a result, the true densities measured for different particle size of coal were different, as shown
in Table 3. The difference in true density values of different coal particle sizes may be due to the
different mineral contents.

Table 3. True densities of coal measured for different size classes of coal particles.

Size 0–2 mm 2–5 mm 5–15 mm Raw Coal

True density 1.562 g/cm3 1.632 g/cm3 1.827 g/cm3 1.636 g/cm3

3.1.2. Porosity in the Particle Matrix

The matrix porosity of 5–15 mm samples from coal seam 81 determined from the combined test of
MIP and low temperature nitrogen adsorption was 4.23%. With 50 nm as the demarcation point of MIP
and low temperature nitrogen adsorption [39,40], volume data for pores (diameter > 50 nm) used MIP
data, and pores (diameter < 50 nm) used low temperature nitrogen adsorption data. The comparison
between combined methods and separate MIP was shown in Figure 8a. In the figure, in order to
show the comparison and correction more intuitively, the pore diameter data of low temperature
nitrogen adsorption was converted into mercury intrusion pressure. Cumulative porosity and porosity
distribution curves after correction were shown in Figure 8b. The matrix porosity of this sample
is mainly distributed as transitional pores (reference to Hodot pore grading [41]), with pore throat
diameters in the range of a 20–40 nm, and 90–347 µm diameter fractures and pores (visible to naked
eye) which have an order of magnitude size difference compared to the transitional pores are also
evident. There are also few abrupt peaks on the porosity distribution curve which may be due to the
randomness of the samples.
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Figure 8. Results of pore space characterization using MIP and low temperature nitrogen adsorption:
(a) pore volume and (b) porosity in the coal matrix.

3.1.3. Total Porosity of Loose Coal

The total porosity value was calculated by substituting the bulk density results and true density
results into Equation (3). Results were shown in Figure 9. The actual depth (H) of the experimental
sample collection site was about 800 m, based on the estimation of in situ stress (σ = γH) where a value
of 2.5 kN/m3 was used for γ and the in situ stress at the sampling site was≈20 MPa. The experimental
results indicate a total porosity value of 10.22% for the sample from the 81 coal seam at 20 MPa.
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Figure 9. Curve of total porosity for a sample of coal from the 81 coal seam.

According to the MIP and low-temperature nitrogen adsorption data, the porosity in the matrix of
particles from the 81 coal seam was approximately 4.23%. The remaining porosity of 5.99% for samples
subjected to 20 MPa of overburden pressure was obtained from the inter-particle voids and the smaller
pores (diameter < 1.77 nm) not measurable with the low temperature nitrogen adsorption experiment.
In this article, the single coal sample of 5–15 mm was used in the MIP experiment, so the porosity
result from MIP experiment does not include inter-particle voids. It can also be seen from the mercury
intrusion curve that there is no obvious inflection point at low pressure.
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3.2. Effects of Pressure and Particle Size on Total Porosity

The research object loose coal (tectonically deformed coal) has different burial depths and degrees
of fragmentation. Different overburden pressures applied to loose, raw coal particles will result
in deformation, breaking, rearrangement, and other changes that will cause the total porosity to
change significantly. In addition, under the same overburden pressure, the arrangement and staggered
relationship of coals with different particle sizes may also result in different porosity. To test the
effects of pressure and particle size on total porosity, the characteristics of in situ stress and particle
sizes of raw coal have been combined, and total porosity has been determined for different pressure
gradients (0, 5, 10, 15, 20, and 25 MPa) and different particle size classes (0–2, 2–5, and 5–15 mm).
The experimental results obtained are described in the following three subsections.

3.2.1. Pressure Effects on Total Porosity

Changes in total porosity with increasing pressure for the specified particle size classes have
been constructed as curves, with data points fitted and analyzed (Figure 10 and Table 4). These data
show that as pressure increases, the pores between the particles gradually close and the total porosity
decreases for each particle size class. When the pressure is low, the degree of decrease is greatest, and
as pressure increases the degree of decrease is gradually reduced.

Additionally, the total porosity and pressure obey an attenuated exponential function (all curves
have an R-square of≈ 98%). That is, the total porosity decreases exponentially with increasing pressure.
Regression analysis of the experimental results show that the relationship can be defined as

nt = ae−bσ + c (5)

where nt is the total porosity of loose coal at a given pressure (%), σ is the pressure (MPa), the sum of a
and c represents the total porosity of loose coal when the pressure is 0 MPa (%), and b represents the
compression coefficient (MPa−1).

Finally, the decreases in total porosity for each particle size class are similar as pressure increases,
and the curves steepen. A mixed particle sizes (such as raw coal) will reduce the rate of total porosity
decrease as pressure increase, evident in the gentle slope of the curve. The raw coal has a relatively low
porosity at low pressure. For example, compared with 5–15 mm particles, the porosity value of the raw
coal under 0 MPa is 15.31% less, and the value under 5 MPa is 3% less. This is because the staggered
arrangement of large and small coal particles in raw coal and small particles filled large voids.
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Table 4. Fitting formulae of total porosity for each particle size class.

Size Fitting Formula R-Square

0–2 mm nt = 0.098 + 0.351e−0.217σ 0.97848
2–5 mm nt = 0.095 + 0.371e−0.199σ 0.98336
5–15 mm nt = 0.099 + 0.400e−0.211σ 0.98217
Raw coal nt = 0.091 + 0.255e−0.162σ 0.98215

3.2.2. Particle Size Effects on Total Porosity

The study of loose coal particle size effects on total porosity includes two aspects: the initial
particle size and the particle size of the compacted samples. The study of initial particle size has a
reference value for the study of the influence of porosity on the physical and mechanical properties
of coal by compressing coal samples with different porosity in the laboratory. The particle size of
the compacted samples are the true particle size after laboratory or on-site compression, which truly
reflects the relationship between the porosity and on-site tectonically deformed coal of different degrees
of fragmentation. Using the cumulative PSD curve (Figure 4), the initial particle size D50 was selected
as the average particle size of the segment. This is the particle size corresponding to 50% of the
cumulative PSD in each segment of the three size classes. The fitting curve in Figure 4 shows that the
D50 results for each segment are 0.54, 3.15, and 8.57 mm, respectively. From these data, it was possible
to construct curves of total porosity change vs. initial particle size for each pressure interval, as shown
in the line graph in Figure 11. The coal samples after each stage of loading screening was performed.
Using the obtained particle size after loading, the curves of total porosity change vs. the particle size
of the compacted samples were plotted, as shown in the histogram in Figure 11.
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The line graph curves show that, at each pressure, the total porosity increases with increasing
initial particle size and, by fitting of the data points, the relationship between total porosity and initial
particle size is shown to obey the power law

nt = AdB (6)

where nt represents the total porosity; d represents the initial particle size and A and B are
fitting constants.

The histograms show that the largest particles are gradually crushed and decreased as the pressure
increase, and the degree of fragmentation is irregular. There is still a clear difference in particle size
with the initial coal particles of 5–15, 2–5, and 0–2 mm subjected to the same pressure. Large initial
particles correspond to low degree of on-site coal fragmentation.

Additionally, as pressure and initial particle size increases, the increased degree of total porosity
undergoes a gradual decrease. When the pressure exceeds 20 MPa, the curve of initial particle size vs.
total porosity approximates a straight line, indicating that the total porosity does not change with a
change in initial particle size.

From the relationship between porosity and particle size of the compacted samples, it can be seen
that the porosity of coal samples with low degree of fragmentation is larger than the coal samples with
high degree of fragmentation, but the difference is small. As the overburden pressure increases, the
difference gradually decreases. After 20 MPa, the difference tends to be zero. At this time, the porosity
is considered to be independent of the degree of coal fragmentation.

3.2.3. Sensitivity of Total Porosity to Pressure and Particle Size

Evaluation of the sensitivity of total porosity to pressure and initial particle size is based on the
use of total porosity reduction rate as the sensitivity parameter and a reference point with total porosity
measured in coal in the 5–15 mm particle size range at a pressure of 0 MPa. The rate of change of total
porosity with respect to the reference point at each pressure and initial particle size was defined as the
total porosity reduction rate (∆nt), as expressed in Equation (7). The greater the value of change in ∆nt

as some other factor changes, the higher the sensitivity of total porosity to that factor, as

∆nt =

(
n0 − nij

)
n0

× 100% (7)

where n0 is the total porosity of coal samples in the 5–15 mm initial particle size range measured at
0 MPa pressure and nij is the total porosity measured for any particle size and pressure.

The reduction rate of total porosity for each initial particle size class and pressure was calculated
according to Equation (7), and the results were shown in Table 5.

Table 5. Reduction rates of total porosity (∆nt) for each particle size class and pressure.

Pressure

Size
5–15 mm 2–5 mm 0–2 mm

0 MPa 0 6.54% 10.03%
5 MPa 55.96% 56.78% 60.18%

10 MPa 66.97% 67.96% 68.76%
15 MPa 73.64% 74.19% 75.04%
20 MPa 79.41% 79.55% 79.73%
25 MPa 83.74% 84.06% 84.06%

Table 5 shows that the total porosity of the loose coal is greatly reduced when the pressure
is low (shallow burial conditions), and the sensitivity is high with respect to increasing pressure.
Total porosity is less sensitive to pressure at higher stress levels (deep burial conditions). The change
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in total porosity reduction rate is not significant in terms of initial particle size changes, regardless of
whether the pressure conditions are low or high, and the sensitivity is low. Generally, the sensitivity of
total porosity to pressure is significantly higher than sensitivity to initial particle size (corresponding
to degree of on-site coal fragmentation).

4. Discussions

4.1. Comparison with the Method of Compressing Briquette and Testing Porosity

There are two main problems with the method of compressing briquette and then testing porosity:
one problem is that the difficulties of forming and taking out the briquette at low pressure, and another
problem is that the briquette has a large amount of rebound at high pressure. The rebound amount
can be reflected by the time–displacement curves measured from the UTM5504 universal testing
machine, as shown in Figure 12a. The curves show that there is rebound after loading and unloading
at all pressure levels. As the pressure level increases, the amount of rebound gradually increases.
Thus, the error related to the porosity testing method by briquette mentioned in the introduction under
overburden pressure also increases. The comparison of porosity differences caused by errors were
shown in Figure 12b. The total porosity is calculated by Equation (3). When calculating, the method of
compressing briquette accounts for the reverse rebound amount (h4), but the method proposed in this
paper eliminates the impact of the reverse rebound amount, not counting.
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4.2. Quality of Measurement Results

The true total porosity of on-site loose coal is difficult to measure or learn from relevant references,
and the accuracy of this experiment cannot be quantitatively expressed. In these cases, uncertainty
of measurement was usually used to evaluate the quality of measurement results [42,43]. It is the
parameter, associated with the result of a measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the measurand. In most cases, a measurand is not
measured directly, but is determined from other quantities through a functional relationship, where the
uncertainty of output estimate or measurement result can be determined from the estimated standard
deviation associated with each input estimate xi, as shown in Equation (8)

u2
c (nt) =

[
∂ f
∂ρ

]2

u2(ρ) +

[
∂ f
∂m

]2

u2(m) +

[
∂ f
∂d

]2

u2(d) +
[

∂ f
∂h

]2

u2(h) +
[

∂ f
∂h1

]2

u2(h1) +
[

∂ f
∂h3

]2

u2(h3) +
[

∂ f
∂h2

]2

u2(h2) + u2(s) (8)
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where uc(nt) is the combined standard uncertainty of output estimate nt; ∂f/∂xi is the partial derivative
(sensitive coefficient) with respect to input quantities Xi (ρ, m, d, h, h1, h3, h2) of functional relationship f
between measurand nt and input quantities Xi on which nt depends, u(xi) is the standard uncertainty of
input estimated xi that estimates input quantity Xi, u(s) is the standard uncertainty of the measurement
repeatability of output estimate nt, equal to the experimental standard deviation of the mean nt.

Detailed calculation steps and precautions, see “Guide to the Expression of Uncertainty in
Measurement” [42]. The uncertainty of the total porosity of loose raw coal under each pressure was
calculated by Equation (8). The results under 20 MPa were shown in Table 6.

Table 6. Summary of standard uncertainty components.

Standard
Uncertainty

Component u(xi)
Source of Uncertainty Value of Standard

Uncertainty u(xi)

Sensitive
Coefficient:
ci = ∂f/∂xi

Component of
uc(nt): ui(nt) =
|ci|u(xi) (%)

u(ρ)

Instrument uncertainty (±0.03% of
the indication) 2.83 × 10−4 g/cm3

0.14654 0.00438
Measurement repeatability (±0.01%

of the indication) 4.15 × 10−5 g/cm3

u(m) Instrument uncertainty (±0.02 g) 0.0115 g 0.00111 0.00128

u(d)
Instrument uncertainty (±0.002 cm) 0.00115 cm

0.09667 0.0869Measurement repeatability 0.00892 cm

u(h)
Instrument uncertainty (±0.002 cm) 0.00115 cm

0.00314 0.00286Measurement repeatability 0.00904 cm

u(h1)
Instrument uncertainty (±0.5% of

the indication)

0.00730 cm
0.00314

0.00229
u(h3) 0.00154 cm 0.000484
u(h2) 0.000427 cm 0.000134

u(s) - - - 0.140

uc
2(nt) = ∑ui

2(nt) + u2(s) = 2.74 × 10−5; uc(nt) = 0.17%.

Although uc can be universally used to express the uncertainty of a measurement result, it only
corresponds to the standard deviation, and the measurement result y ± uc represented by it has a low
level of confidence. The additional measure of uncertainty that meets the requirement of providing
an interval of the high level of confidence is termed expanded uncertainty and is denoted by U.
The expanded uncertainty U is obtained by multiplying the combined standard uncertainty uc(y) by a
coverage factor k: U = kuc(y).

Take k = 2, the corresponding level of confidence p is 95%, U = kuc(nt) = 2 × 0.17% = 0.34%.
The uncertainty of the total porosity measurement of loose raw coal under 20 MPa is evaluated

by using the expanded uncertainty. The measurement result is

nt = 10.22% ± 0.34%, p = 95%

The expanded uncertainty of the total porosity measurement of loose raw coal under 5, 10, 15,
and 25 MPa is 0.40%, 0.38%, 0.18%, and 0.36%.

Table 5 shows that the standard uncertainty of the measurement repeatability of output estimate
u(s) accounts for the vast majority (82%) in the combined standard uncertainty uc(nt). The main sources
of u(s) are the randomness of the coal samples, and the measurement repeatability of the coal sample
mass. The value of this part of the uncertainty can be reduced by increasing the number of repetitions
of the measurements.

4.3. Engineering Significance, Novelty, Applicability, and Scalability of the Method

Using this experimental method, the value and variation of the total porosity of loose coal
with different depths and different degrees of fragmentation can be estimated to provide data for
field engineering.
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The main novelty of this method is the following aspects: the extension of relationship between
total porosity, true density, and bulk density to the total porosity test of the loose media under
overburden pressure, the application of mechanical press to measure bulk density, the reverse loading
and the record of rebound amounts during the bulk density measurement process.

This experimental method is mainly applicable to loose and broken deposition, especially for
shallow loose deposits like sand and soil. The in situ stress that can be simulated in this method
depends mainly on the maximum test force of the mechanical press.

Next, the accuracy of results can be improved by higher device performance and more pressure
and displacement sensors. The relationship between temperature and the total porosity can be studied
by using a thermally conductive mold. In addition, some devices can be added to study the pore
distribution and permeability of loose media under overburden pressure.

5. Conclusions

The porosity of coal is very important in coal mining, such as for evaluating coal reservoirs
and selection of grouting materials for reinforcement of coal roadways. This work has presented an
experimental study on porosity characterization of loose coal media subjected to controlled overburden
pressure. A new experimental method for such has been proposed, and the correlations between
porosity and pressure and porosity and particle size have been examined. The main conclusions of
this work are summarized below.

(1) A new method for characterizing total porosity in loose media subjected to overburden pressure
is proposed. It is based on the functional relationship between total porosity, true density, and
bulk density.

(2) After testing, the porosity of loose coal from the Guobei Coal Mine at 20 MPa in situ stress is
found to be ≈ 10.22%. The total porosity experiences a downward trend as pressure increases
for a fixed particle size, and the total porosity and pressure obey an attenuated exponential
function. The decrease in total porosity with initial single particle sizes (0–2, 2–5, and 5–15 mm)
is similar to that with increasing pressure, with steep curves of total porosity vs. pressure evident.
There is reduction in the rate of total porosity decrease with increasing pressure with a mixed
particle sizes.

(3) At each selected pressure, the total porosity increases with increasing initial particle size (large
initial particle size correspond to low degree of on-site coal fragmentation), and the total porosity
and initial particle size obey a power function. The rate of total porosity increase becomes
gradually reduced as particle size increases at higher stress levels. The curve of initial particle
size vs. total porosity approximates a horizontal line when the pressure exceeds 20 MPa, and can
thus be considered indicative of total porosity being insensitive to changes in initial particle size
or the degree of on-site coal fragmentation.

(4) When pressures are low (e.g., burial conditions are shallow), it is found that total porosity is
greatly reduced and is highly sensitive to the increase in pressure. However, total porosity is
less sensitive to pressure at higher stress levels (e.g., burial conditions are deep). The effect of
particle size on the total porosity reduction rate in the loose coal is not significant irrespective
of the pressure conditions (e.g., low or high). In general, the sensitivity of the total porosity to
pressure is found to be significantly higher than sensitivity to particle size.
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